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Abstract. We prove existence, uniqueness and continuous dependence on ini-

tial data of global weak solutions to the generalized large-scale semigeostrophic

equations with periodic boundary conditions. This family of Hamiltonian bal-
ance models for rapidly rotating shallow water includes the L1 model derived

by R. Salmon in 1985 and its 2006 generalization by the second author. The
analysis is based on the vorticity formulation of the models supplemented by

a nonlinear velocity-vorticity relation. The results are fundamentally due to

the conservation of potential vorticity. While classical solutions are known to
exist provided the initial potential vorticity is positive—a condition which is

already implicit in the formal derivation of balance models, we can assert the

existence of weak solutions only under the slightly stronger assumption that the
potential vorticity is bounded below by

√
5−2 times the equilibrium potential

vorticity. The reason is that the nonlinearities in the potential vorticity inver-

sion are felt more strongly when working in weaker function spaces. Another
manifestation of this effect is that point-vortex solutions are not supported by

the model even in the special case when the potential vorticity inversion gains

three derivatives in spaces of classical functions.

1. Introduction

The generalized large-scale semigeostrophic (gLSG) equations belong to the class
of fluid equations in two spatial dimensions which can be formulated as an advection
equation for a scalar potential vorticity (PV) q = q(x, t) by a two dimensional
velocity field u = u(x, t),

∂tq + u ·∇q = 0 , (1a)

where the velocity field is slaved to the potential vorticity by some vorticity inversion
law which we abbreviate as

u = K(q) . (1b)

This structure is typical for two-dimensional fluid flow. For example, the incom-
pressible Euler equations arise when K represents the classical Biot–Savart law.
The well-established mathematical theory for the Euler equations persists when
the Biot–Savart law is replaced by a general linear vorticity inversion that gains
one derivative in Sobolev space; see [11]. Another well-understood example are
the Euler-α (or Lagrangian averaged Euler) equations which were, in their inviscid
form, first derived by Holm et al. [9] on formal grounds and later justified under cer-
tain closure assumptions in [8, 12]. Here, the PV inversion gains three derivatives
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in Sobolev space. For the gLSG equations, the vorticity inversion K is implicitly
defined via the system of—as we shall show—elliptic equations

(q − σ∆)h = 1 , (2a)(
1− σ (h∆ + 2 ∇h ·∇)

)
u = ∇⊥

(
h− µ (2h∆h+ |∇h|2)

)
. (2b)

Here, σ > 0 and µ are real parameters, h = h(x, t) is a scalar field, and we write
∇⊥ = (−∂2, ∂1). When µ = σ/2, the system is known as the L1 model due to
Salmon [17]; in this case σ is the Rossby number of the flow which is less than
one for rotation-dominated flows such as the large-scale motion of atmosphere and
ocean in the mid-latitudes. Subsequent work [13] generalized Salmon’s approach,
interpreting different choices of σ and µ as approximate near-identity changes of the
coordinate frame; the case of spatially varying Coriolis parameter and nontrivial
bottom topography is discussed in [16].

A naive count of orders of differentiation in (2) shows that, in general, K is
expected to gain one derivative in Sobolev space, akin to the Euler equations. In
the special case when µ = 0, the relation is expected to gain three derivatives,
akin to the Euler-α equations. We note, however, that K is nonlinear so that it
is a nontrivial question whether well-known analytical results for Euler or Euler-α
continue to hold in this setting. In many respects, these analogies are indeed true.
Namely, under the condition that the initial PV is positive, a restriction which is
consistent with the physical assumptions underlying the derivation of these balance
models, the gLSG equations are Hamiltonian and have local classical solutions [15];
existence of global classical solutions was proved in [5].

In this paper, we address the question of weak solutions under the simplifying
assumption of periodic boundary conditions. We find that weak solutions in the
sense of Yudovich are borderline independent of whether or not µ = 0; they already
incur an additional restriction on the data which is neither seen for linear vorticity
relations, nor in the theory of classical gLSG solutions. Radon-measured potential
vorticities as can be shown to make sense in the Euler-α case [14], however, appear
to break down altogether here.

A weak solution to the gLSG equations is a function q ∈ C([0,∞); w∗-L∞(T2))
satisfying

〈ψ, q(t2)〉 − 〈ψ, q(t1)〉 −
∫ t2

t1

〈∇ · (ψu), q〉dt = 0 , (3a)

u = K(q) , (3b)

q(0) = qin (3c)

for every [t1, t2] ⊂ [0,∞) and every test function ψ ∈ H1(T2).
To simplify notation, we rescale the equations such that q = h = 1 is the trivial

equilibrium solution. Namely, define, for f ∈ L∞(T2),

f− = ess inf
x∈T2

f(x) and f+ = ess sup
x∈T2

f(x) . (4)

Then, letting Q = (q− + q+)/2, we replace q by q/Q, ε by ε/Q, h by hQ, u by
uQ, and t by t/Q, and note that the generalized LSG equations are invariant under
this rescaling. We conclude that, without loss of generality, we may assume that
q+ − 1 = 1− q− and write q ≡ 1 + q̃ with ‖q̃‖L∞ < 1. Our main result can then be
stated as follows.
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Theorem 1. For initial potential vorticity qin ∈ L∞ with ‖q̃in‖L∞ <
√

5− 2, there
exists a unique global weak solution of the generalized LSG equations

q ∈ C([0,∞); w∗-L∞(T2)) ∩ L∞([0,∞)× T2) (5)

such that

3−
√

5 < qin
− ≤ q(t) ≤ qin

+ <
√

5− 1 (6)

for all t ∈ [0,∞). Furthermore, the solution map qin 7→ q(t) is continuous in the
H−1-topology for every fixed t ∈ [0,∞).

Setting and proof follow the construction of weak solutions to the incompressible
Euler equations in two dimensions by Yudovich [19] and its later generalization to
arbitrary first order linear vorticity inversion operators and weighted divergence
condition in [11]. We remark that Bardos [3] proved similar results for the Euler
equations in their velocity formulation, also for inhomogeneous boundary condi-
tions.

