
General Mathematics and Computational Science I

Final Exam

December 20, 2006

1. Show that the binary operation on Z defined through

a ◦ b = a + b − ab

is associative, i.e. that a ◦ (b ◦ c) = (a ◦ b) ◦ c. (10)

Solution:

a◦(b◦c) = a+(b◦c)−a(b◦c) = a+(b+c−bc)−a(b+c−bc) = a+b+c−−ab−bc−ca+abc

(a◦b)◦c = (a◦b)+c−(a◦b)c = (a+b−ab)+c−(a+b−ab)c = a+b+c−−ab−bc−ca+abc

It follows that a ◦ (b ◦ c) = (a ◦ b) ◦ c, i.e. the binary operation ◦ is associative.

2. Let f : N → N be a function with the property that f(m + n) = f(m) + f(n) for all
m,n ∈ N. Find a formula for f and prove it by induction. (10)

Solution:

Notice first that for m = 1, we have f(n+1) = f(n)+ f(1) for all n ∈ N. Let f(1) = c
be a constant in N. Then, we observe that f(2) = f(1) + f(1) = 2c, f(3) = 3c and
claim that f(n) = nc for all n ∈ N.

Indeed, suppose that f(n) = nc for some n ∈ N. Then f(n + 1) = f(n) + f(1) =
nc + c = (n + 1)c, which proves the claim by induction.

3. Which of the following relations is an equivalence relation, i.e. is reflexive, symmetric,
and transitive? Give explicit proofs when a relation is an equivalence relation and a
counter example when it is not.

(a) On Z, let a ∼ b if and only if a ≤ b.

(b) On Z, let a ∼ b if and only if |a − b| ≤ 10.

(c) Let X be a set and U ⊂ X. For any A,B ⊂ X, let A ∼ B if and only if
A ∩ U = B ∩ U .

(5+5+5)
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Solution:

(a) This is not an equivalence relation, because it is not symmetric. For example,
0 ∼ 1 but 1 ≁ 0.

(b) This is not an equivalence relation, because it is not transitive. We have 10 ∼ 0
and 0 ∼ −10 but 10 ≁ −10, because |10 − (−10)| = 20 � 10.

(c) We check that this is an equivalence relation. A ∼ A ⇔ A ∩ U = A ∩ U , hence
the relation is reflexive. If A ∼ B ⇔ A∩U = B ∩U , then also B ∼ A, hence the
relation is symmetric. If A ∼ B and B ∼ C, then A∩U = B ∩U = C ∩U hence
A ∼ C and the relation is transitive.

4. Show that
(a sin θ + b cos θ)2 ≤ a2 + b2 .

(10)

Solution 1:

By the Cauchy Schwarz inequality, (a2 +b2)(sin2 θ+cos2 θ) ≥ (a sin θ+b cos θ)2, which
proves the inequality above since sin2 θ + cos2 θ = 1.

Solution 2:

(a sin θ+b cos θ)2 = (a2 sin2 θ+b2 cos2 θ+2ab sin θ cos θ) ≤ a2 +b2. This is equivalent
to 2ab sin θ cos θ ≤ a2(1 − sin2 θ) + b2(1 − cos2 θ) = a2 cos2 θ + b2 sin2 θ. However,
2ab sin θ cos θ ≤ a2 cos2 θ + b2 sin2 θ ⇔ 0 ≤ (a cos θ − b sin θ)2, which is obvious.

5. A coin is tossed four times. Is it more likely to come up (a) exactly twice with the
same face or (b) exactly three times with the same face? (10)

Solution 1:

The event of coming up (a) exactly twice with the same face can only be realized by
two heads and two tails. The number of possible sequences of this kind is

(

4

2

)

= 6.

The event of coming up (b) with the same fact exactly three times can be realized by
three heads and one tail, or vice versa. There are

(

4

3

)

= 4 possible sequences of each
kind, so 8 possibilities altogether.

Hence, (b) is more likely to occur than (a).

