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FIGURE 8.1
Location of canneries and warehouses for the P & T Co. problem.

TABLE 8.2 Shipping data for P & T Co.

Shipping Cost ($) per Truckload

Warehouse

1 2 3 4 Output

1 464 513 654 867 75
Cannery 2 352 416 690 791 125

3 995 682 388 685 100

Allocation 80 65 70 85



subject to the constraints

x11 � x12 � x13 � x14 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � 75
� x21 � x21 � x21 � x21x21 � x22 � x23 � x24 � x21 � x21 � x21 � x21 � 125
� x21 � x21 � x21 � x21 � x21 � x21 � x21 � x21x31 � x32 � x33 � x34 � 100
x11 � x21 � x21 � x21 � x21 � x21 � x21 � x21 � x31 � x21 � x21 � x21 � 80
x11 � x12 � x21 � x21 � x21 � x22 � x21 � x21 �x21 � x32 � x21 � x21 � 65
x11 � x12 � x13 � x21 � x21 � x21 � x23 � x21 � x21 � x21 � x33 � x21 � 70
x11 � x12 � x13 � x14 � x21 � x21 � x21 � x24 � x21 � x21 � x21 � x34 � 85

and

xij � 0 (i � 1, 2, 3; j � 1, 2, 3, 4).

Table 8.3 shows the constraint coefficients. As you will see later in this section, it is the
special structure in the pattern of these coefficients that distinguishes this problem as a
transportation problem, not its context.
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FIGURE 8.2
Network representation of
the P & T Co. problem.
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TABLE 8.3 Constraint coefficients for P & T Co.

Coefficient of:

x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

1 1 1 1
Cannery

1 1 1 1
constraints

1 1 1 1

A � 1 1 1
1 1 1 Warehouse

1 1 1 constraints
1 1 1



Therefore, formulating a problem as a transportation problem only requires filling out
a parameter table in the format of Table 8.5. Alternatively, the same information can be
provided by using the network representation of the problem shown in Fig. 8.3. It is not
necessary to write out a formal mathematical model.

However, we will go ahead and show you this model once for the general trans-
portation problem just to emphasize that it is indeed a special type of linear programming
problem.

Letting Z be the total distribution cost and xij (i � 1, 2, . . . , m; j � 1, 2, . . . , n) be
the number of units to be distributed from source i to destination j, the linear program-
ming formulation of this problem is

Minimize Z � �
m

i�1
�
n

j�1
cijxij,

subject to

�
n

j�1
xij � si for i � 1, 2, . . . , m,

�
m

i�1
xij � dj for j � 1, 2, . . . , n,

and

xij � 0, for all i and j.

Note that the resulting table of constraint coefficients has the special structure shown in
Table 8.6. Any linear programming problem that fits this special formulation is of the
transportation problem type, regardless of its physical context. In fact, there have been
numerous applications unrelated to transportation that have been fitted to this special struc-
ture, as we shall illustrate in the next example later in this section. (The assignment prob-
lem described in Sec. 8.3 is an additional example.) This is one of the reasons why the
transportation problem is considered such an important special type of linear program-
ming problem.
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TABLE 8.5 Parameter table for the transportation problem

Cost per Unit Distributed

Destination

1 2 … n Supply

1 c11 c12
… c1n s1

2 c21 c22
… c2n s2Source

� �

m cm1 cm2
… cmn sm

Demand d1 d2
… dn

…………………………………………………………………



the water and the city being supplied. The variable cost per acre foot of water (in tens of
dollars) for each combination of river and city is given in Table 8.10. Despite these vari-
ations, the price per acre foot charged by the district is independent of the source of the
water and is the same for all cities.

The management of the district is now faced with the problem of how to allocate the
available water during the upcoming summer season. In units of 1 million acre feet, the
amounts available from the three rivers are given in the rightmost column of Table 8.10.
The district is committed to providing a certain minimum amount to meet the essential
needs of each city (with the exception of San Go, which has an independent source of
water), as shown in the minimum needed row of the table. The requested row indicates
that Los Devils desires no more than the minimum amount, but that Berdoo would like
to buy as much as 20 more, San Go would buy up to 30 more, and Hollyglass will take
as much as it can get.

