Numerical Methods I – Lab 2

Fall Semester 2005

September 20, 2005

 Determine, numerically, the error behavior of Problem 1 from Lab 1. *Recall:* The limit

$$C = \lim_{n \to \infty} c_n = 0.577\,215\,664\,901\,532\dots \qquad \text{with} \qquad c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

is called Euler constant.

- (a) Write an Octave function for computing c_n which accepts as optional input c_m for $1 \le m < n$. Test its performance (runtime and absolute error with respect to the given value for C) for $n \le 10^7$.
- (b) Verify numerically (again for $n \leq 10^7$) that the approximation error satisfies

$$E_n \equiv c_n - C = \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

as $n \to \infty$. Assuming that this relation holds, compute a new sequence

$$d_n = 2\,c_{2n} - c_n$$

and check the new error sequence $F_n \equiv d_n - C$ numerically. Explain the result!

2. Show, numerically, that the iteration

$$y_{n+1} = 1 - \cos(y_n)$$

converges to zero with order 2.