Solution 2:

A face of a coin can be either head (H) or tail (T), which occur with equal probability,
1

2
. If the coin is tossed four times then the following situations occur: HHHH, HHHT,

HHTH, HHTT, HTHH, HTTH, HTTT, HTHT, THHH, THHT, THTH, THTT, TTHH,
TTHT, TTTH and TTTT. There are a total of 16 possible cases. By brute-force
counting, there are 6 and 8 possibilities that (a), respectively (b) happens. Hence the
probability to obtain (a) is 6

16
and the probability to obtain (b) is 8

16
. In conclusion, it

is more likely to come up with (b).
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6. A drunkard lives five houses up the street from the pub. He has just left the pub in
the direction of home, but has lost orientation and will move one house down or one
house up with probability 1

2
each. If he gets home, he will stay there. If he gets back

into the pub, his friends will buy him another drink and he will stay in the pub till the
next morning. What is the probability that he gets home?

The picture shows the drunkard about to start his way home.

0 1 2 3 4 5

??

Pub Home

Hint: The probability pn that he finds home from house no. n satisfies the difference
equation pn = 1

2
pn−1 + 1

2
pn+1. Explain why. What are the boundary conditions? Then

solve this difference equation. (10)

Solution 1:

Let 0 denote the pub and 1,2,3,4,5 denote the five houses up the street from the pub,
where 5 is home. We need to compute p1, the probability to go home from the starting
position drawn in the picture. Clearly p5 = 1 and p0 = 0. If the drunkard is at house
n, then with probability 1

2
he moves in the direction home and with probability 1

2
in

the other direction (pub). Therefore we have pn = 1

2
pn−1 + 1

2
pn+1, for n = 1, 2, 3, 4.

This difference equation has the characteristic polynomial p(x) = 1

2
x2 − x + 1

2
=

1

2
(x − 1)2. Thus, it has a double root 1, so that the general solution is of the form

pn = A + B n. p0 = 0 implies A = 0 and p5 = 1 then implies that B = 1

5
. Thus,

pn = n/5 so that, in particular, p1 = 1

5
.

Solution 2:

The difference equation can also be solved by elementary means. Note that, for n = 1,
we have p1 = 1

2
p2.

By iterating the recurrence, we find that p2 = 1

2
p1 + 1

2
p3 so that 2 p1 = 1

2
p1 + 1

2
p3 and

finally 3 p1 = p3.

Similarly, p3 = 1

2
p2 + 1

2
p4 = p1 + 1

2
p4 so that 4 p1 = p4.

Finally, p4 = 1

2
p3 + 1

2
, since p5 = 1, so that 4 p1 = 3

2
p1 + 1

2
or p1 = 1

5
.

7. Consider the difference equation

xn+1 = x2
n
− c

where c is a real number.
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(a) Find all equilibrium points. For which values of c do equilibrium points exist?

(b) Determine the stability of the equilibrium points as a function of c.

(It is sufficient to use the derivative criterion for stability even though it is incon-
clusive for certain values of c.)

(10+5)

Solution:

(a) Equilibrium points are given by the real solutions to the equation x2 − x− c = 0.
They exist when 1 + 4c ≥ 0 ⇔ c ≥ −1

4
. In this case, the equilibrium points are

x = 1±
√

1+4c

2
.

(b) We have xn+1 = x2
n
−c = f(xn), where f(x) = x2−c. An equilibrium point, say x,

is stable when |f ′(x)| < 1 and unstable when |f ′(x)| > 1. In our case f ′(x) = 2x,
hence the equilibrium point x is stable when 2|x| < 1 and unstable when 2|x| > 1.

If x = 1+
√

1+4c

2
, then 2|x| > 1 and x is always unstable. If x = 1−

√
1+4c

2
then x

is stable iff 2|x| < 1 ⇔ −1 < 1 −
√

1 + 4c < 1 ⇔ 0 <
√

1 + 4c < 2. Hence x is
stable whenever −1

4
< c < 3

4
.

x = 1−
√

1+4c

2
is unstable iff 2|x| > 1. In this case, x is unstable iff 2x < −1, i.e.