The problem considered here differs from these earlier works in two respects:
our velocity field u is not divergence free and the potential vorticity inversion is
nonlinear. In particular, uniform continuity of K has to be proved explicitly as it
cannot be inferred from boundedness of the operator. When establishing existence
of classical solutions [5], we were working in spaces of sufficiently regular functions
where estimates on ∇ ·u essentially came for free. This is no longer the case here.
Fortunately, taking the divergence of (2b), the entire right hand side which contains
the most singular terms drops out so that we can prove estimates on ∇ ·K which
are almost as strong as those for K. However, we can only assert that ∇ ·K is
uniformly continuous as an operator from W−1,p into Lp provided that q− >

√
5−2,

hence the restriction on the initial PV in Theorem 1.
Most of the difficulty comes from the fact that the nonlinearities in the poten-

tial vorticity inversion are felt more strongly when working in weaker spaces—the
estimates used to establish existence of global classical solutions [5] do not simply
translate down the scale of Sobolev spaces to the spaces of distributions W−m,p

in which we can assert compactness of approximating sequences in the functional
setting of Theorem 1 and which must also be used to estimate the right hand side
of (2b).

In the classical setting, it is often easiest to follow an “artificial viscosity” ap-
proach where the regularized system can be shown to possess L∞ bounds which
remain uniform in the zero viscosity limit. While this construction would be pos-
sible here as well, we choose to take advantage of the already established existence
of classical solution. Hence, we construct the solution to the weak formulation as a
limit of classical solutions corresponding to a sequence of mollifications of our L∞

initial potential vorticity.
The remainder of the article is structured as follows. In the following section,

we briefly establish notational conventions. The main new work lies in Section 3
where we prove the kinematic estimates that characterize our potential vorticity
inversion and its divergence. In Section 4, we look at the time-dependent problem,
essentially along the lines of the classical theory. Section 5 concludes with a brief
remark on the impossibility of point-vortex solutions for gLSG.

While we do not have proof that the
√

5−2 barrier is sharp or even necessary, we
do not see a way to improve the result with current techniques. Modulo potential
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marginal improvements, we believe that this result is as good as possible regarding
generalized or weak solutions to the gLSG equations.

2. Notation and preliminaries

For m ∈ N0 and 1 ≤ p ≤ ∞, we write Wm,p(T2) to denote the Sobolev space
of Lebesgue measurable functions whose weak derivatives up to order m belong to
Lp(T2), endowed with norm

‖f‖Wm,p =
∑
|α|≤m

‖Dαf‖Lp , (7)

where we employ the usual multi-index notation. We abbreviate Hm = Wm,2; it is
a Hilbert space with inner product

〈f, g〉m =
∑
|α|≤m

〈Dαf,Dαg〉L2 . (8)

For convenience, 〈·, ·〉 ≡ 〈·, ·〉0 is used to denote the L2 inner product.
For m ∈ N and p ∈ (1,∞) with Hölder conjugate p′ = p/(p − 1), we set

W−m,p(T2) = Wm,p′(T2)′, endowed with the dual norm

‖f‖W−m,p = sup
φ∈Wm,p′

φ6=0

〈φ, f〉Wm,p′ ,W−m,p

‖φ‖
Wm,p′

. (9)

We remark that this definition coincides with the usual definition of W−m,p as the
dual of Wm,p′

0 (see, e.g., [2]), because on the torus the spaces Wm,p′ and Wm,p′

0

coincide.
We adopt the following convention on the naming of constants. Constants which

might depend on parameters only are denoted by c, constants which may also de-
pend on the data or the bound r to be introduced below are denoted C. Different
subscripts indicate a change in the constant from step to step within a single com-
putation; however, we make no attempt at a unique naming of constants across
different sections of the paper.

Recall that elliptic Lp theory [4, 7, 18] implies that

(1− σ∆): W 2,p(T2)→ Lp(T2) (10)

is an isomorphism for every p ∈ (1,∞) and that there exists a constant c indepen-
dent of p and σ such that the norm of its inverse is bounded by

‖(1− σ∆)−1‖Lp→W 2,p ≤
c

σ

p2

p− 1
. (11)

This estimate directly translates down the Sobolev scale into a statement on the
Helmholtz equation with distribution-valued data; for details see, e.g., [5].

Lemma 2. Suppose f ∈W−2,p(T2) with p ∈ (1,∞). Then the Helmholtz equation

(1− σ∆)v = f (12)

has a unique weak solution v ∈ Lp(T2) and there exists a constant c independent of
p ≥ 2 and σ such that

‖v‖Lp ≤
c p

σ
‖f‖W−2,p . (13)
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If, moreover, f ∈W−1,p(T2), then v ∈W 1,p(T2) with

‖v‖W 1,p ≤
c p

σ
‖f‖W−1,p . (14)

3. Kinematic estimates

In this section we establish sufficient conditions under which the operators K
and ∇ · K are well-defined, and derive kinematic estimates for later use. This
task naturally splits into three parts: we first study the second order differential
operator from (2a), which we abbreviate

Lq ≡ q − σ∆ . (15)

We then look at the second order differential operator on the left hand side of (2b),
which we abbreviate

Λh ≡ 1− σ (h∆ + 2 ∇h ·∇) , (16)
under the assumption that h satisfies equation (2a). Finally, we estimate the terms
on the right of (2b), thereby completing the estimates for the full potential vorticity
inversion.

The characterization of Lq is given in the following two propositions.

Proposition 3. Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ ≤ r < 1. Then Lq has a
continuous inverse as an operator from W 2,p(T2) to Lp(T2), from W 1,p(T2) to
W−1,p(T2), and from Lp(T2) to W−2,p(T2) for every p ∈ (1,∞). The norms of the
inverse depend on r, p, and σ, but not otherwise on q. Specifically, when

Lqh = f , (17)

then
‖h‖Lp ≤

1
1− r

‖f‖Lp (18a)

and there exists a constant c independent of r, p, and σ such that

‖h‖W 2,p ≤
c

σ

p2

p− 1
1

1− r
‖f‖Lp . (18b)

Finally, if r ∈ [0, 1) and f ∈ W−1,s with s > 2 are fixed, then q 7→ L−1
q f is

uniformly continuous on the set {q = 1 + q̃ : ‖q̃‖L∞ ≤ r} as a map from W−1,p(T2)
to W 1,p(T2) for every 2 ≤ p ≤ s. Specifically, there exists a constant C depending
on all parameters as well as r and ‖f‖W−1,s such that

‖L−1
q2 f − L

−1
q1 f‖W 1,p ≤ C ‖q2 − q1‖W−1,p (19)

so long as ‖q̃i‖L∞ ≤ r for i = 1, 2.

