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ABSTRACT. Ocean models at eddy-permitting resolution are generally overdissipative,
damping the intensity of the mesoscale eddy field. To reduce overdissipation, we pro-
pose a simplified, kinematic energy backscatter parametrization built into the viscos-
ity operator in conjunction with a new flow-dependent coefficient of viscosity based
on nearest neighbor velocity differences. The new scheme mitigates excessive dissipa-
tion of energy and improves global ocean simulations at eddy-permitting resolution.
We find that kinematic backscatter substantially raises simulated eddy kinetic energy,
similar to an alternative, previously proposed dynamic backscatter parametrization.
While dynamic backscatter is scale-aware and energetically more consistent, its im-
plementation is more complex. Furthermore, it turns out to be computationally more
expensive, as it applies, among other things, an additional prognostic subgrid energy
equation. The kinematic backscatter proposed here, by contrast, comes at no addi-
tional computational cost, following the principle of simplicity.

Our primary focus is the discretization on triangular unstructured meshes with
cell placement of velocities (an analog of B-grids), as employed by the Finite-volumE
Sea ice-Ocean Model (FESOM2). The kinematic backscatter scheme with the new
viscosity coefficient is implemented in FESOM2, and tested in the simplified geometry
of a zonally re-entrant channel as well as in a global ocean simulation on a 1/4° mesh.
This first version of the new kinematic backscatter needs to be tuned to the specific
resolution regime of the simulation. However, the tuning relies on a single parameter,
emphasizing the overall practicality of the approach.

PLAIN LANGUAGE SUMMARY

At the currently affordable resolution, ocean models as part of climate models are
facing the challenge of adequately representing mesoscale eddies, the weather systems
of the oceans. The models tend to lose too much kinetic energy, which strongly reduces
the strength of eddies in the simulations and causes large, systematic model errors. The
so-called backscatter approach feeds energy back into the ocean to compensate for some
of the lost energy. This leads to substantially better simulations of eddy variability
as well as the oceanic mean currents and a reduction of systematic model errors in
the distribution of salt and heat, as shown by comparison with observations. The key
advantage of the scheme proposed here is that it can be implemented at no additional
computational cost.
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1. INTRODUCTION

Horizontal viscosity used in numerical ocean models is thought to roughly represent
the effect of unresolved scales on the resolved flows. In most cases, harmonic or bi-
harmonic viscosity operators are used with viscosity coefficients either scaled with an
appropriate power of mesh cell size, or relying on the Smagorinsky (1963) or Leith (1996)
parametrizations (see, e.g., Fox-Kemper & Menemenlis, 2008; Bachman, Fox-Kemper, &
Pearson, 2017). The latter are flow-aware parametrizations in which the amplitude of the
viscosity coefficient depends on the strain rate or on vorticity gradients, usually derived
under the assumption of fully developed turbulence with energy or enstrophy cascades
to small scales (Fox-Kemper & Menemenlis, 2008). However, the premises of 3D homo-
geneous isotropic turbulence (Smagorinsky) or homogeneous isotropic quasigeostrophic
turbulence obeying the —3 spectral law (Leith) are not observed in a spatially and tem-
porally local sense in realizations of eddying ocean flows. Therefore, strictly speaking,
the reasoning based on the turbulent scaling laws only provides a heuristic argument.
Originally, the Smagorinsky and Leith coefficients of viscosity were derived for harmonic
operators, but can be generalized to biharmonic operators as, for example, proposed
by Griffies and Hallberg (2000) for the biharmonic Smagorinsky coefficient of viscosity.
The Leith coefficient of viscosity can be generalized to include the dependence on the
gradients of horizontal divergence (Fox-Kemper & Menemenlis, 2008) or gradients of
quasigeostrophic potential vorticity (QG Leith, see Bachman et al., 2017). Bachman
et al. (2017) and Pearson, Fox-Kemper, Bachman, and Bryan (2017) show that use of
the harmonic Leith coefficient of viscosity may lead to a reduced overall dissipation in
high-resolution simulations compared to a constant-coefficient biharmonic viscosity.

In turbulent flows, energy is transferred between large and small scales. Numerical
modelling of turbulent flows relies on discretizations of the equations of motion and
hence introduces a finite cut-off scale beyond which motion is not resolved. The term
physical energy backscatter accounts for a missing energy transfer from the unresolved
scales to the resolved flow (e.g., Frederiksen & Davies, 1997; Danilov, Juricke, Kutsenko,
& Oliver, 2019). Various forms of diagnostics have been applied to develop both de-
terministic and stochastic parametrizations to simulate the backscatter from unresolved
(mesoscale) eddies to the resolved flow in idealized ocean models (e.g., Kitsios, Frederik-
sen, & Zidikheri, 2013; Mana & Zanna, 2014; Grooms, Majda, & Smith, 2015; Berloff,
2018). Besides physical backscatter, the idea of compensating excessive energy dissipa-
tion of viscous closures through a numerically motivated backscatter parametrization has
first appeared in atmospheric modelling (e.g. Shutts, 2005; Berner, Shutts, Leutbecher,
& Palmer, 2009). It reduces over-dissipation through an additional, anti-dissipative
operator while maintaining numerical model stability.

