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Abstract

We discuss relations between the expansion coefficients of a discrete random field when
analyzed with respect to different hierarchical bases. Our main focus is on the comparison
of two such systems: the Walsh–Rademacher basis and the trigonometric Fourier basis. In
general, spectra computed with respect to one basis will look different in the other. In this
paper, we prove that, in a statistical sense, the rate of spectral decay computed in one basis
can be translated to the other. We further provide explicit expressions for this translation on
quadrilateral meshes. The results are illustrated with numerical examples for deterministic
and random fields.
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1. Introduction

The statistical theory of turbulence makes heavy use of the spectral representation of
random fields [e.g. 1, 2]. Modern computational methods, for reasons of parallelizability
and modeling complex geometries, are predominantly based on local discrete operators on
unstructured meshes. Thus, in order to consistently interpret computational results in the
classical language of spectral analysis, suitable postprocessing is essential. One obvious route
is to first interpolate from the unstructured mesh to a quadrilateral mesh, then perform
classical Fourier analysis on the latter. The interpolation step, however, will have its own
set of biases which, near the grid scale, is difficult to quantify. In this paper, we pursue a
different approach, based on nothing more than a simple discrete averaging operation on
a hierarchy of nested grids. The inferred spectra can then be translated consistently to
the classical Fourier setting in a statistical sense. The translation function is computed
explicitly in the simple case of nested square grids. More generally, it could be inferred
computationally for complex grid geometries.
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In more abstract language, we can sketch our main question as follows. Let u be some
(random) field. Let {fk} and {gk} be some orthonormal bases, where k = |k| plays the
role of an abstract wavenumber which imposes a total order on the bases. We expand the
field in both cases, i.e., u =

∑
k uk fk =

∑
k vk gk. Now we try to compare uk and vk or,

more precisely, the quantities E1(k) =
∑
|k|=k u

2
k and E2(k) =

∑
|k|=k v

2
k that represent the

distribution of “energy” over length scales of order k−1. One of the important questions is the
following: if we observe E1(k) ∝ kα1 and E2(k) ∝ kα2 , then what is the relation between α1

and α2? At which wavenumbers k and, generally, in which regimes can we state that α1 ≈ α2,
i.e., the spectral slopes computed in different basis systems are similar? Such a problem can
hardly be resolved in full generality. Especially when the bases differ significantly, one can
construct fields with a wide range of relations between α1 and α2. However, if we assume
that the uk are independently distributed random variables, relations between expected α1

and α2 can take a well-defined form.
In this paper, we focus on comparing two bases: the standard discrete Fourier trigono-

metric basis (F) on a square region of dimension d, and the Walsh–Rademacher (WR) basis
generated by the indicator functions of the small sub-squares of that region. WR-basis
functions take values +1 and −1 on each dyadic subpartition, and form an orthonormal
basis for L2 on the unit square. In the literature, this system is more commonly referred to
as simply the Walsh system. Since Walsh functions are products of Rademacher functions
and Rademacher was apparently well aware of this construction, see remarks in [3], we shall
prefer the name “Walsh–Rademacher”.

The WR-basis has several attractive features: First, it is a natural representation for
cell-based quantities, particularly discrete finite-volume representations, without implying
any specific degree of smoothness of an underlying continuum limit. Second, it is possible
to establish a natural discrete total order on the WR-functions based on the size of the
sub-domains on which they take a constant value. This implies that there exists a notion
of spectrum based on the WR-scale decomposition in the sense defined above. Third, the
orthogonal projector of a function onto a WR-subspace is simply the averaging operator
onto the sub-domains at that level of the scale hierarchy. Thus, the spectrum of a function
in the WR-representation can be computed by applying a sequence of averaging operators
ordered by scale; we speak of the “resize-and-average” method. Finally, this construction
does not require that the hierarchy of nested subdomains is regular. Only in this paper, we
restrict to regular dyadic sub-partitioning of the square for the purpose of obtaining explicit
formulae; computationally, no such restriction is required.

In the following, we consider random fields with a prescribed spectral slope in each of
the two bases, diagnosed via the resize-and-average method. We focus on the case when the
prescribed spectral slope is the same for all wavenumbers. This assumption will allow us to
obtain an explicit closed-form dependency between the spectral slopes in the two bases.

As expected, when the prescribed spectral slope is prepared in the WR-basis, the resize-
and-average method returns precisely this value in the statistical sense. However, for random
fields that have a spectral slope α = αf > −3 in the Fourier basis, the spectral slope
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diagnosed via resize-and-average tends to

αwr = −1 + log2

∫
[0,π/2]d

|x|1−d+α
(

1−
d∏
j=1

cos2 xj

)
dx

∫
[0,π/2]d

|x|1−d+α
(

1−
d∏
j=1

cos2(2xj)
) d∏

j=1

cos2 xj dx

, (1)

in the limit of infinite resolution of the mesh, see Remark 4.3. When αf ≤ −3, αwr = −3.
Thus, in the limit of infinite resolution, the Walsh–Rademacher basis cannot be used to
diagnose spectral slopes that are steeper than −3 in the Fourier basis; see, e.g., the discussion
in [4]. The converse is also true: the Fourier basis cannot be used to diagnose WR spectral
slopes steeper than a threshold, see Remark 4.7. In both cases, one of the reasons is that
fields having zero spectral tails in one basis will have a non-zero spectral tail with some
certain spectral exponent in another basis.

The key observation here is that for finite resolution, the behavior of αwr near α = −3 is
smooth and we can also diagnose, albeit with increasingly poor conditioning, spectral slopes
beyond the threshold via resize-and-average. While (1) may look complex, αwr is readily
computed and does not differ much from αf for α ∈ (−3, 1). For example, in two dimensions
the average discrepancy between αwr and αf does not exceed ten percent for α ∈ (−3, 1),
see Fig. 1. The value α = −3 is the unique spectral slope where (1) asserts the same spectral
slope in the F and the WR-basis. Spectral slopes α ∈ (−3,−1) are of particular interests
in the atmospheric and ocean sciences, specifically α = −5/3 for fully developed turbulence
in d = 3 [5, 6], α = −2 or shallower for the horizontal wavenumber contribution to the
Garrett–Munk spectrum for internal waves, see the review [7] citing [8, 9, 10], and α = −3
for the enstrophy range in two-dimensional turbulence [11, 12, 13]. Perhaps the coincidence
of slopes α = −3 in F and WR basis is not an accident, but a consequence of statistical
independence from each other of small-scale oscillations in a turbulent motion.

