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Convergence of Gradient and Conjugate Gradient Methods
Marcel Oliver

1 Notation

We apply the Gradient and the Conjugate Gradient methods to the problem of
finding the minimum of the quadratic functional

®(z)=1tz"Az —2"b, (1)

where A € R™*" is symmetric and positive definite. Recall that both methods
are descent methods. They construct a minimizing sequence

Tpy1 = Tp + g dy (2)
where dy, is a descent direction, i.e. dj V®(z;,) < 0, so that
®(x), + ady) < B(x) 3)

for small positive values of a. For quadratic functionals (1), the value of « that
minimizes ® along the line through xj in the direction dj is easily found to be

o = dzrk .
di Ad,,

(4)

We denote the error in the k-th step by
e, =T — Ty, (5)
x being the location of the true minimum, and define the residual
r, = Aer =b— Axy, . (6)

The last equality is true since the location of the minimum is the solution of
Ax = b. See the notes from Numerical Methods I for details.
Finally, we introduce the A-norm

|3 = zT Az . (7)



2 Convergence of the Gradient Method

In the gradient method we always walk down the direction of steepest descent,
ie.

dk = —V(I)(:Ek) =Tg. (8)
A direct computation of the error norm shows that
lextill% = llz — (zr +ardi)|%
= llex — ardi|%

= |lexllh — 2 ef Adi + of [|di|%
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To proceed further, we need the following result.

Lemma 1 (Kantorovich inequality). Let A € R™*™ be symmetric and positive
definite, and let 0 < Apin < Amax denote its smallest and largest eigenvalue,
respectively. Then

(yTy)2 _ 4 )\min )\max
v#20 YT Ay yTA 'y (Amin + Amax)?

(10)

Applying the Kantorovich inequality to the right side of (9) and noting that

. R 2
1— 4 )\mln )\max _ ()\mln Amax) : (11)
()\min + )\max)z <)\min + )\max)g

we find that

lepsafla < 2max = Amin oy = £
B )\max + )\min R + 1

llexlla (12)

where £ = Amax/Amin 18 the so-called spectral condition number of A.

Proof of the Kantorovich inequality. The Kantorovich inequality (10) is invari-
ant under rescaling of y. It is therefore sufficient to prove it for arbitrary unit
vectors. Let vq,...,v, be an orthonormal basis of R™ consisting of eigenvectors
of A with corresponding eigenvalues Ay, ..., \,. We can write

y= Zyi Vi (13)
i=1



so that

n
lyl3 => v =1,
i=1
n
y Ay =Yyl N,
=1

n
y ATy =) wiat
i=1

(14)

(15)

(16)

Thus, proving the Kantorovich inequality reduces to solving the constraint op-

timization problem find the mazimum of

9(y) =y Ayy" Ay
under the constraint

hy)=y'y—1=0.
Such maximum must necessarily satisfy

Vg(y) =uVh(y),

where p is the Lagrange multiplier. By direct computation,

0
35_ =2y iy ATy + 2y 0 Ty Ay,
oh
=2 R
y; Y

so that (19) reads
yihiy ATy i ATy Ay =y
or

Yi_y.

(AN y"A 'y — N p+y" Ay) 3

(17)

(18)

(19)

(20)

(21)

(22)

(23)

The expression in parenthesis is a quadratic equation in A;, and can only be
zero for at most two distinct eigenvalues. Therefore, there can be at most
two non-zero components y; and y;. (If an eigenvalue occurs with multiplicity
larger than one, g(y) depends only on the norm of the projection of y onto the
corresponding eigenspace, so the statement remains valid.) Dividing (22) by y;

and equating the expressions for indices 7 and j, we obtain

2 g2 2N+ 2N 2 42 20 + 12\

(24)



or

SV A= A)?
=) (T3 -2) = -ty B (25)
j i i\

Therefore, y? = y]2 = % unless \; = A; and, by direct substitution into (17),
candidates for the maximum value are

1 1 1 1 /N Aj (N + )2

—NFA) [+ — )= (1) ([(E 1) = 26

gt J)<Ai+xj) 4<Aj+ )(Aﬁ > I (26)
The expression in the middle shows that it is increasing in the ratio A;/A; when
Ai > Aj; we thus take A\; = Apax and A\j = Anin to complete the proof. O

3 Convergence of the CG Method

Recall that one of the key properties of the Conjugate Gradient method is that
each new iterate is optimal with respect to all descent directions from the so-
called Krylov subspace