In this study, we address the numerical kind of backscatter, henceforth referred to as
an “(energy) backscatter parametrization”. It is particularly relevant for ocean models at
eddy-permitting resolutions because the scales at which viscous dissipation is noticeable
may occupy the entire range of resolved scales, as illustrated, e.g., in Soufflet et al. (2016).
This affects the release of available eddy potential energy, further weakening the eddy ki-
netic energy (EKE). For this reason, the concept of energy backscatter parametrizations
was extended to ocean models as a means to reduce the accompanying EKE dissipa-
tion (Jansen & Held, 2014; Jansen, Held, Adcroft, & Hallberg, 2015; Klower, Jansen,
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Claus, Greatbatch, & Thomsen, 2018; Jansen, Adcroft, Khani, & Kong, 2019; Bachman,
2019; Juricke, Danilov, Kutsenko, & Oliver, 2019; Juricke, Danilov, Koldunov, Oliver,
& Sidorenko, 2020). According to this concept, the dissipation of EKE is diagnosed,
and partly compensated for at larger scales, either deterministically through negative
viscosity, or stochastically through random forcing of the momentum equation. Since
the dissipated energy must be returned at scales essentially larger than the scales of dis-
sipation, a common approach is to combine biharmonic viscosity and negative harmonic
viscosity. Juricke et al. (2019) proposed to use a spatially smoothed negative viscosity
term to increase the scales at which energy is scattered back to the resolved flow. Here
we develop and implement a simplified version of this concept, henceforth referred to
as kinematic backscatter. Different from the parametrization of Juricke et al. (2019) —
henceforth called dynamic backscatter — kinematic backscatter does not involve addi-
tional prognostic variables in its simplest form. It only attempts to reduce dissipation
and ignores any feedback that may control the amplitude of the reduction in dissipation.
It also acts instantaneously and, therefore does not include the memory effect of the
dynamic backscatter. Whether this memory, and if so, in what form and with what time
constants, might give even better results — particularly for inhomogeneous flows — is not
easy to assess in detail and will be subject to future work.

Energy backscatter parametrizations aim at returning the excessively dissipated en-
ergy back to the flow. However, backscatter parametrizations are paired with a viscosity
closure and the amount of excessive dissipation depends on the chosen closure. A more
spatially selective or localized estimate of viscosity coefficients limits dissipation to very
specific areas and may lead to a reduction of overall dissipation. The Smagorinsky and
Leith parametrizations are examples of such spatially localized, flow-aware parametriza-
tions. We propose a simple estimate of the viscosity coefficient that relies on the velocity
difference across the face (i.e., edge if viewed from the surface) of a velocity control vol-
ume and demonstrate that, in certain cases, it can further reduce dissipation on its own
when compared to the above mentioned viscosity schemes.

Part of our interest in numerical viscosity operators — and energy backscatter param-
etrizations in particular — comes from the fact that some unstructured-mesh discretiza-
tions used presently for large-scale ocean modeling maintain spurious branches of wave
dispersion related to the geometry of placing discrete degrees of freedom on triangular
meshes (e.g., Danilov, Sidorenko, Wang, & Jung, 2017; Korn, 2017; Danilov & Kutsenko,
2019). The spurious branches may lead to enhanced grid-scale variability. Controlling
it may require a somewhat stronger viscous dissipation than commonly used in codes
designed for regular quadrilateral meshes, which exacerbates the problem of overdissi-
pation if mesh resolution is only eddy-permitting. We sought an implementation of a
viscosity operator as part of a new energy backscatter parametrization that would allow
us to control spurious grid-scale oscillations without excessively damping the resolved
dynamics.

In this paper, we explore the simplest version of kinematic backscatter in conjunction
with the new viscosity coefficient. We mention extensions to this concept but leave the
analysis of other options for the future. Furthermore, we specifically target the Finite-
volumE Sea ice-Ocean Model (FESOM2) which utilizes unstructured triangular meshes
and a cell placement of velocities. Although our detailed considerations are specific to
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this particular geometry, the concept of the parametrization is general enough to be
applicable elsewhere after necessary adjustments.

The structure of the paper is as follows. We begin with explaining the general idea
of kinematic backscatter on a 1D example in Section 2. We introduce the new viscosity
coefficient in Section 3. The implementation of kinematic backscatter on planar trian-
gular grids — together with the implementation of the appropriate viscosity operator
and the new viscosity coefficient — is presented in Section 4. In Section 5, we compare
the performance of kinematic backscatter to some classical viscosity closures and to the
dynamic backscatter of Juricke et al. (2019) in the channel setting of Soufflet et al.
(2016). We consider an eddy-permitting mesh at 20 km resolution (Section 5.1) as well
as a barely eddy-resolving mesh at 10 km resolution (Section 5.2). Results for a global,
eddy-permitting ocean simulation are presented in Section 6. Section 7 closes with a
discussion and conclusions.

2. 1D CONSIDERATION

To illustrate the idea of kinematic backscatter, we will explain the concept for a uni-
form one-dimensional mesh. In this setting, the ideas can be formulated in spectral
language. The key ideas carry over to the two-dimensional setting, but we caution the
reader that, particularly with non-constant coefficients of viscosity and non-quadrilateral
or non-uniform grids, spectral language may be neither directly applicable nor an ade-
quate description.

On a uniform one-dimensional mesh, velocity points u, are located at cell centers
T, = nh, where n is the index of the velocity point and h is the distance between these
points. We begin with the case of a constant viscosity coefficient . Then the simplest
viscous operator is the finite difference Laplacian

Up—1 + Upt1 — 2un

(1) (Vu>n =V 2

The operator in (1) is dissipative because
2v 9
(2) h;“n(vu)n:—ﬁ;“nﬁov

i.e., the power of viscous forces is negative if summed over all mesh cells. This is more
readily seen in the Fourier representation, which will be used in this section. Assuming
Up = Uq €777 where u, is the amplitude and k the wavenumber, (1) takes the form

(3) (V) = Vi tig €% = Vi, iy,
where

2
(4) Vi=v 72 (cos(kh) — 1)

is the spectral symbol of V. The dissipative character of V corresponds to the non-
positivity of the spectral symbol Vj. At the largest resolvable wavenumber |k| = 7/h,

we have Vi, = —4v/h%; when |kh| is small, V} ~ —vk?2.
As a second key operator, we introduce the filter
1
(5) (Fu)n = - (unfl + Upt1 + 2un) .

4
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It is obtained by first defining values at the cell boundaries ;1o by averaging the
velocity of cells n and n + 1, then averaging back from cell boundaries to cell centers.
Its spectral symbol is

(6) F— %(1 + cos(kh)) .