1 −
√

1 + 4c < −1 ⇔ 2 <
√

1 + 4c ⇔ 3

4
< c.

8. Prove that
n

∑

k=1
k odd

(

n

k

)

2n−k =
3n − 1

2
.

Hint: Binomial Theorem. (10)

Solution:

By the Binomial Theorem we have (2 + 1)n =
∑

n

k=1

(

n

k

)

2n−k and (2 − 1)n =
∑

n

k=1

(

n

k

)

2n−k(−1)k. If we subtract the two relations we get:

3n − 1 = 2
n

∑

k=1
k odd

(

n

k

)

2n−k

.

and the equality to prove follows.

9. Consider n-words, i.e. words of length n, from the alphabet {A,B,C}.

(a) Count the number of different n-words.

(b) Count the number of different n-words with an odd number of As.

Hint: Use the result of Question 8.
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(5+10)

Solution 1:

(a) Since each letter of an n-word can be chosen in exactly 3 ways, the number of
different n-words is 3n.

(b) Consider the number of n-words that contain the letter A exactly k times. Among
these words, there are

(

n

k

)

possibilities to distribute the As. The remaining n− k
positions are then filled from the alphabet {B,C}, there are 2n−k possibilities for
doing so. Thus, the number of n words that contain the letter A exactly k times
is

(

n

k

)

2n−k. Thus, referring to Question 8, there are

n
∑

k=1
k odd

(

n

k

)

2n−k =
3n − 1

2

possibilities to have n-words with an odd number of As.

Solution 2:

(b) Let yn and xn denote the number of different n-words with an odd, respectively
an even number of As. Suppose now that we have an n-word with odd number
of As. Then from this one we can form an (n + 1)-word with an odd number of
As by adding letters B or C only. Suppose that we have an n-word with an even
number of As, then we can obtain an (n + 1)-word by adding letter A only. Thus
yn+1 = 2yn +xn. Since yn +xn = 3n; it follows that yn+1 = 3n + yn. Summing the
first n relations of this kind, we get that yn =

∑

n−1

k=1
3k + y1, where y1 = 1. Hence

yn = 3n−1

2
.

10. Let xn denote the number of n-words from the alphabet {A,B,C} with an even number
of As and let yn denote the number of such n-words with an odd number of As.

(a) Find a recurrence relation which expresses xn+1 and yn+1 in terms of xn and yn.

(b) Rewrite this recurrence relation as a linear second-order difference equation in yn.
What are the starting values?

Hint: You should find that

yn+2 − 4 yn+1 + 3 yn = 0 .

(c) Solve this difference equation.

(5+5+5)
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Solution:

(a) In Solution 2 to Problem 9 we already argued that yn+1 = 2yn + xn. By only
exchanging the words “odd” and “even”, this argument also shows that xn1

=
2xn + yn.

Alternatively, we can derive this second relation from the first by noting that
yn+1 + xn+1 = 3n+1 = 33n = 3(yn + xn). Hence xn+1 = 3(yn + xn) − yn+1 =
3(yn + xn) − 2yn − xn = yn + 2xn.

(b) Simple counting shows that y1 = 1 and y2 = 4. From (a), we have that yn+2 =
2yn+1+xn+1 and xn+1 = yn+2xn. It follows that yn+2 = 2yn+1+yn+2xn. However,
yn+1 = 2yn + xn ⇒ xn = yn+1 − 2yn. Thus yn+2 = 2yn+1 + yn − 4yn + 2yn+1 ⇒
yn+2 − 4yn+1 + 3yn = 0, as required.

(c) The characteristic equation is r2 − 4r + 3 = 0 and it has solutions 3 and 1.
Hence the general solution is given by yn = a3n + b, where a and b are constants
determined by y1 = 1 and y2 = 4. We have that 3a + b = 1 and 9a + b = 4, which
gives a = −b = 1

2
. The general solution is yn = 3n−1

2
. One can also use generating

functions to solve the recurrence.

6