Proof. Since q ≥ 1 − r > 0 a.e., the second order operator Lq is uniformly elliptic
and the associated bilinear form is coercive. Hence, invertibility as an operator
from W 2,p to Lp follows by standard elliptic Lp theory. To proceed, we write (17)
in fixed point form, namely

h = (1− σ∆)−1(f − q̃ h) . (20)

Hence,
‖h‖Lp ≤ ‖(1− σ∆)−1‖Lp→Lp

(
‖f‖Lp + ‖q̃‖L∞ ‖h‖Lp

)
. (21)

Since the inverse Helmholtz operator has unit norm on Lp, as can be seen from its
explicit integral representation, estimate (18a) is immediate. Moreover, considering
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the inverse Helmholtz operator as a map from Lp to W 2,p in (21) and recalling its
norm from (11) yields (18b). Further, we obtain from (20) that

‖h‖Lp ≤ ‖(1−σ∆)−1‖W−2,p→Lp ‖f‖W−2,p +‖(1−σ∆)−1‖Lp→Lp ‖q̃‖L∞‖h‖Lp (22)

so that
‖h‖Lp ≤

c p

σ

1
1− r

‖f‖W−2,p . (23)

Finally, to obtain a W 1,p bound on h, take the W 1,p norm of (20) and consider the
inverse Helmholtz operator as a map from W−1,p to W 1,p. Due to (23),

‖q̃h‖W−1,p ≤ ‖q̃h‖Lp ≤
c p

σ

1
1− r

‖q̃‖L∞ ‖f‖W−2,p , (24)

so that
‖h‖W 1,p ≤ C(p, r, σ) ‖f‖W−1,p . (25)

Then (23) and (25) imply that L−1
q extends continuously to a map from W−2,p to

Lp and from W−1,p to W 1,p as claimed.
To prove uniform continuity, suppose Lqihi = f with ‖q̃i‖L∞ < r for i = 1, 2.

Then
h2 − h1 = L−1

q2 [h1(q1 − q2)] (26)
so that, due to (25),

‖h2 − h1‖W 1,p ≤ C(p, r, σ) ‖h1(q2 − q1)‖W−1,p . (27)

To complete the proof of (19), we must show that

‖h1(q2 − q1)‖W−1,p ≤ C ‖q2 − q1‖W−1,p . (28)

First, if h1 = 0 or h1(q2−q1) = 0, this claim is trivial, so assume otherwise. Second,
for φ ∈W 1,p′ ,

‖φh1‖W 1,p′ ≤ ‖φ‖Lp′ ‖h1‖L∞ + ‖∇φ‖
Lp′ ‖h1‖L∞ + ‖φ‖Lt ‖∇h1‖Ls

≤ c(p, s) ‖φ‖
W 1,p′ ‖h1‖W 1,s

≤ C(s, σ, r) ‖φ‖
W 1,p′ ‖f‖W−1,s , (29)

where, in the first inequality, we use the Hölder inequality with 1/t + 1/s = 1/p′

and, in the second inequality, we note the continuity of the embeddings W 1,s ↪→ L∞

and W 1,p′ ↪→ Lt; the last step in (29) is due to (25). Hence,

‖h1(q2 − q1)‖W−1,p = sup
φ∈W 1,p′

φ6=0

〈φ, h1(q2 − q1)〉
‖φ‖W 1,p′

≤ C sup
φh1∈W 1,p′

φh1 6=0

〈φh1, q2 − q1〉
‖φh1‖W 1,p′

= C ‖q2 − q1‖W−1,p . (30)

This completes the proof. �

Proposition 3 implies, in particular, that for any function q ∈ L∞(T2) with
‖q̃‖L∞ < 1 the solution to Lqh = 1 satisfies h ∈ W 2,p(T2) for all 1 < p < ∞. For
future reference, we note that the continuity of the embedding W 1,4(T2) ↪→ L∞(T2)
and estimate (18b) applied with fixed p = 4 imply that h ∈ W 1,∞(T2) and that
there exists a constant c1 independent of p such that

‖∇h‖L∞ ≤
c1
σ

1
1− r

. (31)
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Then, by the Sobolev lemma, h is continuous. In the next proposition we derive
sharp pointwise upper and lower bounds.

Proposition 4 ([5]). Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ < 1 and let h be the solution
to Lqh = 1 given by Proposition 3. Then

1
q+
≤ h ≤ 1

q−
. (32)

Proof. We rewrite the equation Lqh = 1 in the form

Lq

(
h− 1

q+

)
= 1− q

q+
≥ 0 . (33)

First, suppose that q ∈ C(T2) and h ∈ C2(T2). Since Lq is uniformly elliptic, the
classical strong maximum principle [7, 10] then implies

h− 1
q+
≥ 0 . (34)

The upper bound on h follows from the corresponding argument for h− 1/q−. The
general case when q̃ ∈ L∞(T2) follows by a standard mollification argument. �

We now proceed to studying weak solutions of Λhu = g. As usual, a weak
solution is a vector field u ∈ H1(T2,R2) which satisfies, for given g ∈ H−1(T2,R2),

B(u,v) = 〈g,v〉H−1,H1 (35)

for every v ∈ H1(T2,R2), where the the bilinear form B reads

B(u,v) =
∫

T2

(
u · v + σ h∇u : ∇v − σ∇h · (∇u)Tv

)
dx (36)

and the colon denotes summation of componentwise products over both indices.
The properties of the full potential vorticity inversion are now stated in the following
proposition.