The key idea of kinematic backscatter is to modify the viscous operator such that it is
anti-dissipative on some range of scales. The most simple such modification is given by

(7) V) = (1—aF)V=V—-aFV,

where « is a numerical factor. The spectral symbol of V() is Vk(l) = (1 — aFy)Vj. Since
the spectral symbol of the smoothing operator Fy, = 0 for |k| = 7/h, this selection will
not affect dissipation at the grid scale. It will, however, reduce dissipation at all resolved
wavenumbers because Fj, > 0 and may even lead to an overall anti-dissipation (positivity

of Vk(l)) in some range of k if & > 1. Kinematic backscatter, therefore, consists — in an
area-averaged sense — of a dissipative component, V, which is the viscosity operator,
and an anti-dissipative backscatter component, —aFV, whose strength depends on the
coefficient .

For F defined by (5), F — 1 is, up to the factor 4/h?, the discrete Laplacian and

4
Thus, in the particular case when a = 1, (7) becomes V(Y = —(h%/4v) V2, i.e., the

two components of (7) reduce to a biharmonic operator with the biharmonic coefficient
of viscosity vh?/4. When a > 1, we enter the actual backscatter regime because the
combined operator (7) is anti-dissipative for some range of k. The stability of the
resulting scheme depends on the shape of the kinetic energy spectrum, hence, on the
efficiency of nonlinear interactions to distribute the backscattered energy across scales.
Stability should be warranted if « is sufficiently close to one, as discussed in Appendix A.
The precise range of stability is difficult to ascertain theoretically; finding it requires
experimentation in practice.

There is a connection between the constant coefficient o and the variable coefficient
Ryis used in the dynamic backscatter of Juricke et al. (2019). The coefficient Rg;s controls
how much energy enters the subgrid energy budget, which in turn defines how much
energy is available for reinjection. A spatially local backscatter coefficient is then scaled
by this subgrid energy budget. The kinematic backscatter coefficient a also scales the
backscatter component of (7), but in an instantaneous sense, where it affects how much
of the dissipated energy at each location is scattered back straightaway.

One can do further steps and introduce

(9) V@ = (1—aF+8F)V.

We remark that in the special case 1 — a + § = 0, the right hand side factorizes as
follows:

(10) VA = (1-8F)(1-F)V.
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In other words, due to (8), the choice (10) implements the simplest possible kinematic
backscatter on top of a biharmonic viscosity. In particular, when 5 =1 in (10), the op-
erator reduces to a tri-harmonic viscosity so that the backscatter regime is characterized
by 5 > 1.

The more general form (9) or its higher-order analogs open possibilities to further
control the scale-dependence of the resulting backscatter parametrization. However, in
the initial tests we have not found strong differences between the behavior of the simplest
operator (7) and its higher-order generalizations. For this reason, we exclusively discuss
(7) in the remainder of this paper. It is, nevertheless, conceivable that higher-order
generalizations might show advantages under more sophisticated diagnostics.

When the coefficient of viscosity, given at cell boundaries, is not constant, we define

Vn+1/2 (Un41 — un) — Vn—1/2 (Un — Un—1)
h? '

Since the coefficient of viscosity will be chosen as a function of the velocity field in the
next section, (11) is a nonlinear operator; in particular, the simple relation (8) ceases
to hold and the resulting operators V(Y or V(2 with, respectively, & = 1 or § = 1 will
differ from their bi- or tri-harmonic counterparts. The advantage of using V() or V(2
as substitutes for bi- or tri-harmonic operators is the absence of higher-order derivatives
in computations. Its drawback is the lack of (spatially) local momentum conservation
for it ceases to be a divergence of a flux. This is not expected to create a problem: the
total, domain-averaged momentum is conserved, and we only redistribute viscous sinks
or sources without artificially creating them.

Most of the 1D discussion carries over to discretizations on general meshes. In par-
ticular, a = 1 still marks the boundary between purely dissipative behavior and anti-
dissipative behavior on some range of wavenumbers. This can be shown as follows.
Any consistent averaging operator F must preserve constants and dissipate any spatially
varying function. Thus, (1 — «F) is a positive operator so long as « < 1; for any o > 1,
(1 — «F) acting on a constant field is negative, and thus will remain negative if the field
varies on sufficiently large scales. As « is further increased, a successively larger range
of scales will be affected.

Further, in the limit of small wavenumbers, we can expand the spectral symbol of
F about wavenumber zero. It can be shown that in this limit the spectral symbol of
(1 — F) corresponds to the Laplacian if the grid and F are sufficiently isotropic. Thus
for &« = 1 and a constant coefficient of viscosity, V(1) still corresponds to a biharmonic
operator. The details of behavior at large wavenumbers will be different, but do not
change the main idea. We will therefore use the concepts and terminology developed
here as motivation for the implementation of kinematic backscatter on triangular grids
in the context of horizontal discretizations of general ocean circulation models.

(11) (Vu)n =

3. A NEW SIMPLE FORM FOR THE COEFFICIENT OF VISCOSITY

Kinematic backscatter is always tied to a suitable form of the coefficient of viscosity.
In the following, we describe a new, simple choice for a flow-dependent coefficient that is
cheap to compute, has good spatial selectivity, and helps the suppression of grid modes
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on triangular meshes. While designed in the context of the triangular quasi-B-grid, it is
not confined to this type of mesh.