We note that for smooth functions on the continuum, the spectral energy density with
respect to the WR-basis generically takes the form

Ewr(k) ∼ 2 k−3 〈∇u,∇u〉 (2)

as k →∞, where the non-negative quadratic form 〈·, ·〉 which depends on the support of the
WR-functions, see Section 3 below. In particular, for uniform square and triangular meshes,
the quadratic form is given by

〈∇u,∇u〉 =
1

6

∫
Ω

‖∇u‖2 dx. (3)

Thus, the spectral slope αf corresponding to a smooth field in the F -basis cannot be esti-
mated in the WR-system as it would always yield αwr = −3. One of the reasons is that the
WR-functions are discontinuous and cannot approximate smooth fields on the continuum
well. At the same time, our results show that on the contrary, as soon as the fields are dis-
crete and defined only on mesh cells of finite size, we may obtain an estimate of αf through
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Figure 1: Spectral slopes αb computed in different bases b=F (red line) and b=WR (black curve).

αwr. However, when α� −3, the connection between the F and the WR-scaling exponent
becomes increasingly poorly conditioned.

One may ask why we choose the discrete Fourier basis, interpreted as L2-functions by ex-
tending the grid values to a piecewise-constant function on small cubes, not as trigonometric
interpolants. The reasons are twofold. First, the computational models sparking our interest
are based on finite volume or low-order finite elements. Thus, the interpretation should keep
the sense that a cell value is attributed to the geometric shape of a cell. Second, the in-
terpretation as a smooth trigonometric interpolant would imply that the resize-and-average
diagnosed spectral slope is always −3, which means that all problem-specific information
near the original grid scale would get lost.

While we treat only the simplest case, namely regular dyadiacally nested meshes where
explicit formulas can be derived, the underlying concepts can be applied on irregular meshes
on complex domains just as well; see, e.g., the computation of resize-and-average spectra
for dissipation power in a simulation of flow in an ocean-like channel discretized with a
horizontally triangular mesh [14]. Other bases, e.g. higher-order polynomial bases, are also
possible, but outside of the scope of this paper.

Our results generalize results obtained in, e.g., [15] who consider analogs of a 1D wavelet
transform in the time-domain to multiple spatial dimensions. Such spectral wavelet analysis
based on so-called “spectral windows” is similar to the use of WR-functions supported on
intervals that are related to these spectral windows. Aspects of wavelet-based stochastic
analysis of Gaussian random fields constructed via spherical harmonics is available in [16,
17, 18] and in some recent preprints [19, 20].

The main part of the manuscript is structured as follows. In Section 2, we describe
abstract scale decompositions of Hilbert spaces. Section 3 illustrates concrete examples of
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scale decompositions in the continuous case. The results resemble well-known facts from
approximation theory where smooth functions are approximated by step functions, and also
intersect with general provisions of homogenization theory; see, e.g., [21]. Section 4 is the
main section of this paper, devoted to the statistical analysis of random fields with prescribed
spectral slopes in the Fourier vs. the Walsh–Rademacher basis. Here, we discuss the statis-
tical correlation between the slopes computed in different bases and give explicit asymptotic
formulas in the spirit of classical probability theory (e.g. [22]). All the results obtained in
Sections 2 and 4 are illustrated with concrete computational examples in Section 5. The
paper conludes with a brief discussion and outlook.

2. Scale decompositions

A scale decomposition of a Hilbert space H is defined as the direct integral

H =

∫ ⊕
[0,∞)

Hk dµ (4)

over subspaces Hk (or spaces that are isomorphic to subspaces of H ) which contain the
features with spatial length scale k−1, where k is a non-negative scalar which we think of
as an abstract wave number, and µ is a Borel measure on [0,∞). For background on the
direct integral, a natural extension of the direct sum, see, e.g. [23]. A function u ∈ H has
the scale representation

û(k) = Pku, (5)

where Pk is the orthogonal projector onto Hk. This construction implies the Parseval
identity

‖u‖2
H =

∫ ∞
0

‖û(k)‖2 dµ. (6)

Let P[k1,k2) denote the orthogonal projector onto

H[k1,k2) =

∫
[k1,k2)

Hk dµ. (7)

Note that when µ has discrete components, we include the contribution from the lower scale
k1 but exclude the contribution from the upper scale k2. The topic of this paper is the
comparison of characterizations for the cumulative spectral energy

E[0,κ) = ‖P[0,κ)u‖2 =

∫
[0,κ)

‖û(k)‖2 dµ. (8)

We will focus on Hilbert spaces H = L2(Ω, ρ(x) dx) and their subspaces on a domain
Ω ⊂ Rd where ρ(x) is a non-negative density. For measurable subsets A ⊂ Ω, we write

〈 · 〉A =

∫
A

· ρ(x) dx. (9)
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Then, in particular, the standard inner product for functions f, g ∈ L2(Ω, ρ(x) dx) – and
on any of its subspaces – can be written 〈f g〉Ω. The notion of orthogonality appearing
throughout the paper is defined with respect to this inner product.

Next, we introduce our main examples of interest. In these examples, ρ = const, but
sometimes taken different from ρ = 1 to better adapt to a particular setting. We start by
writing the Fourier scale decomposition in the framework outlined above, then turn to the
Walsh decomposition.

2.1. Fourier scale decomposition on Ω = Rd

We take ρ = 1, H = L2(Rd), and consider

H2k = span{e2πik·x : |k| = k}, (10)

so that

‖P2ku‖2 =

∫
Sk
|û(k)|2 dS(k), (11)

dS(k) is the surface Lebesgue measure on the sphere of radius k and û(k) denotes the usual
Fourier transform

û(k) = 〈u(x) e−2πix·k〉Rd . (12)

The implied measure in the abstract scale decomposition (6) is µ = 1
2

dk, i.e., half the
Lebesgue measure on [0,∞). The factor 2 in the index on the left of (10) is a convenience
factor. It is motivated by the observation that the harmonics sin(2πnx) and cos(2πnx) must
be sampled at least once between adjacent zeros, so twice in each period. This definition
fits best with the scaling functions on discrete meshes considered below.

2.2. Fourier scale decomposition on Ω = [0, 1]d

We take ρ = 1 and define the counting function

a(k) = #A(k), A(k) = {n ∈ Zd : ‖n‖2 = k2}, (13)

where the symbol # denotes the number of elements of a set. Then the measure µ is a Delta
measure located at the points where a(k) 6= 0 such that µ({2k}) = a(k). The corresponding
subspaces

H2k = span{e2πin·x : n ∈ A(k)} (14)

are isomorphic to Ca(k). Using this identification, we can write

P2ku = (ûn)n∈A(k), (15)

where
ûn = 〈u(x) e−2πin·x〉[0,1]d (16)

are the Fourier coefficients. Again, we use the factor 2 to better match the scaling functions
to those on discrete meshes where samples corresponds to indicator functions on mesh cells.
Using this convention, the scaling functions sin(2πnx) and cos(2πnx) correspond to sampling
2n times in each coordinate direction.

