Applied Calculus

Homework 7

Due in class, November 24, 2015

. Suppose y = aln(bz). Show that the error in this expression propagates according to
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. (The context is Example 19.12 in MLS on radio-carbon dating, which I repeat here in
parts.) All living things contain small amounts of radioactive carbon C'*. The ratio of
C'" to stable C'? is constant in the atmosphere. Once death occurs, C'* is no longer
taken in, and the amount of C'* in the organism begins to decay according to

A(t) = Ao e_kt 5
where A(t) is the activity at time ¢ and Ay is the initial activity.

(a) The half life of C** is 5760 years. Find k.
(b) You have a sample with carbon ratio A(t)/A, = 0.1. How old is the sample?

(c) What is the uncertainty in the age of the sample if you can determine the carbon
ratio A(t)/Ap only with a relative accuracy of 10%, assuming that the value for
k is exact?

. If you measure x = 10 =1 and y = 15 4 2, what should you report for
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together with its uncertainty?

. Suppose u = xy z. Find an expression for the relative uncertainty of v in terms of the
relative uncertainties of z, y, and z. (Cf. example from class on Thursday!)

. Find f(x) for each of the following given f(x).

(a) f'(z)
(b) f'(x) = 2" with n # —1
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(2 points each)

6. Use Scientific Python to verify the conclusion of Problem 4 computationally.

A commonly used technique to estimate the propagation of error (and other random
processes) in complex models is the method of Monte-Carlo simulation. The idea is the
following: You run the computation many times with randomly perturbed input values,
and look at the statistics of the output. The advantage is that you can treat the model
as a black box, the disadvantage is that you need a large number of computations to
get good statistics, which might be expensive when the model is complex. This exercise
demonstrates the idea behind the Monte-Carlo technique in a simple setting.

In Scientific Python, you can create arrays (ordered sets of numbers) and perform
computations with each of its members “simultaneously” just as if it were a single
computation. Proceed as follows.

e normal (m,s,N) will produce an array of length N of random numbers which are
drawn from a normal distribution centered at m with standard deviation s.

Thus, to test the propagation of uncertainty for a quantity specified as © =
7.3+ 0.01, you would create a sample via x=normal(7.3,0.01,10000) where, in
this example, we have chosen a sample size of 10 000.

You can proceed likewise for the other variables y and z.

e You can now compute u = x y z for all samples at once via u=x*y*z. The resulting
variable u is still an array with 10000 components!

e The correct concept for uncertainty in statistical terms is the standard devi-
ation. Thus, the relative uncertainty of = expressed in Scientific Python is
std(x)/mean(x). Corresponding expressions hold for the relative uncertainties
of y, z, and wu.

e Now compute the relative uncertainty of u in two different ways. First, use your
formula from Problem 4. Second, compute the relative uncertainty directly from
your array u. Are they close? Comment on any differences.

e Finally, destroy the independence of the errors in x, y, and z by using the same
array x for all three. What do you get? Explain!

If you are ambitious, you may also try the following:

e Instead of normally distributed random numbers, which is the most natural as-
sumption in the absence of information to the contrary, you may take random
number that follow different distributions. For example, rand produces uniformly



distributed random numbers, which you can scale appropriately and use in a
similar way. You will find that the conclusions above do not change—standard
deviations and independence are all that matters.

Test the conclusion of Problem 3. Here, the relative errors are quite large and
there is a potential problem with small denominators in this expression, so you
would expect that the Monte-Carlo approach might differ significantly from the
estimate given by the the error propagation formula. The the latter is based on
the linear approximation of the function and may not always be trusted.



