
Numerical Methods II

Problem Set 6

due in class, April 28, 2004

1. (a) Let Tk denote the Chebychev polynomial of order k on the interval [−1, 1],

Tk(x) = cos(k arccos x) . (1)

Show that
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(b) Show that, with κ = λmax/λmin,
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2. (From An Introduction to the Conjugate Gradient Method Without the Agonizing Pain by
J.R. Shewchuk.)

Suppose you wish to solve Ax = b for a symmetric, positive-definite n× n matrix A. Unfor-
tunately, the trauma of your linear algebra course has caused you to repress all memories of
the Conjugate Gradient algorithm. Seeing you in distress, the Good Eigenfairy materializes
and grants you a list of d distinct eigenvalues (but not the eigenvectors) of A. However, you
do not know how many times each eigenvalue is repeated.

Clever person that you are, you mumbled the following algorithm in your sleep this morning:

Choose an arbitrary starting point x(1);
for i = 1:d

r(i) = b - A*x(i);
Remove an arbitrary eigenvalue from the list and call it l(i);
x(i+1) = x(i) + r(i)/l(i);

end

No eigenvalue is used twice; on termination, the list is empty.

(a) Show that upon termination of this algorithm, xd+1 is the solution to Ax = b.

(b) Although this routine finds the exact solution after d iterations, you would like each
intermediate iterate xi to be as close to the solution as possible. Give a crude rule of
thumb for how you should choose an eigenvalue from the list on each iteration. (In other
words, in what order should the eigenvalues be used?)

(c) What could go terribly wrong with this algorithm if floating point roundoff occurs?
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(d) Give a rule of thumb for how you should choose an eigenvalue from the list on each
iteration to prevent floating point roundoff error from escalating.
Hint: The answer is not the same as that of question (b).

3. Recall that the linear Conjugate Gradient method for minimizing the quadratic function
f(x) = 1

2 xT Ax− xT b can be written

rk = −∇f(xk) ,

dk =
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rT

k Adk−1

dT
k−1Adk−1

,
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.

Show that the following two expressions for βk are exact in the linear case.

(a) βFR
k =

rT
k rk

rT
k−1rk−1

(Fletcher–Reeves)

(b) βPR
k =

rT
k (rk − rk−1)
rT

k−1rk−1
(Polak–Ribière)

Remark: These two formulae are useful for nonlinear problems, as they do not involve the Hes-
sian matrix of f explicitly. In this case, the two expressions may differ. Fletcher–Reeves con-
verges provided the starting point is sufficiently close to the extremum. Polak–Ribière often
converges more quickly, but convergence is only guaranteed with the choice βk = max{0, βPR

k }.

4. Project: Implement a nonlinear Conjugate Gradient method. Note that the parameter
αk cannot be computed explicitly as in the linear case. Instead, you need to implement a
one-dimensional “line search” routine!

5. Project: Compare the convergence of Fletcher–Reeves vs. Polak–Ribière when using your
nonlinear Conjugate Gradient algorithm to find the minimum of the function

f(x1, x2) = − 1
1 + x2

1 + (1 + 10 sin2 x1) x2
2

.

with starting point (10, 10).

Extra credit: Does periodic restart of the CG iteration improve convergence? Can you get rid
of the requirement to explicitly compute the gradient of f by using a Broyden-type argument?
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