6



2.3. A variant of the Fourier scale decompositon for a diamond

Let us consider the domain consisting of two equilateral triangles

Ω = S[0, 1]2, S =

(
1 1

2

0
√

3
2

)
. (17)

The area of Ω is
√

3
2

. Let H denote the Hilbert subspace of L2(Ω, 2√
3

dx dy) spanned by the
orthogonal family of cosine functions

cnm(x, y) =
√

2 cos
(

2πnx+
4πmy√

3

)
, n,m ∈ N. (18)

Each cnm has 2n and 2m roots within the fundamental domain along each axis. A function
u ∈H has representation

u(x, y) =
∑
n,m∈N

ûnm cnm(x, y), ûnm ∈ C, (19)

so that the cumulative spectral energy is given by

E[0,2k) =
∑

n2+m2<k2

|ûnm|2. (20)

2.4. Walsh–Rademacher scale decompositions on arbitrary meshes

Along with continuous basis functions, step function bases are widespread in harmonic
analysis. One of the classical examples is the Walsh–Rademacher basis consisting of piece-
wise constant functions on [0, 1] with dyadic points of discontinuity [24, 25]. We extend
this idea to a multidimensional domain and arbitrary divisions of it, keeping the name
Walsh–Rademacher basis. We consider discrete meshes where

Ω =
⋃
c∈C

Ac (21)

is a partition of the domain Ω onto a family of measurable disjoint sets, with C denoting
the corresponding index set. Let us consider

L = span{χAc : c ∈ C} ⊂ L2(Ω), (22)

the Hilbert subspace of L2(Ω) generated by the characteristic functions of the sets Ac. Given
any scale decomposition of the form (4), which may or may not be defined with reference to
a mesh, we say that the mesh {Ac : c ∈ C} resolves the scales [0, k) if

L =

∫ ⊕
[0,k)

Hk dµ. (23)
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Its orthogonal complement is

L ⊥ =

∫ ⊕
[k,∞)

Hk dµ (24)

so that L ⊕L ⊥ = L2(Ω). Moreover,

P[0,k)u = PL u =
∑
c∈C

〈uχAc〉Ac
〈1〉Ac

χAc , P[k,∞)u = u−
∑
c∈C

〈uχAc〉Ac
〈1〉Ac

χAc , (25)

and the corresponding norms (energies) are∫ k

0

‖û(k)‖2 dµ =
∑
c∈C

〈uχAc〉2Ac
〈1〉Ac

,

∫ ∞
k

‖û(k)‖2 dµ = 〈u2〉Ω −
∑
c∈C

〈uχAc〉2Ac
〈1〉Ac

. (26)

Now suppose that {A′c : c ∈ C ′} is a submesh of {Ac : c ∈ C} (i.e., every Ac is a union of
some A′c) and is such that it resolves the scales [0, k′) with k′ > k relative to the same scale
decomposition. Then, by (26),∫ k′

k

‖û(k)‖2 dµ =
∑
c∈C′

〈uχA′c〉2A′c
〈1〉A′c

−
∑
c∈C

〈uχAc〉2Ac
〈1〉Ac

. (27)

We can extend this idea developed for two meshes to the sequence of meshes {Ac}, {A′c},
{A′′c}, . . . , each mesh containing the previous mesh as a submesh. Such sequence of meshes
admits the construction of a common measure in the direct integral that ranks all these
meshes on a common scale. However, it is generally not possible to define a single scale for
all of the submeshes of a given mesh because two submeshes may not be submeshes of each
other. A sufficient condition for the existence of a common scale is a total order of meshes
with respect to the submesh relation.

3. Asymptotics in continuous case

For C2-smooth functions u on a domain Ω ⊂ Rd, the remainder with respect to the
Walsh–Rademacher scale decomposition typically has the form∫ ∞

k

û2 dµ =
〈∇u,∇u〉

k2
+ o(k−2), (28)

where the positive definite form 〈∇u,∇u〉 depends on the geometry of the mesh. Let us
consider some examples.

3.1. Square mesh

For a square mesh,

〈∇u,∇u〉 =
1

12

∫
Ω

‖∇u(x)‖2 dx. (29)
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This formula is derived as follows. Using (26), we have∫ ∞
k

û2 dµ =

∫
Ω

u2 dx− kd
∑
i

(∫
Ωi

u dx

)2

=
∑
i

(∫
Ωi

u2 dx− kd
(∫

Ωi

u dx

)2)
, (30)

where Ωi are disjoint cubes with edge length 1/k such that Ω = ∪iΩi. Consider some Ωi

with minimal corner point xi. Using the Taylor expansion

u(xi + y) = u(xi) +∇u(xi) · y + y>Hessu(xi)y + o(‖y‖2), (31)

we obtain∫
Ωi

u2 dx− kd
(∫

Ωi

u dx

)2

=

∫
[0,k−1]d

(∇u(xi) · y)2 dy − kd
(∫

[0,k−1]d
∇u(xi) · y dy

)2

+ o(k−d−2)

=
k−d−2

12
‖∇u(xi)‖2 + o(k−d−2). (32)

Note that the Hessian term contributes to both integrals in the first line of (32) at O(k−d−2).
These contributions, however, cancel exactly. Thus, substituting (32) into (30), we obtain
the Riemann sum that gives (29). Below, we skip the derivation of similar formulas and
formulate the final results only.

3.2. Rhomboid mesh

For a rhomboid mesh,

〈∇u,∇u〉 =
1

12

∫
Ω

‖S>∇u(x)‖2 dx, (33)

where S[0, 1]d is the corresponding unit-rhombus. Formula (33) follows from (29) via a
change of variables. In the special case of a diamond rhombus where S is given by (17),

〈∇u,∇u〉 =
1

48

∫
Ω

(
5 |∂xu|2 + 2

√
3 ∂xu ∂yu+ 3 |∂yu|2

)
dx dy. (34)

3.3. 2D square mesh divided into two triangles

Using the same arguments as in (32), but with every square divided into two triangles,
we obtain

〈∇u,∇u〉 =
1

9

∫
Ω

(|∂xu|2 − ∂xu ∂yu+ |∂yu|2) dx dy. (35)

Note that a straightforward adaptation of (32) yields the prefactor 1
18

. To obtain the correct
coefficient 1

9
, we note that if the square mesh resolves length scales 1/k, then the division of

one square into two equal triangles resolves length scales 1/(
√

2k), so that, to compensate,
we need to replace 1/k by

√
2/k on the right hand side of formula (28).
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3.4. 2D equilateral triangular mesh

By analogy with (33), substituting S>∇u, where S is given by (17), for ∇u in (35), we
obtain the quadratic form for the uniform triangular mesh,

〈∇u,∇u〉 =
1

12

∫
Ω

‖∇u(x)‖2 dx. (36)

4. Statistical analysis on finite meshes

We now turn to the setting of finite meshes, with cell values interpreted as constant on
mesh cells. This point of view is consistent with the representation by Walsh–Rademacher
basis functions, see Section 2.4. Of course, the choice of orthonormal basis is not unique and
there are many other scale decompositions in the sense of Section 2. The respective spectra
will generally not coincide, but we ask the question of how one may relate to the other. As
we shall see, the difference tends to be small when the spectrum is shallow, but is significant
in the case of rapid spectral decay.