Vi = Span{dy, ...,dp_1}
= Span{A%ry,..., A" 2}, (27)

For details, see the handout on the derivation of the CG method. According to
(6), we can also write

Vi = Span{Ale;,..., A* e}, (28)
Recall also the recursion for the residual,
Tyl =Tk — Qf Ady, =1y, + Awk+1 (29)

where wy1 is some vector from Vj1. By definition of ey, we can also write

€kl = € + Wiy . (30)
We conclude inductively that e — ey € Vi, for k =2,3,..., and we can write
k—1
ey =e; +Z%‘Al€1
i=1
= ou(A)er (31)

where -
o () = Z’Yz’ a’ (32)
i=0

is some polynomial of degree k — 1 with ¢, (0) = 1.



Since
lexls = (z — )" Az — )

=T Ax — 2] Ax + x Az,

=27b -2z} b+ xi Az,

=28(x;) +=7b, (33)
last term on the right being independent of xj, optimality of & with respect to
a certain subspace is equivalent to optimality of the A-norm of e, with respect
to the same subspace. In other words, CG is constructed in such a way that
the polynomial ¢ which appears in (31) is the polynomial that minimizes the
A norm of e among all polynomials or the same or lesser degree.

As in the proof of the Kantorovich inequality we express e; in terms of the
orthonormal eigenvectors of A, i.e.

er =Y yv;, (34)
j=1

so that
er = ;i ox(A)v;, (35)
j=1
lexll =y dr(A) A (36)
=1

Let Pi denote the vector space of polynomials of degree less or equal to k. The
optimality condition of CG can therefore be expressed as

n
lexll = poin PN EACHPY
$(0)=1 I="

n
< min max 2(A Y
- ¢€Pk—1 )\Ep\mhn/\max] d) ( ) ; yj !

$(0)=1
. 2 2
= A . 37
S max = (A) [lexlla (37)
$(0)=1

Let T} denote the Chebychev polynomial of degree k. Then the following is
true.

Lemma 2. If0 < Apin < Amax, then

—1 k
min  max ¢(A>|=Tk<“”‘“mi”> §2(\/E_1), (38)

?E€ Py AE[Amin,Amax]) >\max - >\min \/E +1
#(0)=1

where £ = Amax/Amin -



Inserting this result into (37), we find that

k-1
-1
Bla<2 vk 39
el <2 (YD) el (39
whereas for the gradient method, from equation (12),

k—1
rad R — ]-
e 4 < ( ) lella. (40)

k+1

This shows that for poorly conditioned matrices the rate of convergence of the
conjugate gradient method is much better than that of the gradient method.

Proof of Lemma 2. Recall that the Chebychev polynomials of order k& on the
interval [—1, 1] can be written in the form

Tk (z) = cos(k arccosx) . (41)

It is clear that |T;| < 1 on this interval. Moreover, Ty (1) = 1, Tj,(—1) = (=1)¥,
and T}, has k — 1 distinct extrema on (—1, 1), alternating between 1 and —1.

To realize the minimum on the left of (38), we need a polynomial that is
uniformly small on the interval [Amin, Amax]. Since Ty is of uniform size on
[—1,1], we are tempted to use it as a template for constructing a candidate
minimizing polynomial by remapping the interval [Amin, Amax] onto [—1,1] by a
linear affine change of variable £. Setting

Ty, (é())
) = 7360) )

will then also satisfy ¢(0) = 1. The ansatz {(x) = mx + ¢ together with the
requirement that £(Amin) = 1 and £(Apax) = —1 gives

)\max + )\min —2A

{(x) = 43
(x) )\max - )\min ( )
Therefore,
1 )\max + )\min !
AE[/\Irilii)g\max] |¢( )‘ ‘Tk(é(O)” xér[l—al}fl] | k(l')‘ k (Amax — Amin) ( )

To complete the proof of the equality in (38), we need to show that no other
polynomial of degree k can yield a bound lower than (44). Assume the contrary,
and let 1) denote a polynomial satisfying ¥ (0) = 1 and

max | [W(N)] < Al max | [p(N)] . (45)

[ min;/Amax min;/Amax

Then ¢(0) — ¢(0) = 0, and the graph of 1) must intersect the graph of ¢ exactly
k times in the interval [Amin, Amax|- This means that ¢ — 1 is a polynomial of
degree k with k + 1 zeroes, and must therefore be identically zero.

The proof of the inequality in (38) is a homework exercise. O