Proposition 5. Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ ≤ r < 1. Let h denote the
solution to Lqh = 1 given by Proposition 3. Further, for 2 ≤ p < ∞, let g ∈
W−1,p(T2,R2). Then the problem

Λhu = g (37)

has a unique weak solution u ∈W 1,p(T2,R2) and there exists a constant c indepen-
dent of p such that

‖u‖W 1,p ≤
c p

σ2

1
1− r

‖g‖W−1,p . (38)

In particular, when g denotes the right hand side of the generalized LSG momentum
equation (2b), then there exists a constant C independent of p but dependent on all
other parameters as well as on r such that the velocity field u ≡ K(q) is bounded
by

‖u‖W 1,p ≤ C p . (39)
Furthermore, K is uniformly continuous on the set {q = 1 + q̃ : ‖q̃‖L∞ ≤ r} as
a map from W−1,p(T2) into Lp(T2,R2). Specifically, there exists a constant C
depending on r, p and on all parameters such that

‖K(q1)−K(q2)‖Lp ≤ C ‖q1 − q2‖W−1,p (40)

so long as ‖q̃i‖L∞ ≤ r for i = 1, 2.
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Proof. Estimates (38) and (39) were already used in [5], so we give only a brief
sketch of the proof. First note that g ∈ H−1(T2,R2). We establish existence of a
unique weak solution u ∈ H1(T2,R2) by the Lax–Milgram theorem. Continuity of
the bilinear form (36) is immediate. To prove coercivity, we write

B(u,u) =
∫

T2

(
|u|2 + σ h |∇u|2 − 1

2 σ∇h ·∇|u|2
)

dx

=
∫

T2

(
1
2 (1 + qh) |u|2 + σ h |∇u|2

)
dx

≥ min{ 1
2 , σh−} ‖u‖H1 . (41)

Since, by Proposition 4, h− ≥ 1/q+ > 1/2, and σ ≤ 1 throughout, the Lax–
Milgram theorem asserts existence of a unique weak solution u ∈ H1. To show
that u ∈W 1,p, we note that Λhu = g can be written

(1− σ∆)u =
g

h
− b̃u +

2σ
h

∇h ·∇u . (42)

Estimate (38) follows from Lemma 2 by bounding each of the terms on the right in
the W−1,p norm. Estimate (39) is obtained by inserting g as defined by the right
hand side of (2b) into (38). The details can be found in [5].

To prove uniform continuity of K, we first note that

Lq(hu) = Λhu . (43)

For i = 1, 2, suppose ‖q̃i‖L∞ ≤ r, set hi = L−1
qi

1, ui = K(qi), and write gi to
denote the respective right hand sides of the generalized LSG momentum equation
(2b). Using (43), write

u1 − u2 =
1

h1h2

(
h2 L

−1
q1 g1 − h1 L

−1
q2 g2

)
=
h2 − h1

h1h2
L−1
q1 g1 +

(L−1
q1 − L

−1
q2 )g1

h2
+
L−1
q2 (g1 − g2)

h2
. (44)

To prove (40), we take the Lp norm of all three terms on the right of (44). Note
that it actually suffices to estimate the Lp norm of the numerators, because Propo-
sition 4 provides uniform L∞ bounds on h−1

1 and h−1
2 . Beginning with the first

term on the right of (44), we apply the Hölder inequality, the Sobolev embedding
theorem, and the uniform continuity estimate (19) with f = 1 to obtain

‖(h2 − h1)L−1
q1 g1‖Lp ≤ ‖h2 − h1‖L2p ‖L−1

q1 g1‖L2p

≤ c(p) ‖h2 − h1‖W 1,p ‖L−1
q1 g1‖L2p

≤ C(p, σ) ‖q2 − q1‖W−1,p ‖L−1
q1 g1‖L2p . (45)

Further, by Proposition 3,

‖L−1
q1 g1‖L2p ≤ C1 ‖g1‖W−1,2p

≤ C1 ‖h1 − µ (2h1 ∆h1 + |∇h1|2)‖L2p

≤ C2

(
‖h1‖L∞ + |µ| (2 ‖h1‖L∞ ‖∆h1‖L∞ + ‖∇h1‖2L∞)

)
. (46)

All terms on the right are bounded by constants which depend only on the param-
eters, p and r due to the L∞ bounds on q1 and h1, the identity ∆h1 = (q1h1−1)/σ
implied by (2a), and estimate (31).
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The second term on the right of (44) is readily estimated by applying (19) with
f = g1 and s = 2p. As shown in (46), g1 is uniformly bounded in W−1,2p, so that

‖(L−1
q1 − L

−1
q2 )g1‖Lp ≤ C ‖q1 − q2‖W−1,p . (47)

To estimate the last term on the right of (44), we recall that L−1
q2 is bounded as

a map from W−2,p into Lp, so that

‖L−1
q2 (g1 − g2)‖Lp ≤ C(p, σ) ‖g1 − g2‖W−2,p . (48)

To proceed, fix v ∈W 2,p′ and note that

〈v, g1 − g2〉W 2,p′ ,W−2,p = 〈∇⊥ · v, h1 − h2〉 − 2µ 〈∇⊥ · v, (h1 − h2) ∆h1〉

− 2µ 〈∇⊥ · v, h2 ∆(h1 − h2)〉 − µ 〈∇⊥ · v,∇(h1 − h2) ·∇(h1 + h2)〉 . (49)

We estimate term-by-term. An upper bound on the second term implies one on the
first, so we estimate, using the Hölder inequality,

〈∇⊥ · v, (h1 − h2) ∆h1〉 ≤ ‖v‖W 1,p′ ‖h1 − h2‖Lp ‖∆h1‖L∞ . (50)

Similarly,

〈∇⊥ · v, h2 ∆(h1 − h2)〉 = −〈∇h2 ∇⊥ · v + h2 ∇∇⊥ · v,∇(h1 − h2)〉
≤
(
‖∇h2‖L∞ ‖v‖W 1,p′ + ‖h2‖L∞‖v‖W 2,p′

)
‖h1 − h2‖W 1,p (51)

and

〈∇⊥ ·v,∇(h1−h2) ·∇(h1 +h2)〉 ≤ ‖v‖
W 1,p′ ‖h1−h2‖W 1,p

(
‖h1‖W 1,∞+‖h2‖W 1,∞

)
.

(52)
Recalling the uniform W 1,∞ bounds on hi and the uniform L∞ bound on ∆h1 =
1
σ (q1h1 − 1), we find that, altogether,

‖g1 − g2‖W−2,p ≤ C1 ‖h1 − h2‖W 1,p ≤ C2 ‖q1 − q2‖W−1,p , (53)

where the final inequality is due to (19) with f = 1. This completes the proof. �

As the right hand side of the momentum equation (2b) is divergence free, we
obtain the following estimates for the divergence of u which are almost as strong
as those for u.

