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5. (a) Consider the equation x2 + px + 1 = 0. We use the well known formula for roots
of a quadratic equation
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2

so that
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2
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2
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The claim is that x1 ∼ −p and x2 ∼ −1/p, where x ∼ y denotes that x asyptotes

y, i.e. that
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This condition is easily checked for x1:
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For x2 we write
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Therefore,
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(b) octave:1> format long; p=1e10;

octave:2> x1=(-p+sqrt((p^2)-4))/2

x1 = 0

octave:3> x2=(-p-sqrt((p^2)-4))/2

x2 = -10000000000

octave:4> x2better=(02/(p+sqrt(p^2-4)))

x2better = 1.00000000000000e-10

x1 and x2 are calculated using the standard formula, equation (2). However, the
result for x2 has an extremely large relative error.

(c) The stable way of computing x2 is to use equation (3). In the above transcript it
is denoted as x2better and has negligible relative error.

6. (a) The algorithm is in file p6.m1. A copy of it follows:

start=2;

stop=40;

z=[1:stop];

z(2)=2;

err=[1:stop];

function out = iter(z,n)

out=(2^(n-(1/2))) * sqrt( 1-sqrt(1- (4^(1-n)) * (z^2)) );

end

for n=start:stop-1

z(n+1)=iter1(z(n),n);

endfor

ideal=ones(1,stop).*pi;

err=abs(ideal.-z);

n=1:stop;

gset term postscript

gset output "p6_fig1.ps"

semilogy(n(start:stop),err(start:stop))

gset term x11

(b) The recursive formula contains
√

1−
√
1− 41−n · π2 =

√

1−
√
1− 22−2n · π2. The

especially bad part here is the 1 − 41−n · π2. For n = 17 this gets 1 − 4−16π =
1 − 2−32π, so that we subtract a very small number from 1. Although this is not
yet smaller than εM , it already produces an error, as subtraction has rather higher
relative error. This error is then propagated and further amplified as the formula
is calculated (square roots, other subtractions, ...). At a certain point the 41−nπ

gets smaller than εM , so we get 2n− 1

2

√

1−
√
1− 0 = 0 and there is no point in

continuing the calculations further.

1MO: This code contains a few tricks that are specific to Octave. A more generic (and shorter)n Oc-

tave/Matlab code is in the file piseq.m
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Figure 1: Output of pt.m: Error vs. n

Another problem is that this is a recursive formula and even small errors at earlier
steps are carried on to further steps and get amplified.

(c) The idea behind the formula is to take a unit circle and divide it into a finite
number of triangles (2n). Then areas of those triangles are added together. Their
total area approximates the area of the unit circle, which is π. The more triangles
the unit circle is divided into, the more accurate the approximation is.
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n = 2

The first iteration is for n = 2 e.g. drawing four triangles (which together form
a square) into the unit circle. This square contains four triangles and has side of
length

√
12 + 12 =

√
2 and area of 2. This is the starting point of out sequence.

n = 3

n = 3: Each of the four triangles from n = 2 gets divided into two triangles, so
we get eight triangles. Two sides of the triangle are of length 1 (radius of the unit

circle) and its height is
√

2
2

1
2
· 1 · 8 = 2

√
2 ≈ 2.828 = z3.
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(d) We can stabilize the algorithm by manipulating the formula:
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This gives us a more stable algorithm, as can be seen in Figure 2.

The implementation of the algorithm is in file p6 2.m. A copy follows:

start=2;

stop=40;

z2=[1:stop];

z2(2)=2;

err2=[1:stop];

function out = iter2(z,n)

out=sqrt(2)*z/sqrt(1+sqrt(1- (4^(1-n)) * (z^2) ));

end

for n=start:stop-1

z2(n+1)=iter2(z2(n),n);

endfor

ideal=ones(1,stop).*pi;

err2=abs(ideal.-z2);

n=1:stop;

gset term postscript

gset output "p6_fig2.ps"

semilogy(n(start:stop),err2(start:stop))

gset term x11
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Figure 2: errors vs. n for stable method
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