In this section, we restrict the discussion to dyadically nested square meshes as they are
simple to describe and it is possible to obtain explicit results. Computationally, however,
the ideas extend to arbitrary meshes, as will be discussed in Section 6 at the end of this
paper. On quadrilateral meshes, the second canonical choice of basis is the discrete Fourier
basis. At the finest scale, we retain the interpretation of constant values on cells so that,
independent of the choice of discrete basis, we speak about the same piecewise constant
function in L2.

The fundamental object in our discussion is the “resize-and-average” operator. To be
definite, consider a d-dimensional square mesh consisting of (2N)d identical cubes. Let u
be a field, constant on each of the cubes. Merging 2d neighboring cubes into one, we obtain
Nd large cubes instead of (2N)d small cubes. This is the resize step, see Fig. 2. Taking
the average over the 2d neighboring values of the field u, we obtain a new field v ≡ A2Nu
which is piecewise constant on the Nd large cubes. The linear operator A2N is the “resize-
and-average” operator. It is easily seen that it coincides with a spectral projector in the
Walsh–Rademacher basis. Its description in the Fourier basis is more complicated, but we
shall show that, in a statistical sense as N → ∞, its action can be related to the Fourier
spectral decomposition.

4.1. Scaling exponent in general

We assume that the measure µ, see (4), is proportional to the Lebesgue measure. Let u
be some field. Suppose that ‖û(k)‖2, see (5), is proportional to kα. Then the exponent α is
given by

α = −1 + log2

‖P[2n,2n+1)u‖2

‖P[2n−1,2n)u‖2
, (37)

which follows immediately from (8) and the fact that

‖P[a,b)u‖2 =

∫ b

a

‖û(k)‖2 dµ(k) ∝
∫ b

a

kα dk =
bα+1 − aα+1

α + 1
(38)
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Figure 2: The initial field u is constant on each of the green squares. The resized and averaged field A4u
is constant on each of the blue squares. The constants in the blue cubes are averages over the respective
green squares. The next iteration A2A4u is constant on the red square. The constant in the red square
is an average over the blue squares. There are no gaps between squares, the gaps are shown for ease of
illustration.

for a, b > 0 and α 6= −1. A similar computation shows that (37) remains valid when α = −1.
Note that this is only one variant of a family of similar formulas. We provide this variant

because it is adapted to the spectral decomposition in the Walsh–Rademacher orthogonal
basis.

4.2. Scaling exponent in the Walsh–Rademacher basis

Consider the domain [0, H]d ⊂ Rd, H > 0, d ∈ N, partitioned into a standard cubical
mesh of size H/N with N = 2n for n ∈ N0. We define the family of Hilbert spaces

W[1,N ] = span{indicator functions of mesh cells of size H/N}, (39)

and set Wk = W[1,k] 	W[1,k/2], so that W[1,N ] splits into orthogonal subspaces

W[1,N ] = W20 ⊕ · · · ⊕W2n . (40)

We write basWk to denote any fixed orthonormal basis of Wk, the particular choice will not
matter. Note that there is no way to assign wave numbers k in the open interval (2n, 2n+1),
so that we may identify W2n ≡ W[2n,2n+1) and W[1,N ] ≡ W[1,2N) in the notation of Section 2.

For every J = 2j, the resize-and-average operator AJ is defined as the orthogonal pro-
jector of W[1,J ] onto W[1,J/2]. Referring again to the notation of Section 2, we may write
AJ = P[1,2j). Equivalently, the operator AJ averages the values of 2d neighboring small
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cubes of size H/2j to larger cubes of size H/2j−1, as illustrated in Fig. 2. This equivalent
description provides an easy method for numerical computation and will also be used to
write out the explicit formula for AJ in the Fourier basis, see (59) below. It is convenient
to consider projectors W[1,N ] → W[1,2−iN ] given by

Ai = A21−iN · · · A2−1N AN (41)

for 1 ≤ i ≤ n and A0 is understood as the the identity operator acting on W[1,N ]. We can
then define the spectral energy at scale 2j,

Ej ≡ ‖P[2j ,2j+1)u‖2 = ‖An−ju‖2 − ‖An−j+1u‖2 (42)

for j = 1, . . . , n, so that the discrete spectral energy density is given by

Sj = (2j+1 − 2j)−1Ej = 2−j Ej. (43)

Finally, we define the diagnosed Walsh–Rademacher scaling exponent at scale j as

αwr
c (j) =

∆ lnS(k)

∆ ln k

∣∣∣∣
k=2j

=
lnSj − lnSj−1

ln 2j − ln 2j−1
= log2

Sj
Sj−1

= −1 + log2

Ej
Ej−1

. (44)

This scaling exponent is easily computationally accessible.
If u is a random field, then αwr

c (j) is a random variable. If, under suitable assumptions,
EEj and EEj−1 exist as non-zero finite numbers, we can also define the “expected” Walsh–
Rademacher scaling exponent as

αwr
e (j) = −1 + log2

EEj
EEj−1

. (45)

Then

αwr
c (j)− αwr

e (j) = log2

(
1 +

Ej − EEj
EEj

)
− log2

(
1 +

Ej−1 − EEj−1

EEj−1

)
. (46)

In practical applications, N will be fixed. In our theoretical analysis, however, we consider
an infinite sequence of mesh refinements and consider j a function of N in the limit N →∞.
Then (46) shows that, in this limit, αwr

c (j)− αwr
e (j)→ 0 in probability if EEi are bounded

from below with VarEi → 0 for i = j − 1, j.

4.3. Statistical model in the Walsh–Rademacher basis

In the following, we first look at the statistics of the Walsh–Rademacher scaling exponent
near the tail of the finite spectral distribution, where we write, for short, αwr

c = αwr
c (n) and,

likewise, αwr
e = αwr

e (n). We first show that for random fields that have a well-defined scaling
exponent α with respect to the Walsh–Rademacher basis, the diagnosed Walsh–Rademacher
scaling exponent αwr

c recovers α with high probability.
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Concretely, we consider random fields

u = ū+
∑

w∈basW2n−1

2β(n−1) ζw w +
∑

w∈basW2n

2βn ζw w, (47)

where ū ∈ W[1,2n−2] is some given large-scale component and the ζw are independent identi-
cally distributed random variables having zero mean and a finite second moment D2 > 0.
Thus, u has a spectral tail with decay exponent β = (α− d+ 1)/2, engineered such that the
energy distribution ‖û(k)‖2 is proportional to kα in the deterministic case ζw = const. More-
over, it is easy to see that this construction ensures that the expected Walsh–Rademacher
exponent coincides with the deterministic rate of spectral decay, i.e., αwr

e = α.
For the diagnosed Walsh–Rademacher exponent, we have

αwr
c = −1 + log2

∑
w∈basW2n

22βn ζ2
w∑

w∈basW2n−1
22β(n−1) ζ2

w

= α + log2

(dim W2n)−1
∑

w∈basW2n
ζ2
w

(dim W2n−1)−1
∑

w∈basW2n−1
ζ2
w

, (48)

since dim W2i = 2di − 2d(i−1) for i ≥ 1. Hence,

αwr
c − α = log2

D2 + (dim W2n)−1
∑

w∈basW2n
(ζ2
w −D2)