Proposition 6. Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ ≤ r < 1. Let u ≡ K(q) denote
the solution to Λhu = g given by Proposition 5 and let p ∈ [2,∞). Then ∇ · u ∈
W 1,p and there exists a constant C depending on r, p, and all parameters such that

‖∇ · u‖W 1,p ≤ C . (54)

Furthermore, for every 0 ≤ r <
√

5−2 the operator ∇·K is uniformly continuous on
the set {q = 1+ q̃ : ‖q̃‖L∞ ≤ r} as a map from W−1,p(T2) into Lp(T2). Specifically,
there exists a constant C depending on r, p and on all parameters such that

‖∇ · (K(q1)−K(q2))‖Lp ≤ C ‖q1 − q2‖W−1,p (55)

so long as ‖q̃i‖L∞ ≤ r for i = 1, 2.

Remark 1. In our proof, the dependence of the constant in (54) is cubic in contrast
to the linear p-dependence of the corresponding estimate for K. While the latter is
essential for proving uniqueness of the solution to the full time-dependent problem,
the p-dependence in (54), luckily, plays no further role.
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Proof. Taking the divergence of Λhu = g, noting that ∇ · g = 0, we obtain

Λh(∇ · u) = σ
(
∇h ·∆u + 2 ∇∇h : ∇u

)
= σ

(
∇ · ((∇u)T∇h) + ∇∇h : ∇u

)
≡ g̃ . (56)

We estimate

‖g̃‖W−1,p = σ sup
φ∈W 1,p′

φ6=0

〈∇φ, (∇u)T∇h〉+ 〈φ,∇∇h : ∇u〉
‖φ‖

W 1,p′

≤ σ
(
‖(∇u)T∇h‖Lp + ‖∇∇h : ∇u‖Lp

)
≤ 2σ ‖u‖W 1,2p ‖h‖W 2,2p . (57)

The right hand norms are bounded due to (39) and (18b). Hence, g̃ ∈ W−1,p so
that Proposition 5 implies ∇ · u ∈W 1,p with upper bound

‖∇ · u‖W 1,p ≤
c p

σ

1
1− r

‖g̃‖W−1,p ≤
1
σ

C

(1− r)2
p3 . (58)

This establishes (54).
To prove uniform continuity of ∇ · K, we follow the proof of Proposition 5.

Observe that, as in (43),

Lq(h∇ · u) = Λh(∇ · u) , (59)

so that

∇ · (u1 − u2) =
h2 − h1

h1h2
L−1
q1 g̃1 +

(L−1
q1 − L

−1
q2 )g̃1

h2
+
L−1
q2 (g̃1 − g̃2)

h2
. (60)

We take the Lp norm of each term on the right where, as before, it suffices to
consider the numerators. Since

‖L−1
q1 g̃1‖L2p ≤ c(p) ‖L−1

q1 g̃1‖W 1,p ≤ C1 ‖g̃1‖W−1,p ≤ C2 , (61)

the first term on the right of (60) can be estimated as in (45). Similarly, due to the
W−1,2p bound on g̃1 implied by (54), the second term on the right of (60) can be
estimated as in (47).

However, the third and last term on the right of (60) requires more thorough
consideration. Adding and subtracting terms, we write

g̃1 − g̃2 = σ (Γ1 + Γ2 + Γ3 + Γ4 + Γ5) (62)

with

Γ1 = ∇ · ((∇u1)T∇(h1 − h2)) , (63a)

Γ2 = ∇ ·
(
(∇(u1 − u2))T∇h2

)
, (63b)

Γ3 = ∇∇(h1 − h2)) : ∇u1 , (63c)

Γ4 = ∇∇h2 : ∇(u1 − u2)−∆h2 ∇ · (u1 − u2) , (63d)

Γ5 = ∆h2 ∇ · (u1 − u2) . (63e)

When the operator L−1
q2 in the third term on the right of (60) acts on Γ1, . . . ,Γ4,

we consider it as a map from W−2,p to Lp. Hence, for these terms it suffices to
derive fairly routine W−2,p bounds.
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Beginning with Γ1, we integrate by parts and estimate

‖Γ1‖W−2,p = sup
φ∈W 2,p′

φ6=0

〈∇φ, (∇u1)T∇(h1 − h2)〉
‖φ‖

W 2,p′
= sup
φ∈W 2,p′

φ6=0

〈∇u1∇φ,∇(h1 − h2)〉
‖φ‖

W 2,p′

≤ sup
φ∈W 2,p′

φ6=0

‖u1‖W 1,2p′ ‖φ‖W 1,2p′ ‖h1 − h2‖W 1,p

‖φ‖
W 2,p′

≤ C ‖q1 − q2‖W−1,p .

(64)

The first inequality above is due to a triple Hölder inequality. For the second
inequality, we used (39) to estimate the norm of u1, the continuity of the embedding
W 2,p′ ↪→W 1,2p′ , and the uniform continuity result (19).

Similarly, after two consecutive integrations by parts and application of Hölder’s
inequality, Γ2 is estimated as

‖Γ2‖W−2,p = sup
φ∈W 2,p′

φ6=0

〈∆φ∇h2 + ∇∇h2∇φ,u1 − u2〉
‖φ‖

W 2,p′

≤ sup
φ∈W 2,p′

φ6=0

‖φ‖
W 2,p′ ‖∇h2‖L∞ + ‖h2‖W 2,2p′ ‖φ‖W 1,2p′

‖φ‖
W 2,p′

‖u1 − u2‖Lp

≤ C ‖q1 − q2‖W−1,p . (65)

Besides the Sobolev embedding as in (64), estimates (18b), (31), and (40) were used
in the last step of (65).