To begin with, any of the traditional flow-aware and scale-selective parametrizations
for the viscosity coefficient can be chosen to replace a constant viscosity coefficient v.
However, these generally require computations which are defined on a stencil much
wider than just nearest neighbors. To reduce dissipation, it is sensible to use flow-
dependent viscosity coefficients that rely on the smallest possible stencil so that the
overall area where viscosity is high will be kept at minimum. Furthermore, for FESOM2
the coefficient needs to be able to efficiently control velocity differences at grid scales.
For this reason, we propose the simple form (given here for a two-dimensional mesh)

(12) Vere = Yo lere +m |uc’ *uc|€c’ca

where ¢ and ¢ are the grid cells on which the discretized velocities are placed, £y is
the length of the edge between the cells, g is a small background velocity amplitude of
about 0.001 m/s, needed in regions of low flow speed or weak shear, and ~; is a small
dimensionless coefficient. Both ~y and v, are subject to tuning. Such tuning will be
discussed for 71 in Section 5. We find that v; ~ 0.03-0.1 works well. As it is based on
velocity differences, (12) is reminiscent of the Smagorinsky viscosity and the numerical
coefficient 1 can be compared to C/7? of the Smagorinsky parametrization (e.g., Fox-
Kemper & Menemenlis, 2008). As will become clear in Section 5, the advantage of this
viscosity coefficient is that its calculation is based on the same variables as the viscosity
operator, so that the computation of the coefficient as part of an operator Vu does
not cause additional computational costs. Although (12) is not invariant to solid body
rotations, this is the drawback of the whole operator on triangular meshes as we will see
in Section 4.

Up to the small background part, (12) is a flow-aware parametrization that strongly
weights the differences in across-edge velocities. This design is motivated by the numer-
ical consideration that the viscous closure should be able to counteract grid modes — see
the discussion in Juricke et al. (2019).

4. TRIANGULAR MESHES

We now extend the idea of kinematic backscatter to the triangular quasi-B-grid em-
ployed by FESOM2. Some details of the viscosity operator are already described, e.g., in
Danilov et al. (2017) and Juricke et al. (2019). Here, we use this operator together with
the new coefficient of viscosity described in Section 3, so that we present a complete,
self-contained description of the scheme.

4.1. Discrete harmonic operators on triangular meshes. Physically, a viscous
force V is the divergence of the tensor of viscous stresses, V = V - o. Here, we only
discuss viscosity in the horizontal, so that V denotes the horizontal gradient operator.
In the case of classic harmonic viscosity, o = 2v(é — tré) with &€ = 1(Vu + (Vau)T). If
v is constant, this expression reduces to

(13) V=V -wVu).

If v is variable, (13) still defines a dissipative operator, but it is not invariant under solid-
body rotations. For numerical reasons, it is nonetheless convenient to use a discrete form
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of (13) to define the viscous operator on unstructured meshes. For example, on triangular
or hexagonal unstructured C-grids, the full stress tensor o cannot be computed in terms
of quantities naturally defined on the C-grid (Gassmann, 2018), while

(14) V=VwV u)—-Vx @V xu),

which is equivalent to (13) for constant v, involves only the computation of curl and
divergence, which are naturally defined quantities.

For FESOM2, which uses a quasi-B-grid on horizontal triangles, it would be possible to
compute o. However, its stencil would extend beyond the nearest neighbor cells and fail
to include the contributions from the nearest velocities with sufficient weights to control
grid modes. In contrast, the operator (13) is easily computed in a form emphasizing the
nearest-neighbor contributions (Danilov et al., 2017). Higher-order viscous operators
can be constructed by iterating discrete forms of (13) or (14).

Based on these considerations, noting that in FESOM?2, the discrete velocities are
placed at cell centers, we define an approximate harmonic viscous operator V via

1 boe Vo + 1
(15) (Vu), = — E (upy — ue) —
c Tele
ceN(c)

where N (c) is the set of all neighbor cells of cell ¢ (i.e., the cells sharing a common
edge), S. is the area of triangle ¢, ¢y, is now the length of the edge between triangular
cells ¢ and ¢, r, is the distance between the centroid of cell ¢ and the centroid of cell
d (Fig. 1).

When the mesh cells are equilateral triangles, (uys — u.)/re. is the velocity gradient
projection on the outward normal (from c) at the edge between ¢ and ¢, so that the
right hand side of (15) is the sum of viscous fluxes leaving cell ¢, thus giving a consistent
discretization of the harmonic viscosity operator (13). Although this interpretation fails
on general unstructured meshes, (15) conserves momentum (if viscous stresses are zero
on boundaries) and dissipates kinetic energy. It is therefore a numerical filter of grid-
scale motion, acting directly upon differences between the nearest-neighbor velocities.
While this interpretation may seem undesirable to a physicist, it causes, in practice, no
visible numerical instabilities such as grid scale patterns. Moreover, the use of harmonic
or biharmonic viscous operators to maintain a turbulent energy cascade is not based
on first-principle physics in the first place, and neither is the selection of the viscous
coefficients (see, e.g., Fox-Kemper & Menemenlis, 2008). The approach advocated here
is, therefore, at the same level of modeling as any other viscous closure, motivated by the
necessity to effectively control the smoothness of cell velocities, and subject to empirical
evaluation.

Since the geometric quantities in (15) and the mean viscosity are defined on edges, they
can be incorporated into a generalized edge viscosity v, which is symmetric between c
and ¢, so that (15) takes the form

1
(16) (Vu)e = & > (e — ue) v
deN(c)

Summing over all cells ¢ (with appropriate boundary conditions), Y . Sc (Vu). = 0 be-
cause the difference between u. and u. appears with opposite signs in the expressions for
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FIGURE 1. Geometry of the triangular mesh: N (c) = {c/, ", "} is the
set of neighbors of cell ¢; r+ is the distance between the centroids of cells
c and ¢, and /... is the length of their common edge.

cell ¢ and c. This means that momentum is globally conserved. Furthermore, taking the
total viscous dissipation )__Scu. - (Vu)., we observe that the contribution from ¢’ and
¢ appears twice, one time as Ve U - (ue — u.) and the other time as vy, uy - (ue — ),
summing to —ve, [ty — ue|?. This means kinetic energy is dissipated. The free-slip
boundary conditions in this approach imply that boundary edges are not included in
the computations. For no-slip boundary conditions, ghost velocities u. across boundary
edges are used, directed opposite to the interior velocities ..