D2 + (dim W2n−1)−1
∑

w∈basW2n−1
(ζ2
w −D2)

= ηn − ηn−1 +O(η2
n) +O(η2

n−1), (49)

where the random variables ηn and ηn−1 are independent and given by

ηi =

∑
w∈basW2i

(ζ2
w −D2)

D2 ln 2 dim W2i
. (50)

Due to the weak law of large numbers, αwr
c → α in probability as n → ∞. If we further

assume that the fourth moment D4 = Eζ4
w is finite, the central limit theorem implies that

D2 ln 2
√

dim W2i ηi → N (0, D4 −D2
2) , (51)

so that, summing up the two independent limiting Gaussians in (49), we obtain

2
nd
2 (αwr

c − α)→ N

(
0,

(D4 −D2
2) (4d + 2d)

(D2 ln 2)2 (2d − 1)

)
(52)

in distribution as n→∞.
The observation that αwr

c → α in the sense stated is no surprise because the statistical
model and the diagnostics were set up with respect to the same scale decomposition. In the
next section, we turn to the situation where the statistical model is set up in the Fourier
scale decomposition, as in the classical theory of random fields (e.g. [26]), but we keep the
diagnostics relative to the Walsh–Rademacher scale decomposition.
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4.4. Statistical model in the Fourier basis

As usual, we write ZN = Z/NZ. We introduce the Hilbert space LN
∼= CNd

where the
elements are indexed from the set ZdN/N , equipped with inner product and norm

〈u, v〉N =
1

Nd

∑
x∈ZdN/N

u(x) v∗(x), ‖u‖2
N = 〈u, u〉N (53)

for u, v ∈ LN , with ∗ denoting complex conjugation. We consider the orthonormal discrete
Fourier basis {fN,k : k ∈ ZdN} with

fN,k(x) = exp(2πik · x), x ∈ ZdN/N. (54)

Note that LN is isomorphic to W[1,N ]; the difference lies only in the choice of basis. To make
the correspondence precise, we identify a vector u ∈ LN with the function u on [0, 1)d that
takes the constant value u(x) on each half-open cube x + [0, 1

N
)d, x ∈ ZdN/N .

In the following we assume, for simplicity, that N is even. We write

u =
∑
k∈ZdN

uk fN,k ∈ LN (55)

and assume that the Fourier coefficients uk are random variables, setting uk = σk ζk where
σk > 0 and ζk are identically independently distributed random variables with zero mean,
variance 1, and finite moments up to order four. Then uk has zero mean and variance σ2

k.
Our assumption on the σk is motivated by the alternative identification of LN with

trigonometric interpolants of Sobolev-class functions. Then the index range N
2
, . . . , N − 1

represents wave numbers k = −N
2

+ 1, . . . ,−1, so we assume the power law scaling

σk =


( 1

N

)d
2
( |k|
N

)α−d+1
2

for α > −3,

N |k|
α−d+1

2 for α ≤ −3

(56)

for k ∈ ZdN/2\{0}, and σk = 0 otherwise. Here, to simplify the exposition, we have restricted
the set of active wavenumbers to the first hyperoctant. Of course, all results and conclusions
remain unchanged when mirroring this pattern of spectral decay into the other hyperoctants
via the identification N − kr = kr for kr = 1, . . . , N

2
− 1 and r = 1, . . . , d.

In (56), α is the decay exponent of the spectral energy in the Fourier basis. The de-
pendence of the prefactor on N is arbitrary as far as scaling exponents are concerned, as
any prefactor will cancel out in (44). The particular choice made in (56) is such that EEn
converges to a finite positive value while VarEn goes to zero as n → ∞, as we shall show
below. Our main result can be stated as follows.
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Theorem 4.1. In the setting described above, for every fixed ` ∈ N0,

EEn−` →


∫

[0,1/2]d

(
1−∏d

r=1 cos2(2`πxr)
) ∏`

p=1

∏d
r=1 cos2(2p−1πxr)

|x|−α+d−1
dx for α > −3

C 4` for α < −3

(57)

as N = 2n →∞, where

C = π2
∑
k∈Zd
|k|α−d+3 <∞. (58)

Moreover, VarEn−` → 0 as N = 2n →∞.

Proof. The averaging operator AN : LN → LN/2 introduced in Section 4.2 acts on basis
functions according to

ANfN,k(x) = exp(2πik · x) 2−d
∑

e∈{0,1}d
exp
(2πik · e

N

)
= ϕN(k) fN/2,k mod N/2(x) (59)

for x ∈ ZdN/(N/2) and k ∈ ZdN , where

ϕN(k) = exp
(πik · 1

N

) d∏
r=1

cos
(πkr
N

)
(60)

with 1 = (1, . . . , 1). For a general function u with Fourier expansion (55), we have

ANu =
∑

k∈Zd
N/2

fN
2
,k

∑
e∈{0,1}d

ϕN(k + N
2
e)uk+N

2
e, (61)

and the corresponding energy is

‖ANu‖2
N/2 =

∑
k∈Zd

N/2

∑
e,e′∈{0,1}d

ϕN(k + N
2
e)ϕ∗N(k + N

2
e′)uk+N

2
e u
∗
k+N

2
e′
. (62)

When N
2

is even, we can iterate the averaging operator and obtain

AN
2
ANu =

∑
k∈Zd

N/4

fN
4
,k

∑
e,g∈{0,1}d

ϕN
2

(k + N
4
g)ϕN(k + N

2
e + N

4
g)uk+N

2
e+N

4
g, (63)

with corresponding energy

‖AN
2
ANu‖2

N/4 =
∑

k∈ZdN2

∑
e,g,e′,g′∈{0,1}d

ϕN
2

(k + N
4
g)ϕ∗N

2
(k + N

4
g′)

· ϕN(k + N
2
e + N

4
g)ϕ∗N(k + N

2
e′ + N

4
g′)uk+N

2
e+N

4
g u
∗
k+N

2
e′+N

4
g′
. (64)
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These expressions imply that, when the uk = σk ζk are independent random variables,
that

E‖u‖2
N =

∑
k∈ZdN

σ2
k, (65a)

E‖ANu‖2
N/2 =

∑
k∈ZdN

|ϕN(k)|2 σ2
k, (65b)

E‖AN
2
ANu‖2

N/4 =
∑
k∈ZdN

|ϕN
2

(k mod N
2

)ϕN(k)|2 σ2
k

=
∑
k∈ZdN

|ϕN
2

(k)ϕN(k)|2 σ2
k (65c)

and, in general,

E‖A2−`N . . .ANu‖2
2−`−1N =

∑
k∈ZdN

σ2
k

∏̀
i=0

|ϕ2−iN(k)|2. (66)