To estimate Γ3, take a test function φ ∈W 2,p′ and repeatedly integrate by parts:

〈φ,Γ3〉 = 〈∇φ,∇u1∇(h1 − h2)〉
+ 〈∇φ,∇(h1 − h2) ∇ · u1〉+ 〈φ,∆(h1 − h2) ∇ · u1〉 . (66)

The first two terms are bounded as in (64). For the last term, use

∆(h1 − h2) =
1
σ

(q1(h1 − h2)− h2(q2 − q1)) (67)

to replace the Laplacian of the difference with lower order terms. Then,

|σ 〈φ,∆(h1 − h2) ∇ · u1〉| ≤ ‖φ‖L2p′ ‖q1‖L∞ ‖h1 − h2‖Lp ‖u1‖W 1,2p′

+ ‖h2 (q2 − q1)‖W−1,p ‖φ∇ · u1‖W 1,p′

≤ C1

(
‖φ‖

W 1,p′ ‖u1‖W 1,2p′ + ‖φ‖
W 2,p′ ‖∇ · u1‖W 1,p′

)
‖q1 − q2‖W−1,p

≤ C2 ‖φ‖W 2,p′ ‖q1 − q2‖W−1,p . (68)

In the second step, we applied the Sobolev embedding theorem, the L∞ bound on
q1, (19), and (30) from the proof of Proposition 3; the last step uses (39) and (58).

For Γ4, take once again φ ∈W 2,p′ and repeatedly integrate by parts, so that

〈φ,Γ4〉 = 〈∇φ, (u1 − u2) ∆h2〉 − 〈∇φ,∇∇h2 (u1 − u2)〉 . (69)

Both expressions can be estimated analogous to the second summand in (65).
The remaining and most critical contribution to (60) involves Γ5. In an inner

product 〈φ,Γ5〉, we could not move derivatives onto the test function without creat-
ing terms with third derivatives on h2 which we cannot control. We must therefore
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look at the remaining term including all prefactors and consider L−1
q2 as a map from

Lp into itself. Using (18a) and the substitution q2h2 − 1 = σ∆h2, we estimate

‖σh−1
2 L−1

q2 Γ5‖Lp ≤ α ‖∇ · (u1 − u2)‖Lp (70)

where

α =
‖h−1

2 ‖L∞
1− ‖q̃2‖L∞

‖q2h2 − 1‖L∞ . (71)

Observe that ‖∇ · (u1 − u2)‖Lp is exactly the quantity we are trying to control.
Thus, we may subtract (70) from both sides of the Lp estimate of (60) provided the
prefactor α is strictly less than one. To derive a sufficient condition under which
this is true, we apply the maximum principle bounds from Proposition 4 to obtain

‖h−1
2 ‖L∞ ‖q2h2 − 1‖L∞ ≤ q+ max{ q+q− − 1,−( q−q+ − 1)} ≤ q+

( q+
q−
− 1
)
. (72)

Now, setting x ≡ ‖q̃‖L∞ such that q+ = 1 + x and q− = 1− x, we obtain

α ≤ 1 + x

1− x

(
1 + x

1− x
− 1
)

= 2x
1 + x

(1− x)2
(73)

which lies in the interval [0, 1) provided 0 ≤ x <
√

5− 2 ≈ 0.236. �

4. Global weak solutions

In this section, we prove Theorem 1 in four Steps. The structure of the argument
is classical; our presentation closely follows [11].

Step 1. Construct a family of approximate solutions {qν}.

For each ν > 0, we take the regularized initial potential vorticity qin
ν ≡ qin ∗ jν ,

where jν denotes a scaled standard mollifier. Hence, qin
ν is smooth, in particular of

class H3, so that, by [5, Theorem 5.2], the gLSG equations possess a unique global
classical solution

qν ∈ C([0,∞);H3(T2)) ∩ C1([0,∞);H2(T2)) (74a)

uν ∈ C([0,∞);H4(T2,R2)) ∩ C1([0,∞);H3(T2,R2)) (74b)

with qν(0) = qin
ν which preserves the PV maximum and minimum in time. Since

convolution of an L∞ function with a standard mollifier preserves essential supre-
mum and infimum, we obtain the sequence of potential vorticity bounds

0 < qin
− ≤ (qin

ν )− ≤ qν(x, t) ≤ (qin
ν )+ ≤ qin

+ <∞ . (75)

By direct computation, a strong gLSG solution is also a weak solution, i.e.

〈ψ, qν(t2)〉 − 〈ψ, qν(t1)〉 −
∫ t2

t1

〈∇ · (ψuν), qν〉dt = 0 , (76a)

uν = K(qν) , (76b)

qν(0) = qin
ν . (76c)

We will now pass to the limit in this weak form. To this end, we investigate the
compactness properties of {qν}.

Step 2. Show that {qν} is a relatively compact set in C([0,∞); w∗-L∞(T2)), in
w∗-L∞([0,∞)× T2), in C([0,∞); w-L2(T2)), and in L2

loc([0,∞);H−1(T2)).
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Proof of Step 2. According to the Arzela–Ascoli theorem, {qν} is a relatively com-
pact set in the space C([0,∞); w∗-L∞(T2)), where w∗-L∞(T2) denotes L∞(T2)
endowed with the weak-∗ topology, provided the following is true:

(i) {qν(t)} is a relatively compact set in w∗-L∞(T2) for every t ∈ [0,∞);
(ii) {qν} is uniformly equicontinuous in C([0,∞); w∗-L∞(T2)), i.e. for every

ψ ∈ L1 the sequence {〈qν(·), ψ〉L∞,L1} is uniformly equicontinuous in
C([0,∞)).

Condition (i) is equivalent to {qν(t)} being bounded in L∞ for every t ∈ [0,∞),
hence is a consequence of (75). This also implies, in passing, that {qν} is relatively
compact in w∗-L∞([0,∞)× T2).

To show condition (ii), we first assume that ψ is smooth, so that∣∣〈qν(t2),ψ〉L∞,L1 − 〈qν(t1), ψ〉L∞,L1

∣∣ =
∣∣∣∣∫ t2

t1

〈
∇ψ · uν + ψ∇ · uν , qν

〉
dt
∣∣∣∣

≤ 2 ‖ψ‖W 1,∞ max
t1≤t≤t2

‖qν(t)‖L∞
(∫ t2

t1

dt
) 1

2
(∫ t2

t1

‖uν(t)‖2H1 dt
) 1

2

≤ C(qin) ‖ψ‖W 1,∞ |t2 − t1| . (77)

The last inequality is due to the L∞ bounds (75) and the associated ν-independent
W 1,p bound on uν given by Proposition 5. This proves equicontinuity for smooth ψ;
the general case is argued by density as in [11]. We conclude that {qν} is relatively
compact in C([0,∞); w∗-L∞(T2)), hence also in C([0,∞); w-L2(T2)) due to the
continuity of the embedding.