The viscosity coefficient v.» of (12) introduced in Section 3 is readily applied with the
viscous operator (16). The advantage of (12) becomes apparent now, since it is based on
the same data as the right hand side of (16) so that the coefficient (12) can be computed
as part of the operator Vu at no extra cost.

In our experiments, see Section 5 below, we find that the viscous operator (16) with
coefficient (12) is less dissipative than other common viscosity closures. Yet, it is still
over-dissipative. Thus, we now turn to the implementation of kinematic backscatter on
the triangular mesh to further reduce total dissipation.

4.2. Averaging and kinematic backscatter. In our implementation, we use the same
filter as in Juricke et al. (2019). It is realized as the composition of two averaging
operations, denoted X and C. First, area-weighted cell values are averaged to common
vertices. Second, the vertex values are averaged back to cell centroids. If a. is a quantity
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defined at cells, its vertex values are obtained as

(17) (Xa)o = D" ac(Se/3)/ 3 (8:/3),

ceC(v) ceC(v)

where C(v) denotes the set of cells containing vertex v. The area Sy =} .cc(,)(9¢/3) in
the denominator is that of the median-dual control volume around vertex v. Each cell
contributes with weight S./3 to each of its vertices. We note that

(18) > acSe=> (Xa)y S,

where the sums are over all cells and vertices, respectively. This shows that X preserves
area integrals of a. Similarly, for a quantity b, defined on vertices, its averaged cell
values are computed as

(19) =3 Y b,

veV(c)

where V(c) is the set of vertices of cell c. Vertex values are associated with one-third of
the cell area, so the factor 1/3 in this case agrees with area-weighting and also implies
that the area integral of b is preserved in this operation.

We then define the filter by

(20) F=CX
and implement kinematic backscatter via the same formulas as in Section 2,
(21) V) = (1 —aF)V=V—aFV.

This corresponds — in a spatially averaged sense — to a classical dissipative component V
and the new anti-dissipative part —aFV. The viscosity coefficient used for the operator
V is given by (12).

We were able to run numerically stable simulations using (21) with o < 1.5 on eddy-
permitting or barely eddy-resolving meshes, i.e., with cell dimensions on the order of the
first baroclinic Rossby radius. In these simulations, the new scheme led to a noticeable
increase in the simulated EKE (see Sections 5 and 6). As discussed in Appendix A, the
admissible value of « is expected to depend on the spectral slope of flow EKE, and finding
it is a matter of experimenting. This is an obvious complication with using kinematic
backscatter in the form (21), for it relies only on the general idea of returning energy
to resolved scales, without controlling how much should be returned at a particular
location. This means that careful tests of the functioning of the kinematic backscatter
parametrization are necessary.

4.3. Differences between kinematic and dynamic backscatter. The new kine-
matic backscatter is compared to classical viscosity closures as well as the computation-
ally more demanding dynamic backscatter formulation of Juricke et al. (2019), which
differs from kinematic backscatter in the following respects:

(1) the amplitude of the coefficient « is related to a so-called subgrid energy equation
which tracks the amount of dissipated and backscattered energy at each grid
point and scales the strength of backscatter according to the available subgrid
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energy; this adds both a flow-dependent scaling of the backscatter coefficient and
a temporal memory to the scheme

(2) the viscosity operator is biharmonic and its coefficient is also dynamically ad-
justed, based on the Upwind setup described in Section 5 below

(3) for dynamic backscatter, several iterations of the smoothing filter are applied to
the backscatter component (i.e. the second term) in (21) to enhance the scale
separation between energy backscatter and viscous dissipation.

The performance of dynamic backscatter was already analyzed and discussed by Juricke
et al. (2019) and Juricke et al. (2020). Dynamic backscatter is computationally more
demanding as it (i) applies an additional subgrid energy equation, (ii) uses several itera-
tions of the smoothing filter, and (iii) necessitates a time step reduction for global setups
on eddy-permitting meshes. Kinematic backscatter can run with the same time step as
the classical viscosity closures which we will use as control in the following sections.

5. SENSITIVITY STUDIES WITH A BAROCLINIC INSTABILITY TEST CASE

In this section, we explore the performance of kinematic backscatter in the idealized
geometry of a zonally-reentrant channel. Our intention is to test and then choose the
optimal value of the parameter «, controlling the strength of the backscatter component
in (21), and of the scaling coefficient 7, in the computation of the viscosity coefficient
(12).

We follow the channel setup of Soufflet et al. (2016): The channel extends 500 km
in the zonal direction, 2000 km in the meridional direction and has a uniform depth of
4000m. The fS-plane approximation with Coriolis frequency 10~%s~! in the center and
B=1.6-10""m s ! is used. Temperature is the only active tracer, and the equation
of state for density is linearized with respect to temperature. The channel is initialized
with a zonally invariant temperature distribution and a meridional temperature gradient
which induces an eastward jet in the center of the channel. The initial zonal velocity
field is in geostrophic balance. Jet destabilization is triggered by a small temperature
perturbation. To achieve and maintain a quasi-stationary turbulent regime, the zonally
averaged temperature and velocity fields are relaxed to the basic state that was used as
the unperturbed initial state. The restoring timescale is set to 50 days, as in Soufflet et
al. (2016). The Rossby radius of deformation is about 30 km in the center and ranges
from about 35km in the South to 25km in the North. For more details on the setup,
see Soufflet et al. (2016).

The reason for following this setup is (i) that it is well documented and (ii) has a
mean flow fixed through relaxation. Because of the controlled mean flow, an increase in
resolution and therefore increased eddy-activity does not alter the structure of the mean
flow. While eddy-mean flow interactions might be important, our sensitivity studies
focus solely on the eddy component of the flow.