Inserting our stochastic model (56), we need to distinguish two cases. First, when α >
−3, we can view the expressions in (65) as Riemann sum approximations of the corresponding
integrals, so that, referring to the definition of E` in (42),

EEn =
( 1

N

)d ∑
k∈Zd

N/2

(
1−

d∏
r=1

cos2
(πkr
N

))( |k|
N

)α−d+1

→
∫

[0,1/2]d

1−∏d
r=1 cos2(πxr)

|x|−α+d−1
dx, (67)

as N →∞, and likewise

EEn−1 =
( 1

N

)d ∑
k∈Zd

N/2

(
1−

d∏
r=1

cos2
(2πkr
N

)) d∏
r=1

cos2
(πkr
N

)( |k|
N

)α−d+1

→
∫

[0,1/2]d

(
1−∏d

r=1 cos2(2πxr)
) ∏d

r=1 cos2(πxr)

|x|−α+d−1
dx. (68)

Iterating this process, we obtain the first case of statement (57).
Next, we prove that VarEn−` → 0 for ` = 0, 1. Let us focus on the case ` = 0, the

general case is similar. The first step is to decompose En as the sum of independent terms:

En = ‖u‖2
N − ‖ANu‖2

N/2 =
∑

k∈Zd
N/2

e(k) (69)
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with
e(k) =

∑
e,e′∈{0,1}d

(
δe,e′ − ϕN(k + N

2
e)ϕ∗N(k + N

2
e′)
)
uk+N

2
e u
∗
k+N

2
e′
. (70)

All e(k) are independent with mean

Ee(k) =
∑

e∈{0,1}d
(1− |ϕN(k + N

2
e)|2)σ2

k+N
2
e
. (71)

To compute the variance, we note that

e2(k) =
∑

e1,e2,e3,e4∈{0,1}d

(
δe1,e2 − ϕN(k + N

2
e1)ϕ∗N(k + N

2
e2)
)

·
(
δe3,e4 − ϕN(k + N

2
e3)ϕ∗N(k + N

2
e4)
)
· uk+N

2
e1
u∗
k+N

2
e2
uk+N

2
e3
u∗
k+N

2
e4
. (72)

Using (71) and (72), we deduce that

Var e(k) = Ee2(k)− (Ee(k))2 =
∑

e∈{0,1}d

(
1− |ϕN(k + N

2
e)|2

)2
σ4
k+N

2
e
E(ζ4

k − 1)

+
∑
e1 6=e2

(
|ϕN(k + N

2
e1)ϕN(k + N

2
e2)|2 + ϕN(k + N

2
e1)2 ϕ∗N(k + N

2
e2)2

)
σ2
k+N

2
e1
σ2
k+N

2
e2

(73)

where, by assumption, the Eζ4
k are identical and finite. We distinguish two cases. When

α− d+ 1 ≥ 0, summing up the independent variances (73) gives a Riemann sum similar to
(67) and (68), but multiplied with an additional factor N−d since the power on the σk is 4,
not 2. Thus, VarEn → 0 as n→∞. When α− d+ 1 < 0, the upper bound is more subtle.
The worst-case term in the first sum of (73) is when e = 0, so the largest term is bounded
by (|k|/N)4σ4

k up to a constant factor. The worst-case terms in the second sum of (73) is
when e1 = 0 and e2 has only one non-zero component, or vice versa. In that case, exactly
one of the cosine prefactors is shifted to a sine, and we obtain an upper bound of the form
(|k|/N)2 σ2

kN
−d up to a constant factor, which is smaller than the contribution from the

first sum.
In conclusion, summing up these bounds over all contributing wave numbers and using

an integral upper bound, we obtain

VarEn ≤
C1

Nd

∫
1
N
<|x|<1

|x|4β+4 dx

≤ C2

Nd

∫ 1

1
N

x4β+4 xd−1 dx

= O(N−2α−6)→ 0 (74)

since α > −3.
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We now turn to the case α < −3. Now, the integral used in (67) is no longer a valid
limit of the corresponding Riemann sum—in fact, it diverges near k = 0—and we have to
work with the sum directly. Fixing γ ∈ (0, 1), we split the sum as follows:

EEn = N2
∑

k∈Zd
N/2

(
1−

d∏
r=1

cos2
(πkr
N

))
|k|α−d+1

= N2
∑

k∈Zd
N/2

|k|≤Nγ

(
1−

d∏
r=1

cos2
(πkr
N

))
|k|α−d+1 +N2

∑
k∈Zd

N/2

|k|>Nγ

(
1−

d∏
r=1

cos2
(πkr
N

))
|k|α−d+1

= C + o(1) +O(N2+γ(α+1)), (75)

where C is given by (58). To see that the first sum in the second line of (75) equals C+o(1),
we only need to observe that 1 − cos2 x = x2 + o(x2). For the second sum, we bound the
term in parentheses by 2, then estimate the resulting expression with an integral. This last
contribution is subdominant if 2 + γ(α+ 1) < 0, or γ > −2

α+1
. The resulting lower bound on

γ is consistent with the requirement that γ < 1 for every α < −3.
Applying the same arguments to En−` for some fixed ` = 1, 2, . . . , we find that, for

α < −3,
EEn−` = 4`C + o(1). (76)

The proof that the variances of En−` vanish is similar to the proof in the first case, we omit
all details.

Referring to the discussion and notation introduced at the end of Section 4.2, we imme-
diately obtain the following result on the derived spectral slopes.

Corollary 4.2. Under the conditions of Theorem 4.1, αwr
c (n− `)→ −3 if α ≤ −3 and

αwr
c (n−`)→ −1+log2

∫
[0,1/2]d

(
1−∏d

r=1 cos2(2`πxr)
) ∏`

p=1

∏d
r=1 cos2(2p−1πxr)

|x|−α+d−1
dx∫

[0,1/2]d

(
1−∏d

r=1 cos2(2`+1πxr)
) ∏`+1

p=1

∏d
r=1 cos2(2p−1πxr)

|x|−α+d−1
dx

(77)

otherwise, in probability as N = 2n → ∞ with ` ∈ N0 fixed. In (77), read
∏b

a = 1 when
b < a.

Proof. Equation (77) is obtained by substituting (57) into (45) and applying the argument
stated below (46).

Remark 4.3. Formula (1) quoted in the introduction is the special case of this corollary
when ` = 0.
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Remark 4.4. The case α = −3 is special, since C = +∞ in (58). Thus, Theorem 4.1 as
stated does not hold when α = −3 due to the particular choice of scaling in (56). However,
the ratio EEn−`/EEn−`−1 remains well-defined as α → −3, so that the corollary holds true
for all values of α. In particular, the choice of prefactors in (56) has no impact on the

corollary: We may simply assume σk = |k|α−d+1
2 and (77) will remain true.