Finally, the relative compactness of {qν} in L2
loc([0,∞);H−1(T2)) follows from

the continuity of the embedding

C([0,∞); w-L2(T2)) ↪→ L2
loc([0,∞);H−1(T2)) . (78)

A proof can be found, e.g., in [6]. �

Step 3. Pass to the limit.

Proof of Step 3. Step 2 asserts the convergence of a subsequence, for convenience
still denoted {qν}, to a limit

q ∈ C([0,∞); w∗-L∞(T2)) ∩ L∞([0,∞)× T2) (79)

in the following sense:

qν → q in C([0,∞); w∗-L∞(T2)) , (80a)

qν → q in w∗-L∞([0,∞)× T2) , (80b)

qν → q in L2
loc([0,∞);H−1(T2)) , (80c)

qν → q in w-L2
loc([0,∞);L2(T2)) . (80d)

Convergences (80a), (80b), and (80c) follow directly from Step 2, whereas (80d) is
strictly weaker than (80b). Furthermore, (80b) also implies

0 < qin
− ≤ q−(t) ≤ q(x, t) ≤ q+(t) ≤ qin

+ <∞ , (81)

first for almost every (x, t) ∈ [0,∞) × T2 and then for every t ∈ [0,∞) and a.e.
x ∈ T2 due to the continuity of q with respect to time.
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The bounds in (81) show that u(t) = K(q(t)) is well-defined for all t ∈ [0,∞).
From the strong convergence in (80c) and the uniform continuity of the operators
K and ∇ ·K due to (40) and (55) we deduce that

uν → u in L2
loc([0,∞);L2(T2,R2)) , (82a)

∇ · uν →∇ · u in L2
loc([0,∞);L2(T2)) . (82b)

We proceed to show that q and u satisfy the weak vorticity equation (3). To
this end, we will pass to the limit for each term in the weak formulation (76).

Let ψ ∈ H1(T2) be an arbitrary test function. Clearly, due to (80a),

〈qν(t), ψ〉 → 〈q(t), ψ〉 (83)

for every t ∈ [0,∞) as ν → 0, so that the first two terms in (76a) converge.
To show the convergence in the remaining term of (76a), we write∫ t2

t1

〈∇ · (ψuν), qν〉dt =
∫ t2

t1

〈∇ψ · uν , qν〉dt+
∫ t2

t1

〈ψ∇ · uν , qν〉dt . (84)

To pass to the limit in the first term on the right, we observe∫ t2

t1

(
〈∇ψ ·uν , qν〉−〈∇ψ ·u, q〉

)
dt =

∫ t2

t1

(
〈∇ψ ·(uν−u), qν〉−〈∇ψ ·u, q−qν〉

)
dt

≤ ‖∇ψ‖L2

∫ t2

t1

‖uν − u‖L2 ‖qν‖L∞ dt+
∣∣∣∣∫ t2

t1

〈∇ψ · u, q − qν〉dt
∣∣∣∣ . (85)

The first term on the right of (85) vanishes as ν → 0 due to (75) and (82a). The
second one vanishes due to the weak convergence (80d). Finally, due to (82b), the
same argument applies to the second term on the right of (84). �

Step 4. Show the uniqueness of the solution q and the continuous dependence of
the solution on the initial data.

Proof of Step 4. Let q̂ and q̄ be two weak solutions of problem (3) with common
initial data qin ∈ L∞ and write û = K(q̂), ū = K(q̄). We shall establish the
vanishing of ϕ ≡ q̂ − q̄ in the H−1-norm using

1
2

d
dt
‖Φ(t)‖H−1 = (Φ̇(t),Φ(t))H−1 , (86)

which holds true in the sense of distributions on R for all Φ ∈ H1
loc([0,∞);H−1(T2)).

Equation (86) is obvious for functions in C∞0 ([0,∞);H−1(T2)) and generalizes by
density. To apply this identity to weak gLSG solutions, we first note that q ∈
L2

loc([0,∞);H−1(T2)) due to (80d). Further, we need to recover q̇ in a weak sense.
To this end, we fix a test function ψ ∈ H1 and take t1 = 0, t2 = t in the weak
formulation (3a), so that

〈ψ, q(t)〉 = 〈ψ, qin〉+
∫ t

0

〈∇ψ · u(t′), q(t′)〉dt′ +
∫ t

0

〈ψ∇ · u(t′), q(t′)〉dt′ . (87)

Note that the integrals are differentiable for almost every t ∈ [0,∞) due to the
local summability of their integrands. For the first integrand, this is implied by the
uniform bound on u due to (39) since∫ T

0

|〈∇ψ · u(t), q(t)〉|2 dt ≤ ‖ψ‖2H1

∫ T

0

‖u(t)‖2L2 dt ‖q‖2L∞([0,∞)×T2) ≤ ‖ψ‖
2
H1 C T .

(88)
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Due to (54), the argument for the second integrand is similar.
Now, multiply (87) with dθ/dt, where θ is a test function θ ∈ C∞0 ([0,∞)),

integrate from 0 to ∞, and then integrate by parts to obtain∫ ∞
0

〈ψ, q(t)〉 dθ
dt

(t) dt = −
∫ ∞

0

(
〈∇ψ · u(t), q(t)〉+ 〈ψ∇ · u(t), q(t)〉

)
θ(t) dt . (89)

By definition, as 〈ψ, q(·)〉 ∈ L1
loc([0,∞)), this means

d
dt
〈ψ, q(t)〉 = 〈∇ψ · u(t), q(t)〉+ 〈ψ∇ · u(t), q(t)〉

= 〈ψ,∇ · u(t) q(t)−∇ · (u(t) q(t))〉H1,H−1 (90)

in the sense of distributions, hence

q̇(t) = ∇ · u(t) q(t)−∇ · (u(t) q(t)) , (91)

and, due to (88), q̇ ∈ L2
loc([0,∞);H−1(T2)).