This test case exhibits a near surface submesoscale instability which is starting to be
resolved at around 2-5km resolution, changing the dynamics in the channel. Since the
focus of this study is on mesoscale instabilities and their improved representation by
kinematic backscatter, we will only run sensitivity studies on resolutions of 20 km and
10km. The 20km resolution setup falls into the eddy-permitting range, which is the
range where ocean kinetic energy backscatter has the highest potential for improvements
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(see, e.g., Juricke et al., 2019). The 10 km resolution is used as an eddy-resolving control
as well as a setup to investigate how the kinematic backscatter scales with resolution.
As less kinetic energy is removed via dissipation at higher resolution and the mesoscale
eddy field becomes largely resolved, the strength of the backscatter component of the
kinematic backscatter is expected to decrease as resolution is increased.

For the numerical setup of this study, we use FESOM2. The two different surface
meshes are made of equilateral triangles with sides of 20 and 10 km, respectively, with
40 unevenly spaced vertical layers. For the viscous closure, we compare the following
cases.

e Two different, classical viscosity closures: harmonic Leith viscosity (“Leith”) and
a biharmonic viscosity setup which simulates the dissipation of a third-order up-
wind scheme, with small additional background harmonic viscosity (“Upwind”).
These schemes are described in detail in Juricke et al. (2019).

e First-order kinematic backscatter as described by (21) with the new viscosity
coefficient described by (12) for different values of o between 0 and 1.5. Reducing
a reduces the amount of energy that is scattered back on larger scales. For
a = 0 the second term in (21) drops out and what is left is a harmonic viscosity
operator with the viscosity coefficient (12). We also pick two values for the
scaling coefficient, 1, of (12): (i) a setup with a lower coefficient y; = % ~ 0.03
(“KBacka”) and (ii) a setup with a larger coefficient 41 = 0.1 (“KBacka™”) which
turns out to be more stable at the higher 10 km resolution. Note that lower and
larger here characterize only the scaling factor «;1, and not the actual magnitude
of the viscosity coefficient (12).

e The dynamic backscatter parametrization introduced by Juricke et al. (2019)
(“DBack”), see Section 4.3.

Simulations are run for 10 years where the first year is then omitted as spin-up for all
temporal averages. The main diagnostics are vertical profiles of EKE and fluctuations of
vertical velocity w (see Fig. 2). For each depth, layer-averaged, 9-year temporal means
for EKE are calculated. Similarly, w fluctuations are computed as the root mean square
of vertical velocity anomalies

(22) wrms = 4/ (w'?)

where brackets denote horizontal layer-averaging, the bar denotes time averaging, and
w' = w — w is the temporal anomaly of w. We also discuss the spatial structure of
dissipation (see Fig. 4 and 5 below) and total amount of energy dissipation.

We remark that the vertical profiles of EKE and variance of vertical velocity w simu-
lated with FESOM2 (Fig. 2) and those presented by Soufflet et al. (2016, their Fig. 4)
for NEMO and ROMS are very similar but not quite the same. These small differences
are not relevant for this study.

5.1. Results for the 20 km mesh. We first present our results for the eddy-permitting
20 km mesh. In our discussion, we focus on kinematic backscatter with coefficient a = 1.5
and the smaller scaling coefficient 7; =~ 0.03. A broader range of choices is discussed in
Sections 5.2 and 5.3 together with the results for the 10 km mesh.
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Depth [r(r;] Vertical profile of mean EKE (20km) Vertical profile of wgys (20km)
a) b)
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F1cURE 2. Vertical profiles for the simulations with 20 km resolution for
time averaged (a) EKE and (b) wrums show the higher levels of kinetic
energy for the backscatter simulations, KBackl.5 and DBack, compared
to the simulations with classical viscosity closures, Leith and Upwind.
Averaging is over the last 9 years of the 10-year simulations. Also shown
is a higher resolution, 10 km control Upwind10.

At 20km resolution, all schemes show a similar structure of the vertical EKE profile,
with high levels of energy at the surface and rapidly decaying energy towards the bottom
(Fig. 2a). The backscatter runs DBack and KBackl.5 are substantially more energetic
than the two reference simulations with classical viscosity closures, which have similar
levels of EKE between them, with Upwind slightly more energetic than Leith. The relative
increase of EKE between the two backscatter simulations and the reference simulations
is strongest at depths between 1500 m and the bottom. Both backscatter schemes are
slightly more energetic than the higher resolution 10 km control simulation with upwind
biharmonic viscosity, Upwind10. While the latter is eddy-resolving, its EKE level is still
not saturated as the submesoscales are not yet resolved (see the discussion in Soufflet et
al., 2016).

Differences in the fluctuations of vertical velocity between the simulations follow a
similar pattern as the differences in the EKE profiles (Fig. 2b). The qualitative structure
of the profile is the same between all simulations, with peaks of wgryg at around 1000 m
depth. The backscatter schemes enhance wryms. Compared to the higher resolution
control, Upwind10, levels of wrus lie slightly below for DBack and somewhat above for
KBack1.5, especially at depths between 500 to 1000 m.

We conclude that both backscatter schemes produce a level of EKE close to the control
Upwind10. Fluctuations of vertical velocity are enhanced, but the qualitative structure
of the vertical profiles is unaltered.

The increased levels of kinetic energy in KBack are accompanied by reduced total
energy dissipation tendencies (Fig. 3). Here, total energy dissipation is defined as the
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FicUrRE 3. Comparison of time mean, layer-averaged energy tendencies
of total dissipation (i.e. viscosity component + backscatter component)
and of the backscatter component per time step at three different depths
in a logarithmic scale. For KBack, the energy tendencies for backscatter
correspond to the component —aFV in (21), i.e. u - (—aFVu), while
tendencies of total dissipation correspond to the full operator (21), i.e.
w - VWu. KBackl.5 has the least amount of dissipation and the largest
amount of backscatter, followed by KBack1.2 and KBack1.0. Calculations
rely on 9 years of data; tendencies of the backscatter component are only
available for KBack.

combination of energy injection due to the backscatter component, i.e. —aFV in (21),
and energy dissipation due to the viscosity component, i.e. the operator V in (21). The
power injected by the backscatter component is positive definite in an area-averaged
sense, while the power due to the dissipation component is negative definite in an area-
averaged sense. The energy dissipation tendencies in KBack are 2 to 10 times lower than
those of the classical viscosity closures, with largest reductions at depth. As mentioned
before, with decreasing «, less energy is scattered back and the total dissipation tendency
is larger, i.e. KBackl1.0 is more dissipative than KBack1.5.