Remark 4.5. With substantially more effort, it is possible to obtain results as in Section 4.3,
namely that, under appropriate central limit theorem scaling, the difference between LHS
and RHS in (77) converges in distribution to a Gaussian. However, the precise parameters
and conditions are too complicated for practical use.

Remark 4.6. It is always possible to use the sum expressions in the first line of (67), (68),
and the corresponding generalizations in place of the Riemann sum approximations stated
in Theorem 4.1 and its corollary. However, the integral expressions are more convenient
to work with and the approximation error is typically small compared to the statistical
variance.

The results of the theorem are demonstrated in Fig. 3. It can be seen that for the
large scales, where fewer coefficients contribute to each spectral band, the variance of the
spectral density and its derivative increases. The data for small scales almost coincides with
the expected values. The analytical expressions for the expected values allow us to apply
corrections to the computed data, which, in turn, allows us to recover the slope with respect
to the Fourier basis with high probability, see Fig. 4.

Remark 4.7. We have provided a detailed analysis of WR-diagnostics applied to data
prepared in the F-basis. A converse analysis is also possible, as shown in Fig. 5. The
original slopes are drawn by solid lines, the dots are related to the F-diagnostics. The setup
on the WR-side is essentially described by (47) extended to all scales. It is seen that the WR-
slopes are close to the diagnosed F-slopes so long as the WR-slopes are more shallow than
approximately −2. We observe that the threshold for F-diagnostics of WR-fields is more
restrictive than in the forward case we focused on. The reason is the following: The WR-
spectral energy density for simple Fourier harmonics scales like k−3, see (2), while F-spectral
energy density for a single step function scales like k−2, as an easy explicit computation
shows. Note that there is step-like behavior in the assignment of the amplitudes of the
WR-coefficients because – as explained earlier – there is no natural internal ordering within
each integer-indexed wavenumber shell. The corresponding F-spectrum, however, appears
smoother as the F-transform of a WR-basis function is spread out in wavenumber space.

5. Examples

In the following, we illustrate the main points of this paper with concrete examples. We
start with the deterministic case to support the observations presented in Section 3. These
idealized cases show that both diagnostics, whether based on the Fourier or the Walsh–
Rademacher basis, provide similar qualitative spectral analysis. This qualitative agreement
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0 j

log2Sj

5

(a) spectral density

0 j

−αWR
c

5

2

(b) its derivative

Figure 3: The logarithmic spectral density log2 Sj (the vertical axis is shifted such that the last point lies
on the horizontal axis) and its derivative αwr

c , see (44), are shown by black points. Each of the quantities
computed for 50 (100 for both) independently and randomly generated fields on the mesh of the sizeN = 2048
with α = −2. The red line indicates the exact slope α and −α, respectively, the green points show analytic
results log2 S

e(j) ≡ log2(2−jEEj), see (43) and (57), and αwr
e denoting the right hand side of (77), where

the integrals are computed by a Riemann sum approximation with step size 1/2048.

is very important and justifies the use of both methods for diagnostics for practical purposes,
as was done in our analysis of zonal channel flow, see [14]. We then turn to statistical analysis,
highlighting the more subtle quantitative differences between F- and WR-diagnostics in the
discrete case as presented in Section 4.

5.1. Simple harmonics

We consider the rhombus Ω generated by the vectors (1, 0) and (1/2,
√

3/2), cf. (17). We
analyze the function

u(x, y) = cos
(

2π · 3x+
4π · 2y√

3

)
(78)

which, up to a multiplicative constant, coincides with one of the Fourier basis functions (18).
We consider the cumulative spectral energy computed with respect to three different scale
decompositions. The first is Ef

[0,k) computed via the Fourier scale decomposition, see (20).
The second one is

Ediamond
[0,k) =

∫ k

0

‖û(k)‖2 dµ, (79)

see (26), corresponding to the Walsh–Rademacher scale decomposition on a uniform diamond
mesh partition, where each rhombus Ac is similar to Ω. The third, Etriangle

[0,k) , uses the Walsh–
Rademacher scale decomposition on the same mesh, but with each rhombus divided into
two triangles.
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0 j

(log2S
e)−1(log2Sj)

5
(a) corrected spectral density

0 j

−(αWR
e )−1αWR

c

5

2

(b) corrected derivative

Figure 4: In the same setup as in Fig. 3, the corrected spectral density and its derivative are plotted.
The correction is the application of inverse functions of log2 S

e and αwr
e , available analytically, to the

corresponding computed data.

The partition of Ω into one uniform rhombus (itself) corresponds to k =
√

2, into four

uniform rhombuses to k = 2
√

2, and so on. Thus, Ediamond
[0,k) is defined at k = 2n−

1
2 , n ∈ N.

Similarly, the partition of Ω into two uniform triangles corresponds to k = 2, into eight
uniform triangles to k = 4, and so on. Thus, Etriangle

[0,k) is defined at k = 2n, n ∈ N. The
difference between the wavenumbers on triangular and diamond meshes is natural, since
2 triangles form 1 rhombus and, hence, two triangles resolve 21/d more scales than one
rhombus, where d = 2 is the dimension of the domain Ω.

Moreover, both Etriangle and Ediamond are monotonic functions, since they correspond
to nested partitions. Also, by the same reasons Ediamond

[0,k) ≤ Etriangle
[0,k
√

2)
.

In Fig. 6, we compare the cumulative energies Ef
[0,k) (black points), Ediamond

[0,k) (blue points)

and Etriangle
[0,k) (red points). The corresponding asymptotic expression (28) with the quadratic

forms defined by (34) (thin blue line) and (36) (thin red line) are also shown. The agreement
of the asymptotic expression with the exact value for finite k is rather good even for moderate
values of k. We also see qualitative agreement, even though the step function corresponding
to the Fourier basis is spread out over several scale intervals in the Walsh–Rademacher basis.
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log2 E(k)
k−0.5
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k−2.5

k−3.5
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Figure 5: F-diagnostics of WR-slopes −0.5 (red), −1.5 (green), −2.5 (blue), −3.5 (black). Original slopes
in WR-basis are presented by solid lines, their F-diagnostics are dots. 2000 random WR-fields at resolution
256× 256 are generated for each of the slopes, then the average of all the F-diagnostics is taken.

0 log2k

E

6.5

0.3

Fourier

triangular

diamond

Figure 6: Cumulative spectral energy for one harmonic (78), shown on the right within one unit cell of the
diamond mesh. Red dots: triangular mesh, blue dots: diamond mesh, black dots: Fourier basis. The thin
lines show the asymptotic expression (28) with the quadratic forms defined by (34) resp. (36).
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5.2. Wave field

The next example is a superposition of Fourier harmonics with a k−2 power law up to a
maximum wave number of ki = 64,

u(x, y, t) =

64,64∑
n,m=0

n2+m2 6=0

cos
(

2
√
n2 + 4m2

3
πt
)

(n2 +m2 + 1)
1
4

cos
(

2π · nx+
4π ·my√

3

)
. (80)

This function describes a wave field which is the solution of the linear wave equation

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂t2
. (81)

We observe good agreement between the spectral analysis in the different bases. In par-
ticular, the results of the Walsh–Rademcher analysis do not depend on time t even though
the wave pattern in physical space is very different near time t = 0 (Fig. 7) and much
later times (Fig. 8). Note that in this example the “energies” shown are different from the
physical notion of energy for the wave propagation problem.

