Numerical Methods I – Lab 1

Fall Semester 2005

September 13, 2005

- 1. Use Octave to compute
 - (a) $\sin(2\pi \cdot 2^k)$
 - (b) $1 \cos(2\pi \cdot 2^k)$

for $k = 0, \ldots, 60$. Plot the log of the error vs. *i*. Explain.

2. The limit

$$C = \lim_{n \to \infty} c_n = 0.577\,215\,664\,901\,532\dots \qquad \text{with} \qquad c_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$

is called Euler constant.

Can you use this formulation to compute C to absolute accuracy 10^{-12} in less than one minute?

- (a) Write an Octave function for computing c_n which accepts as optional input c_m for $1 \le m < n$. Test its performance (runtime and absolute error with respect to the given value for C) for $n \le 10^7$.
- (b) Use a back-of-the-envelope calculation to check if your program can be used to solve the problem.
- (c) Check whether your implementation faces any error propagation issues.
- (d) Verify numerically (again for $n \leq 10^7$) that the approximation error satisfies

$$E_n \equiv c_n - C = \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

as $n \to \infty$. Assuming that this relation holds, compute a new sequence

$$d_n = 2c_{2n} - c_n$$

and check the new error sequence $F_n \equiv d_n - C$ numerically. Explain the result!

(e) Find an explicit formula for n_n and show that it can be computed with the same number of terms as c_n (and not c_{2n} !). Modify the function from (a) to directly compute d_n .