Partial Differential Equations

Midterm Exam

October 29, 2008

1. Solve the partial differential equation

$$x u_t - t u_x = 0,$$

where u = u(x, t) for $(x, t) \in \mathbb{R}^2 \setminus (0, 0)$. What are the characteristic curves? What kind of initial/boundary data do you need to prescribe?

Hint: Start out with an ansatz for the charactistic curves of the general form x = x(s)and t = t(s). (10)

- 2. Show that if u is harmonic on some open $U \subset \mathbb{R}^n$, then u cannot have an isolated zero in U. (5)
- 3. Let $U \in \mathbb{R}^n$ be open and bounded. State a set of boundary conditions which are sufficient to guarantee that a solution $u \in C^4(\overline{u})$ of the Poisson-type problem for the bi-Laplacian,

$$\Delta^2 \mathfrak{u} = \mathsf{f},$$

(10)

satisfying those boundary conditions, is unique.

Hint: Energy methods.

4. Consider the following initial-boundary value problem (IBVP) for the heat equation on $U = (-\pi/2, \pi/2)$,

$$\begin{split} \mathfrak{u}_t - \mathfrak{u}_{xx} &= 0 \qquad \text{ in } \mathbb{U} \times (0,\infty) \,, \\ \mathfrak{u} &= 0 \qquad \text{ on } \{ x = \pm \pi/2 \} \times (0,\infty) \,, \\ \mathfrak{u} &= g \qquad \text{ on } \mathbb{U} \times \{ t = 0 \} \,. \end{split}$$

(a) Let u_i ∈ C²₁(U × (0,∞)) solve the IBVP with initial data g_i ∈ C(Ū) for i = 1,2. Show that if g₁ ≤ g₂, then u₁ ≤ u₂ for all (x, t) ∈ Ū × [0,∞). Note: You may quote a well-known theorem from class; no need to prove from scratch.

(b) Show that the IBVP has a particular solutions of the form

$$\mathbf{u}(\mathbf{x},\mathbf{t})=\mathbf{a}(\mathbf{t})\,\cos\mathbf{x}\,.$$

Derive an expression for a(t).

(c) Conclude that

$$|\mathfrak{u}(x,t)| \leq c \, e^{-t}$$

where c depends only on g.

Note: For simplicity of the argument, you may assume that g is compactly supported in U.

(5+5+5)

5. Let $f \in C^2(\mathbb{R})$ and $b \in \mathbb{R}^n$. Show that $f(b \cdot x - t)$ solves the wave equation in \mathbb{R}^n . Describe the geometry of the solution. What is the speed of propagation? (10)