5.3. Statistical analysis

The evolution of a wave field with non-commensurate frequencies in the previous section
already has characteristics of a pseudo-random field. We now move to the fully random
setting analyzed in Section 4.

We take a square mesh in d = 2 dimensions and generate an ensemble of random fields
having a spectral slope α (i) in the Walsh–Rademacher basis, see (47), and (ii) in the
Fourier basis, see (56). In both cases, we diagnose the spectral slope αwr

c with respect to the
Walsh–Rademacher basis, see (44). Fig. 9 shows results for a 100 × 100 mesh, 40 random
field samples for each α, and 400 different values of α in the interval −α ∈ [−1, 4]. As
expected, α is well recovered when the spectral slope of the random field is also prepared
in the Walsh–Rademacher basis (Fig. 9 left). In our example, we use random variables
uniformly distributed on [−b, b] for some b > 0. Hence, the corresponding moments are
(D4 −D2

2)/D2
2 = (b4/5− b4/9)/(b4/9) = 4/5, so that the variance in (52) is

Nσ =

√
(D4 −D2

2) (4d + 2d)

(D2 ln 2)2 (2d − 1)
=

√
4 (16 + 4)

5 (ln 2)2 3
=

4√
3 ln 2

. (82)

Thus, the variance of the diagnosed spectral slope is very small for typical values of N , as
confirmed by the numerical experiment.

The situation is more complicated when the spectral slope of the random field is prepared
in the Fourier basis, see Fig. 9 (middle). As expected, the diagnosed spectral slope αwr

c is
different from α and scatters around the expected spectral slope αwr

e , drawn in green. Note
that the distribution of the αwr

c for finite N is not symmetric as we always have αwr
c > −3,

even though it is asymptotically normal as N →∞.
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Figure 7: Wave field u at 2πt = 4, see (80). For the legend see Fig. 6.
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Figure 8: Wave field u at 2πt = 154300, see (80). For the legend see Fig. 6.

24



0 −α

−αWR
c

3

3

0 −α

−αWR
c

3

3

0 −α

−(αWR
e )−1(αWR

c )

3

3

Figure 9: Diagnosed spectral slope αwr
c when the random field is prepared with spectral slope α in the

Walsh–Rademacher basis (left) and in the Fourier basis (middle). The red line corresponds to αwr
c = α,

plotted for orientiation. The green curve is the expected spectral slope αwr
e . The right panel shows the

corrected spectral slope diagnosed in the Walsh–Rademacher basis, using the analytic dependency between
Walsh–Rademacher and Fourier basis as correction factor.
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Figure 10: The same setup as in Fig. 9 but with the mesh size N = 400 instead of N = 100.

We note that the integral approximation to αwr
e stated in (77) and the exact value of αwr

e

are practically identical for α ∈ [−2.7, 0] and N ≥ 100. While the integral approximation is
more convenient for some analytical statements, the exact value of αwr

e is easily computed
and can be used to correct the diagnosed spectral slope αwr

c to get a better estimate for α,
see Fig. 9 (right). Since αwr

e is asymptotic to −3, the recovery is increasingly ill-conditioned
for α < −3. However, given enough realizations, recovery is still possible.

In Fig. 10, we show the analog of Fig. 9 (middle) for N = 400 instead of N = 100.

6. Conclusion

The resize-and-average method provides a simple computational method to estimate
spectra on arbitrary nested meshes. In general, the Walsh–Rademacher spectra obtained
this way differ from spectra relative to other bases, in particular to the discrete Fourier basis.
However, we have shown that, in a statistical sense, we can compensate for this discrepancy,
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on finite meshes even for spectra somewhat steeper than k−3, the natural limiting case for
step-function-based methods on the continuum.

In this work, we have derived the correction factor analytically for a regular mesh. For
unstructured meshes, the correction factor can be determined computationally by doing
statistics over a large number of realizations of the random field. In this more general case,
a hierarchy of meshes may be constructed via membership of cells or cell centers in an
overlay dyadic grid. This auxiliary grid is only used to structure the analysis grid, but no
interpolation onto the dyadic grid is performed [14].

In principle, the analysis performed here can also be applied to the reverse problem:
diagnosing the spectral slope of a WR-random field in the Fourier basis. Numerical ex-
periments, see Remark 4.7, indicate that the behavior is similar to that of our main case,
namely diagnosing F-random fields in the WR-basis. We refrain from providing details for
two reasons. First, explicit expressions appear possible, but cumbersome. Second, in the
practical applications we have in mind, the Fourier scale decomposition forms the theoreti-
cal backbone, hence the language in which results are to be presented and compared. The
WR-basis, on the other hand, is most suited for efficient diagnostics of observational or
simulation data on irregular meshes. What is most needed, therefore, is a procedure for
converting WR-spectra to F-spectra.

In this paper, we have only considered random fields with constant spectral slopes. Sim-
ilar techniques are expected to work if only a sufficiently large, asymptotically growing part
of the spectrum satisfies a power law scaling. In the more general case of arbitrary spectra,
analogs of (1) will become much more complicated and possibly analytically intractable. On
the practical side, it may be possible to obtain the dependency between the spectral charac-
teristics in the two bases empirically for some ensemble of random fields and then interpolate
the results, using, e.g., machine learning or techniques from inverse problems as the transla-
tion from the Walsh–Rademacher to the Fourier spectrum will require deconvolution, i.e., is
ill-posed, but may be regularized using assumptions on the smoothness of the spectrum as
a function of k. We have already touched on non-constant slopes and complex spectra from
a practical point of view in [14], but the corresponding theoretical analysis is the subject
of ongoing research. In the future, we plan to expand the scaling analysis to other bases,
e.g., to high-order polynomial bases. Moreover, we plan to expand the statistical analysis
to more general distributions of ensembles of random fields.
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Poincaré Probab. Stat., 51(3):1159–1189, 2015.

[18] C. Durastanti, D. Marinucci, and G. Peccati. Normal approximations for wavelet coefficients on spher-
ical Poisson fields. J. Math. Anal. Appl., 409(1):212–227, 2014.

[19] R. Shevchenko and A. P. Todino. Asymptotic behaviour of level sets of needlet random fields. Stochastic
Process. Appl., 155:268–318, 2023.

[20] R. Shevchenko. Quadratic variations for Gaussian isotropic random fields on the sphere.
arXiv:2105.11970, 2021.
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