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1 Reformulation as an Optimization Problem

Let A € R™ ™ be a symmetric, positive definite matrix. Then Az = b if and
only if  minimizes the function

®(z)=1z"Az —2"b. (1)
Proof. Assume first that « is a minimizer of ®. Thus, ®(x 4+ A v) must have a
minimum at A = 0 for any fixed vector v € R™. In other words,

d
0@+ Av)| =0, 2)

We compute

iCI)(m—i—)\v) =i+ v)TAv+ v Az + Av) —v"b

dX
=v" (A(x+Av)—b). (3)
Setting A = 0, we see that we must require
v (Az —b) =0. (4)

Since v is arbitrary, this implies that Az = b.
Vice versa, assume that Az = b. Then, for any y € R",
dy)—P(z) =2y Ay -y b—z" Az +2"b
= % y Ay — yT Ax — % T Ax + 27 Ax
=3@y—a) Ay —x)
>0 (5)

with equality if and only if @ = y since A is positive definite. We conclude that
x is the unique minimizer of ®. O



2 The Gradient Method

The algorithm works works as follows:

e Choose a descent direction dy;

e Walk in the descent direction until you reach a minimum along the line;

e Repeat.

There are many ways of choosing descent directions. The simplest is to take the

direction of steepest descent,
dp, = —-V&(xr) =b— Az, =1y .
Given xj, compute the next iterate via
Tp1 = T + i dy

where o, is chosen such that

d
—® + =0.
dar (zr + ardg) =0

Following the computation leading up to (3), we find that
0=d; (A(zy +ardy) —b),

and therefore

dfrk
ap = T .

In summary, one iteration of the gradient method consists of the steps

T = b— A:I:k s
T{’I"k

Qg = T ;
T, AT}

Tpt1 =T + QT

3 The Conjugate Gradient Method

(6)

The conjugate gradient method is based on the concept of optimality with re-
spect to a set of search directions. Once the algorithm has reached optimality
in some direction, we allow only changes that are in a certain sense orthogonal,

thereby preserving optimality under iteration.

Specifically, we say that a point & € R" is optimal with respect to a subspace
V C R™if ® has a minimum at « along each line passing through x in a direction

velV.



Repeating the calculation that lead up to (4), we find that « is optimal with
respect to V if
rfv=0 forallveV, (14)

where r» = b — Ax is the corresponding residual.

Now assume that xj, is optimal with respect to some subspace V. We would
like to find a condition on a new descent direction dj so that the next iterate
under

Tpy1 = T + oy dy (15)

is optimal not only with respect to the new descent direction dg, as in the gra-
dient method, but also with respect to all old descent directions V. Optimality
with respect to the new direction implies, as for the gradient method,

_ dg’l“k
di Ad,

e7% (16)

To get optimality conditions with respect to Vj, we multiply (15) by —A from
the left and add b, so that

Tik+1 =Tk — O Adk . (17)
Optimality with respect to Vj, for ;1 and x; means that
riv=riv=0 forallveV, (18)

and therefore
vTAd, =0 forallveV,. (19)

In other words, d; must be A-orthogonal to all directions in Vj.

The conjugate gradient method now works as follows. The first descent
direction is chosen as for the gradient method, namely d; = r1. Each subsequent
descent direction is the A-orthogonalization of r; with respect to the space of
old descent directions

Vi = Span{d,,...,dx_1}. (20)
Following this construction, each new descent direction dj, is ultimately a linear
combination of all previous residuals r1,...,7r,. In particular, we see that

Vi = Span{ry,...,rx_1}. (21)

Thus, equation (17) gives a recursion relation for the spaces Vi, namely!

Virr C Vi@ AV . (22)

n fact, it is easy to see that equality holds unless the algorithm terminates with the exact
solution, and that

Vieg1 = Span{r1,...,rp_1, Adi_1}
= Span{A°r;, Alry,. .., Ak_lrl}
= Span{A®d;, Ald;,..., AF"td,}.



We now analyze the A-orthogonality condition when stepping from x; to
Tr41 in detail. First, oy is already optimal with respect to Vi—this has been
achieved in the previous step of the iteration—so that

riv=0 foralwvecV,. (23)
Due to (22), this implies, in particular, that
rfAv =0 forallveV, g, (24)
which is to say that
riAd; =0 forallj=1,...,k—2. (25)

In other words, 7 is already A-orthogonal to all but the (k — 1)-st previous
descent direction. This leads to a tremendous simplification of the orthogonal-
ization step; the Gram—Schmidt-procedure needs only one projection, so that

T Ady,_
dy =1y — —E L gy (26)
di_1Adk_1
for k > 2.
We summarize the conjugate gradient method:
T = b—A:l:k, (27)
r1 for k=1
= ' Ad
. T — 7?“ - di_, fork>2, (28)
dk_lAdk‘—l

dT
o = Tk Tk s (29)
Tpy1 =Tk + o dy; (30)

In exact arithmetic, one can show that either the dimension of V}, increases by
one each iteration, or the exact solution is reached. This implies that the search
space is exhausted after at most n iteration and the algorithm must terminate
with the exact answer.



