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1 Reformulation as an Optimization Problem

Let A ∈ Rn×n be a symmetric, positive definite matrix. Then Ax = b if and
only if x minimizes the function

Φ(x) = 1
2 xT Ax− xT b . (1)

Proof. Assume first that x is a minimizer of Φ. Thus, Φ(x + λ v) must have a
minimum at λ = 0 for any fixed vector v ∈ Rn. In other words,

d

dλ
Φ(x + λ v)

∣∣∣
λ=0

= 0 . (2)

We compute

d

dλ
Φ(x + λ v) = 1

2 (x + λ v)T Av + 1
2 vT A(x + λ v)− vT b

= vT
(
A(x + λ v)− b

)
. (3)

Setting λ = 0, we see that we must require

vT (Ax− b) = 0 . (4)

Since v is arbitrary, this implies that Ax = b.
Vice versa, assume that Ax = b. Then, for any y ∈ Rn,

Φ(y)− Φ(x) = 1
2 yT Ay − yT b− 1

2 xT Ax + xT b

= 1
2 yT Ay − yT Ax− 1

2 xT Ax + xT Ax

= 1
2 (y − x)T A(y − x)

≥ 0 (5)

with equality if and only if x = y since A is positive definite. We conclude that
x is the unique minimizer of Φ.
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2 The Gradient Method

The algorithm works works as follows:

• Choose a descent direction dk;

• Walk in the descent direction until you reach a minimum along the line;

• Repeat.

There are many ways of choosing descent directions. The simplest is to take the
direction of steepest descent,

dk = −∇Φ(xk) = b−Axk = rk . (6)

Given xk, compute the next iterate via

xk+1 = xk + αk dk (7)

where αk is chosen such that

d

dαk
Φ(xk + αk dk) = 0 . (8)

Following the computation leading up to (3), we find that

0 = dT
k

(
A(xk + αk dk)− b

)
, (9)

and therefore

αk =
dT

k rk

dT
k Adk

. (10)

In summary, one iteration of the gradient method consists of the steps

rk = b−Axk , (11)

αk =
rT

k rk

rT
k Ark

, (12)

xk+1 = xk + αk rk . (13)

3 The Conjugate Gradient Method

The conjugate gradient method is based on the concept of optimality with re-
spect to a set of search directions. Once the algorithm has reached optimality
in some direction, we allow only changes that are in a certain sense orthogonal,
thereby preserving optimality under iteration.

Specifically, we say that a point x ∈ Rn is optimal with respect to a subspace
V ⊂ Rn if Φ has a minimum at x along each line passing through x in a direction
v ∈ V .
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Repeating the calculation that lead up to (4), we find that x is optimal with
respect to V if

rT v = 0 for all v ∈ V , (14)

where r = b−Ax is the corresponding residual.
Now assume that xk is optimal with respect to some subspace Vk. We would

like to find a condition on a new descent direction dk so that the next iterate
under

xk+1 = xk + αk dk (15)

is optimal not only with respect to the new descent direction dk, as in the gra-
dient method, but also with respect to all old descent directions Vk. Optimality
with respect to the new direction implies, as for the gradient method,

αk =
dT

k rk

dT
k Adk

. (16)

To get optimality conditions with respect to Vk, we multiply (15) by −A from
the left and add b, so that

rk+1 = rk − αk Adk . (17)

Optimality with respect to Vk for xk+1 and xk means that

rT
k+1v = rT

k v = 0 for all v ∈ Vk , (18)

and therefore
vT Adk = 0 for all v ∈ Vk . (19)

In other words, dk must be A-orthogonal to all directions in Vk.
The conjugate gradient method now works as follows. The first descent

direction is chosen as for the gradient method, namely d1 = r1. Each subsequent
descent direction is the A-orthogonalization of rk with respect to the space of
old descent directions

Vk = Span{d1, . . . ,dk−1} . (20)

Following this construction, each new descent direction dk is ultimately a linear
combination of all previous residuals r1, . . . , rk. In particular, we see that

Vk = Span{r1, . . . , rk−1} . (21)

Thus, equation (17) gives a recursion relation for the spaces Vk, namely1

Vk+1 ⊂ Vk ⊕AVk . (22)
1In fact, it is easy to see that equality holds unless the algorithm terminates with the exact

solution, and that

Vk+1 = Span{r1, . . . , rk−1, Adk−1}

= Span{A0r1, A1r1, . . . , Ak−1r1}

= Span{A0d1, A1d1, . . . , Ak−1d1} .
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We now analyze the A-orthogonality condition when stepping from xk to
xk+1 in detail. First, xk is already optimal with respect to Vk—this has been
achieved in the previous step of the iteration—so that

rT
k v = 0 for all v ∈ Vk . (23)

Due to (22), this implies, in particular, that

rT
k Av = 0 for all v ∈ Vk−1 , (24)

which is to say that

rT
k Adj = 0 for all j = 1, . . . , k − 2 . (25)

In other words, rk is already A-orthogonal to all but the (k − 1)-st previous
descent direction. This leads to a tremendous simplification of the orthogonal-
ization step; the Gram–Schmidt-procedure needs only one projection, so that

dk = rk −
rT

k Adk−1

dT
k−1Adk−1

dk−1 (26)

for k ≥ 2.
We summarize the conjugate gradient method:

rk = b−Axk , (27)

dk =


r1 for k = 1

rk −
rT

k Adk−1

dT
k−1Adk−1

dk−1 for k ≥ 2 ,
(28)

αk =
dT

k rk

dT
k Adk

, (29)

xk+1 = xk + αk dk . (30)

In exact arithmetic, one can show that either the dimension of Vk increases by
one each iteration, or the exact solution is reached. This implies that the search
space is exhausted after at most n iteration and the algorithm must terminate
with the exact answer.
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