Management wishes to allocate all the available water from the three rivers to the
four cities in such a way as to at least meet the essential needs of each city while mini-
mizing the total cost to the district.

Formulation. Table 8.10 already is close to the proper form for a parameter table, with
the rivers being the sources and the cities being the destinations. However, the one basic
difficulty is that it is not clear what the demands at the destinations should be. The amount
to be received at each destination (except Los Devils) actually is a decision variable, with
both a lower bound and an upper bound. This upper bound is the amount requested un-
less the request exceeds the total supply remaining after the minimum needs of the other
cities are met, in which case this remaining supply becomes the upper bound. Thus, in-
satiably thirsty Hollyglass has an upper bound of

(50 � 60 � 50) � (30 � 70 � 0) � 60.

Unfortunately, just like the other numbers in the parameter table of a transportation
problem, the demand quantities must be constants, not bounded decision variables. To be-
gin resolving this difficulty, temporarily suppose that it is not necessary to satisfy the min-
imum needs, so that the upper bounds are the only constraints on amounts to be allocated
to the cities. In this circumstance, can the requested allocations be viewed as the demand
quantities for a transportation problem formulation? After one adjustment, yes! (Do you
see already what the needed adjustment is?)
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TABLE 8.10 Water resources data for Metro Water District

Cost (Tens of Dollars) per Acre Foot

Berdoo Los Devils San Go Hollyglass Supply

Colombo River 16 13 22 17 50
Sacron River 14 13 19 15 60
Calorie River 19 20 23 — 50

Minimum needed 30 70 0 10 (in units of 1
Requested 50 70 30 � million acre feet)



This problem will be solved in the next section to illustrate the solution procedure
presented there.
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Because the transportation problem is just a special type of linear programming problem,
it can be solved by applying the simplex method as described in Chap. 4. However, you
will see in this section that some tremendous computational shortcuts can be taken in this
method by exploiting the special structure shown in Table 8.6. We shall refer to this stream-
lined procedure as the transportation simplex method.

As you read on, note particularly how the special structure is exploited to achieve
great computational savings. This will illustrate an important OR technique—streamlin-
ing an algorithm to exploit the special structure in the problem at hand.

Setting Up the Transportation Simplex Method

To highlight the streamlining achieved by the transportation simplex method, let us first
review how the general (unstreamlined) simplex method would set up a transportation prob-
lem in tabular form. After constructing the table of constraint coefficients (see Table 8.6),
converting the objective function to maximization form, and using the Big M method to
introduce artificial variables z1, z2, . . . , zm�n into the m � n respective equality constraints
(see Sec. 4.6), typical columns of the simplex tableau would have the form shown in Table
8.13, where all entries not shown in these columns are zeros. [The one remaining adjust-
ment to be made before the first iteration of the simplex method is to algebraically elimi-
nate the nonzero coefficients of the initial (artificial) basic variables in row 0.]

After any subsequent iteration, row 0 then would have the form shown in Table 8.14.
Because of the pattern of 0s and 1s for the coefficients in Table 8.13, by the fundamen-
tal insight presented in Sec. 5.3, ui and vj would have the following interpretation:

ui � multiple of original row i that has been subtracted (directly or indirectly) from
original row 0 by the simplex method during all iterations leading to the cur-
rent simplex tableau.

8.2 A STREAMLINED SIMPLEX METHOD FOR THE 
TRANSPORTATION PROBLEM

TABLE 8.12 Parameter table for Metro Water District

Cost (Tens of Millions of Dollars) per Unit Distributed

Destination

Berdoo (min.) Berdoo (extra) Los Devils San Go Hollyglass
1 2 3 4 5 Supply

Source Colombo River 1(D) 16 16 13 22 17 50
Source

Sacron River 2(D) 14 14 13 19 15 60
Source

Calorie River 3(D) 19 19 20 23 M 50
Source Dummy 4(D) M 0 M 0 0 50

Demand 30 20 70 30 60