To proceed, we write A ≡ 1 − ∆. Using its spectral representation, we can
define arbitrary powers of A and, in particular, endow H−1(T2) with scalar product
〈A−1/2 · , A−1/2 · 〉. Moreover,

〈A−1(∇ · v), φ〉 = −〈v,∇A−1φ〉 . (92)

Then, by (86) and (92),

1
2

d
dt
‖ϕ(t)‖H−1 = −〈A−1(∇ · (ûq̂)− q̂∇ · û), ϕ〉+ 〈A−1(∇ · (ūq̄)− q̄∇ · ū), ϕ〉

= 〈ûq̂,∇A−1ϕ〉+ 〈q̂∇ · û, A−1ϕ〉 − 〈ūq̄,∇A−1ϕ〉 − 〈q̄∇ · ū, A−1ϕ〉
= 〈q̄∇ · (û− ū), A−1ϕ〉+ 〈q̄(û− ū),∇A−1ϕ〉+ 〈ϕ∇ · û, A−1ϕ〉+ 〈ûϕ,∇A−1ϕ〉 .

(93)

The first term on the right of (93) is estimated using the global L∞-bound on q̄
and the uniform continuity of ∇ ·K as stated in (55), so that

〈q̄∇ · (û− ū), A−1ϕ〉 ≤ ‖q̄‖L∞ ‖∇ · (û− ū)‖L2 ‖ϕ‖H−1 ≤ C ‖ϕ‖2H−1 . (94)

Similarly, the second term is estimated by using the uniform continuity of K as
formulated in (40),

〈q̄(û− ū),∇A−1ϕ〉 ≤ ‖q̄‖L∞ ‖û− ū‖L2 ‖ϕ‖H−1 ≤ C ‖ϕ‖2H−1 . (95)

Setting ψ = A−1ϕ, the third term on the right of (93) is estimated

〈ϕ∇ · û, A−1ϕ〉 = 〈Aψ,ψ∇ · û〉
= 〈ψ,ψ∇ · û〉+ 〈∇ψ,ψ∇∇ · û〉+ 〈∇ψ,∇ψ∇ · û〉
≤ ‖ψ‖2L4 ‖∇ · û‖L2 + ‖∇ψ‖L2 ‖ψ‖L4 ‖∇∇ · û‖L4 + ‖∇ψ‖2L2 ‖∇ · û‖L∞
≤ c ‖ψ‖2H1 ‖∇ · û‖W 1,4 ≤ C ‖A−1ϕ‖2H1 ≤ C ‖ϕ‖2H−1 . (96)

Here, we employed the continuous embedding W 1,4 ↪→ L∞ in the fourth and (54)
in the second to last step.
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Finally, the last term on the right of (93) is estimated using integration by parts,
the Hölder inequality, and the W 1,p-bound on u given by (39), so that

〈Aψ, û ·∇ψ〉 = 〈û ·∇ψ,ψ〉+ 〈(∇û)T∇ψ,∇ψ〉 − 1
2 〈∇ · û, |∇ψ|2〉

≤ 3 ‖û‖W 1,p ‖ψ‖2W 1,2q ≤ C p ‖A−1ϕ‖2W 1,2q

≤ C p ‖A−1/2ϕ‖2L2q ≤ C p ‖ϕ‖2−2/p
H−1 , (97)

where 1/p + 1/q = 1 with p ∈ [2,∞) and, in the last inequality we used the
boundedness of A−1/2ϕ ∈ L∞([0,∞)× T2).

Altogether, after absorbing excess powers of ‖ϕ‖H−1 into the constant and re-
defining p as 2p, we have derived the differential inequality

d
dt
‖ϕ(t)‖H−1 ≤ C p ‖ϕ(t)‖1−1/p

H−1 . (98)

Upon integration, we obtain the upper bound

‖ϕ(t)‖H−1 ≤
(
C t
)p
. (99)

Letting p → ∞, we conclude that ‖ϕ(t)‖H−1 vanishes on the interval [0, t0] for
C t0 < 1. Repeated application of this argument proves uniqueness on the entire
time axis. We remark that this strategy is due to Yudovich [18, 19].

Finally, to prove stability, we use the above estimates without assuming that
the initial data corresponding to q̂ and q̄ are identical. The differential inequality
(98) remains valid. Upon integration, for any ε > 0, we find that if we choose
δ(ε) ≡ 3−p(ε) with p(ε) > max{2, ln ε/ ln(2/3)}, then for all admissible q̂ and q̄
with ‖ϕ(0)‖H−1 ≤ δ one has ‖ϕ(t)‖H−1 < ε for any t ∈ [0, 1/(3C)]. Tiling the
interval [0, T ] into equidistant subintervals, we obtain stability up to any finite
time T > 0. �

5. Point Vortices

A brief inspection of the proof of Proposition 5 shows that when µ = 0 in the
gLSG momentum equation (2b), then u ∈W 3,p for any p ∈ [2,∞). In other words,
the potential vorticity inversion gains three derivatives in Sobolev space. Thus, the
situation might appear similar to the Euler-α equations which are known to also
possess weak solutions with Radon-measured potential vorticities [14]. However,
due to the nonlinearity of the gLSG vorticity inversion, this analogy breaks down
entirely.

We shall briefly demonstrate that there are no physical solutions to the first stage
of the vorticity inversion, equation (2a), in the special case of the strictly positive
Radon measure q = 1 + δ, where δ denotes the Dirac measure. For convenience we
set σ = 1 and consider the problem on R2. In this case, (2a) reads

h+ δh−∆h = 1 . (100)

For δh to make sense as a Radon measure, the solution h must at least be continuous
in the origin. Moreover, on the punctured plane R2 \ {0}, h must satisfy the
Helmholtz equation (1 − ∆)h = 1. Since (100) has radial symmetry, a unique
solution must be radial. Writing h(r) = 1 + h̃(r), the radial Helmholtz equation
reads

r2 h̃′′ + r h̃′ − r2 h̃ = 0 . (101)
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Solutions are the modified Bessel functions I0 and K0 [1]. K0 has a logarithmic
singularity at 0 and cannot be extended to a continuous function on R2. I0 is
continuous at the origin, but grows exponentially when r → ∞, hence must be
considered unphysical. We conclude that not even a single potential vorticity point
vortex is supported by our model.
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