When « > 1, the viscous operator is anti-dissipative on some range of larger scales.
To illustrate this, we can compare the tendencies of energy dissipation based on the
original fields with the tendencies based on spatially filtered fields (Fig. 4). For the
unfiltered, original fields we compute the energy tendency by multiplying the dissipation
tendencies with the velocity w. Thus, in the case of KBack, the energy tendency reads
u - VW (Fig. 4a,b). For the spatially filtered counterparts of the tendency of energy
dissipation, we apply the filter X (17) — which averages area-weighted cell values to
common vertices — to each factor in this product. Thus, in the case of KBack, the
spatially filtered tendency of energy dissipation reads Xu - XVu (Fig. 4c,d). This
averaging is conservative for the individual fields, but removes small scale fluctuations.
Computing energy tendencies based on filtered fields removes the impact of the grid
scales on energy dissipation and highlights the behavior of the energy tendencies on all
scales larger than these smallest scales.
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The unfiltered tendencies of KBackl.5 are mostly negative when averaged in time, i.e.
the scheme dissipates energy. However, the corresponding energy tendencies based on
filtered fields are predominantly positive, i.e. the kinematic scheme energizes the flow
on larger scales (Fig. 4d), while it still maintains total energy dissipation based on the
original fields (Fig. 4b). The Leith simulation, on the other hand, dissipates energy
even on larger scales (Fig. 4a and c). As « is reduced, the spatially local tendencies
based on filtered fields become increasingly mixed between positive (i.e. energy injection)
and negative (i.e. energy dissipation) values (not shown). For a = 1, when kinematic
backscatter would reduce to a biharmonic operator if the coefficient of viscosity were
constant, most of the filtered fields are negative and therefore predominantly dissipative.

On the daily scale, without long-term temporal averaging, dissipation energy tenden-
cies for filtered fields are mostly positive but also show negative values for KBackl.5
(Fig. 5d); the opposite is true for the classical Leith viscosity scheme (Fig. 5¢). This
illustrates that spatially local energy tendencies are not sign-definite on daily time scales,
with spatial patterns related to the frontal structure of the simulated flow. Even annual
averaging does not make the energy tendency of the Leith scheme strictly negative at
all locations (Fig. 4a), i.e., it does not lead to a sign-definite behavior of the dissipation
operator everywhere. This sign indefinite behavior was also discussed by Juricke et al.
(2019) in their formulation of the dynamic backscatter closure. In dynamic backscat-
ter, energy dissipation tendencies act as a source term for the subgrid energy equation.
Juricke et al. (2019) mention two options for the computation of the dissipation ten-
dency: either using the actual energy dissipation tendency computed as the power of
the full viscous force or using a sign-definite form obtained by eliminating the flux part,
which was used by Jansen et al. (2015) and Klower et al. (2018). Juricke et al. (2019)
observed that using the actual energy tendency leads to higher and more realistic levels
of EKE.

5.2. Results for the 10 km mesh. We now compare the different schemes for the same
channel simulation on a 10 km mesh which is essentially eddy-resolving. In particular,
we ask how the parameters of the scheme depend on resolution. As we have not built
any explicit resolution-scaling of the coefficient « into the derivation of the scheme, we
would not expect kinematic backscatter to be scale-aware in a strict sense, but the extent
of necessary re-tuning is of interest.

Indeed, a direct application of kinematic backscatter with parameters from the 20 km
simulation shows an unphysically strong increase of wgryg in deep layers, around the
depth of 3km (see Fig. 6b and Fig. 4 of Soufflet et al. (2016)). This increase in variance
is due to waves propagating from the upper layers and is presumably due to the excitation
of the Charney instability mode, which is not fully resolved on a 10 km mesh but is also
not damped enough in some regions due to the minimal choice of the coefficient v, in
the computation of the viscosity coefficient (12). An increased coefficient, v = 0.1, will
filter grid scale differences more strongly and largely remove the artifact in the profile of
wrms while having little impact on the profile of mean EKE (profiles labeled KBack1.5*
in Fig. 6).

Comparing kinematic backscatter to the classical viscosity parametrizations, we see
that the relative increase in EKE provided by KBack1.5* (as well as KBack1.5) to Upwind
is not as high as for KBackl.5 on the 20 km mesh. This is expected as we move from
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Annual mean dissipation tendency based on:
original cell values averaging to vertices

a) Leith b) KBackl.5 c) Leith d) KBack1l.5
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FIGURE 4. Kinematic backscatter (KBackl.5) acts as mostly negative
viscosity on larger scales compared to classical viscosity closures (Leith)
which are dissipative also on larger scales: An annual mean (year 9) of
dissipation energy tendency for (a and c) Leith and (b and d) KBackl.5.
The dissipation energy tendencies are calculated from original fields on
triangles (a and b) and from filtered fields at vertices (b and d). Note
that the filtering is performed before the calculation of energy tendencies
and temporal averaging, i.e. due to nonlinearity (c) cannot be obtained
by simply filtering (a).

eddy-permitting to eddy-resolving resolution and the relative effect of the backscatter
component decreases. While the EKE increase due to KBack1.5* is slightly lower than the
increase provided by DBack, it is even slightly larger than the increase due to KBack1.5.
At 10 km resolution we need to discard the latter due to the artifacts in its wryg profile.

