
Partial Differential Equations

Midterm Exam

Solutions

1. (a) Solve the partial differential equation

ut + x2 ux = 0 ,

where u = u(x, t) on the open first quadrant of the (x, t) plane.

Hint: Show that z(s) = u(x(s), s) is constant if x′(s) = x2(s).

(b) Draw the characteristic curves, then state a set of boundary and/or initial condi-
tions that specify the solution uniquely in the first quadrant of the (x, t) plane.

(10+10)

Solution:

z′(s) = ux(x(s), s) x′(s) + ut(x(s), s) = ut + x2 ux = 0 .

Now the characteristic curves are the solutions of the ordinary differential equation
x′(s) = x2(s):

dt =
dx

x2
, s = x−1

0 − x−1, x0 =
x

1 + xs
.

The characteristic curve which passes through any point (x, t) ≡ (x(s), s) in the (open)
first quadrant also passes through the positive x-axis at (x0, 0) ≡ (x(0), 0):
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Moreover, the t-axis is also a characteristic line. Thus, in the first quadrant, we need
to specify initial data

u = g on [0,∞) × {t = 0}
and the solution is given by

u(x, t) = g

(

x

1 + xt

)

.

2. Let U ⊂ R
n open and bounded and u ∈ C2(Ū). We say that u is superharmonic if

−∆u ≥ 0 in U .

(a) Prove that for superharmonic u,

u(x) ≥
∫

B(x,r)

u(y) dy

for all B(x, r) ⊂ U .

Note: Do the computation explicitly. Simply referring to the homework is not
enough.

(b) Show that if u is superharmonic and u ≥ 0 on ∂U , then u ≥ 0 in Ū .

(10+10)

Solution:

(a) Set

φ(r) = −
∫

∂B(x,r)

u(y) dS(y) = −
∫

∂B(x,1)

u(ry) dS(y).

Then

φ′(r) = −
∫

∂B(x,1)

y · Du(ry) dS(y)

= −
∫

∂B(x,r)

z

r
· Du(z) dS(z)

=
1

nα(n)rn−1

∫

B(x,r)

∆u(z) dz ≤ 0

The rest is to mention that lim
r→0

φ(r) = u(x).
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(b) Let us prove that min
Ū

u = min
∂U

u. Assume that min
Ū

u < min
∂U

u (it can not be

greater, since ∂U ⊂ Ū). Then ∃x0 ∈ U0 such that u(x0) = min
Ū

u. For B(x0, r) ⊂
U we have (see above)

u(x0) ≥ −
∫

B(x0,r)

u dy ≥ min
B(x0,r)

u .

Hence u is constant on B(x0, r). Assuming that U is path-connected, for any
x ∈ U there exists a continuous curve γ : [0, 1] → U with γ(0) = x0 and γ(1) = x.
Set

s∗ = sup{s ∈ [0, 1] : u(γ(t)) = min
Ū

u for t ∈ [0, s]}

By continuity, u(γ(s∗)) = min u. Moreover, s∗ = 1 because if not, we apply the
first part of the argument with x0 = γ(s∗) and arrive at a contradiction to the
maximality of s∗.

3. Recall that the solution to the heat equation

ut − ∆u = 0 in R × (0,∞) ,

u = g on R × {t = 0}

is given by

u(x, t) =

∫

R

Φ(x − y, t) g(y) dy ,

where, for t > 0,

Φ(z, t) =
1√
4πt

e−
|z|2

4t .

(a) Show that if g is an even function, i.e. if g(x) = g(−x), then u(·, t) is even for
every t ≥ 0.

(b) What does this imply for the solution of the heat equation on the halfline with
Neumann boundary conditions, i.e.

ut − ∆u = 0 in (0,∞) × (0,∞) ,

ux = 0 on {x = 0} × (0,∞) ,

u = g on (0,∞) × {t = 0} ?

(10+10)
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Solution:

(a)

u(x, t) =

∫

R

Φ(x − y, t) g(y) dy

=

∫

R

Φ(x − y, t) g(−y) dy

=

∫

R

Φ(x + z, t) g(z) dz

=

∫

R

Φ(−(−x − z), t) g(z) dz

=

∫

R

Φ(−x − z, t) g(z) dz = u(−x, t).

(b) The problem is equivalent to

ut − ∆u = 0 in R × (0,∞) ,

u(x, 0) = g(x) on (0,∞) × {t = 0} ,

u(x, 0) = g(−x) on (−∞, 0) × {t = 0} .

Theorem 1 [Evans, p.47] shows that u ∈ C∞ ∀ t > 0. Hence ux(0, t) is well defined
∀ t > 0 and is zero because u is even.

4. Let U ⊂ R
n open and bounded. Recall that 1 ≤ p < ∞, the L

p-norm of a suitably
integrable function u is defined

‖u‖p

Lp =

∫

U

|u(x)|p dx

while the L∞-norm is given by

‖u‖L∞ = ess sup
x∈U

|u(x)| .

(a) Show that if u ∈ C2
1(Ū × [0,∞)) satisfies the heat equation

ut − ∆u = 0 in U × (0,∞) ,

u = g on U × {t = 0} ,

ν · Du = 0 on ∂U × (0,∞) ,

and p ≥ 2, then
‖u(·, t)‖Lp ≤ ‖g‖Lp .

Note: For simplicity, you may assume that p is an even integer.
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(b) Prove that, provided u ∈ C(Ū),

lim
p→∞

‖u‖Lp = ‖u‖L∞ .

Note: The statement is also true if u is only L∞, but the proof is not so elementary.

(c) Explain why (a) and (b) imply yet another proof of the maximum principle for
the heat equation.

(10+10+10)

Solution:

(a)

d

dt
‖u(x, t)‖p

Lp =
d

dt

∫

U

|u(x)|p dx = p

∫

U

|u(x, t)|p−1ut(x, t) dx =

= p

∫

U

|u(x, t)|p−1∆u(x, t) dx = −p(p − 1)

∫

U

|u(x, t)|p−2|Du(x, t)|2 dx +

+

∫

∂U

|u(x, t)|p−2ν · Du(x, t) dx = −p(p − 1)

∫

U

|u(x, t)|p−2|Du(x, t)|2 dx ≤ 0.

‖u(x, 0)‖p

Lp = ‖g(x)‖p

Lp .

(b)

‖u‖Lp ≤
(

∫

U

‖u‖p

L∞
dx

)1/p

= ‖u‖L∞ · µ(U)1/p → ‖u‖L∞ as p → ∞.

Then ∀ 0 < M < ‖u‖L∞ consider UM := {|u| > M}. The set is nonempty, since

u ∈ C(Ū). Then

‖u‖Lp ≥
(

∫

UM

|u(x)|p dx

)1/p

≥
(

∫

UM

|M |p dx

)1/p

= M ·µ(UM)1/p → M as p → ∞.

Since M can be chosen arbitrarily close to ‖u‖L∞ , the statement follows.

(c) Let p → ∞.

5. Show that for solutions of the wave equation

utt − ∆u = 0

on R
n × (0,∞), where u( · , 0) has compact support, the energy

E(t) =

∫

Rn

(

u2
t + |Du|2

)

dx

is constant in time.

(10)

5



Solution:

1

2
Ė(t) =

∫

Rn

(

ututt + Du · Dut

)

dx

lim
R→∞

∫

∂B(0,R)

ν · Du · ut dS +

∫

Rn

(

ut∆u − ∆uut

)

dx

= 0.

From the first tot he second line, we used integration by parts. The first term in the
second line vanishes due to the assumption on the compact support of the initial data
which, due to the finite speed of propagation of the wave equation, remains compactly
supported for all times t > 0, the second term vanishes when plugging in the wave
equation.
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