5.3. Choice of parameters for kinematic backscatter. Prompted by the difference
in behavior on the two meshes, we now carry out a limited study of the influence of the
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Daily mean dissipation tendency based on:
original cell values averaging to vertices

a) Leith b) KBackl.5 c) Leith d) KBackl.5
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FI1GURE 5. As Fig. 4, but for a daily instead of an annual mean.

parameters « and 1 on the performance of kinematic backscatter. While the strength
of the backscatter component is controlled by «, the new viscosity coefficient (12) can be
scaled by the coefficient v, and may on its own lead to reduced dissipation. We therefore
consider our main diagnostics for a = 0 (only the new viscosity coefficient is active),
a = 1 (approximately biharmonic behavior), and o = 1.5 (well into the backscatter
regime), for the two choices of y; and for the two different meshes (Fig. 7).

For 71 =~ 0.03 at 20 km resolution, the largest contribution to energizing the flow comes
from the new viscosity coefficient (12). Indeed, even with a = 0, EKE is substantially
increased compared to Upwind. A subsequent increase in the backscatter coefficient o
leads to a further noticeable increase in EKE, but weaker than the initial increase due
to the new viscosity.

For 1 = 0.1, in contrast, KBack0.0* has levels of EKE that are very close to the
classical Upwind, and KBackl.5* reaches nearly the same level as KBackl.5. In this
case, the increase of EKE is almost entirely due to the backscatter component in (21).
The profiles of wryms (Fig. 7b and d) indicate that using a smaller scaling factor v, ~
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FIGURE 6. Vertical profiles for the simulations with 10 km resolution for
time averaged (a) EKE and (b) wrums showing higher EKE levels for the
backscatter simulations KBackl1.5, KBackl.5*, and DBack compared to
the 10 km simulations with classical viscosity closures Leith and Upwind10.
Upwind10 was used as the high resolution control in the 20 km setup of
Fig. 2. Averaging is over the last 9 years of the 10-year simulations.

0.03 in the computation of the viscosity coefficient (12) in KBack leads to increased
variance, especially at 10km resolution. This can be seen as a sign that the smaller
scaling coefficient ~y; is close to the minimum that still provides realistic results at 20 km
resolution, and that it is insufficient at 10 km.

We highlight that kinematic backscatter is expected to be dissipative, on average, at
all scales when o < 1. But already the choice @ = 1 (corresponding to a biharmonic
operator if the viscosity coefficient were constant) leads to a considerable increase of EKE
for both values of 7, at 20 km resolution as compared to the simulation with o = 0.

Furthermore, we remark that even though the scaling coefficient ; and, consequently,
the viscosity coefficient are larger for KBackl.5* compared to KBackl.5 at the same
resolution, 7; also affects the scales at which the scheme scatters back. Thus, an ordering
of the level of EKE by the value of 7; cannot be established a priori. Finally, vy = 0.1
is close to the choice in the Smagorinsky parametrization (Fox-Kemper & Menemenlis,
2008), which provides an additional argument in favor of KBack1.5* in this context.

In summary, the relative effect of the backscatter component of (21) depends on the
magnitude of the coefficient 71, which is part of the viscosity coefficient (12), and the
mesh resolution. The numerical stability even for very small values of v; (e.g., 71 = 0.03)
is, at least partly, due to the spatially very localized viscosity coefficient (12) helping
to efficiently remove noise at the grid scale. In addition to reducing total viscosity, the
backscatter component further energizes the flow, even though the increase in EKE is
not necessarily large. However, a small value of +; is not always a safe option, especially
at higher resolution; for more general applications, a larger value of ~; is needed, as in
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FIGURE 7. Vertical profiles for the simulations with (top row) 20 km and
(bottom row) 10 km resolution for time averaged (left column) EKE and
(right column) root mean square w’ show the higher levels of eddy ki-
netic energy for the kinematic backscatter simulations KBack and KBack*
compared to the simulations with the classical viscosity closure, Upwind
(20 km resolution) and Upwind10 (10km resolution). For KBack, corre-
sponding to the smaller value for the scaling factor, v; = 0.03, most of
the increase in EKE is due to the new viscosity coefficient. For KBack*,
corresponding to the larger value for the scaling factor, v; = 0.1, most
of the EKE increase is due to the backscatter component with o > 0.
Notice the different z-axis scaling for the top and bottom panels.
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KBack*. In that case, the influence of the backscatter component is much more noticeable
as compared to the effect of the new viscosity coefficient. At 10km resolution, EKE
levels of the simulation KBack* with a larger coefficient 1 are similar to those of KBack
(Fig. 6), but without the imprint of spurious waves in the profiles of wgrys. At eddy-
permitting 20 km resolution, all options for kinematic backscatter produce more realistic
EKE profiles and reduce energy dissipation while maintaining the general flow structure.
Consequently, kinematic backscatter configurations with the strongest increase in EKE,
KBackl.5 and KBackl.5*, are both safe options at eddy-permitting resolution. For higher
resolutions that vary between eddy-permitting and eddy-resolving, we recommend to use
the kinematic backscatter setup with the larger value of ~;, KBackl.5*.

6. GLOBAL OCEAN SIMULATIONS AT EDDY-PERMITTING RESOLUTION

In a second set of experiments, we investigate the behavior of kinematic backscatter
in realistic simulations: FESOMZ2 in a global configuration on a mesh with 1/4° nominal
resolution. The mesh is derived from the NEMO ORCA25 mesh by splitting its scalar
cells into two triangles. Its resolution varies from about 25km around the equator to
about 10km in high latitudes. This resolution is called eddy-permitting: for a large
portion of the globe, it does not allow eddies to be simulated explicitly, but the mesh
triangles are smaller or close to the Rossby radius in many places so that eddies can
be represented formally. The same mesh was used to test the dynamic backscatter
parametrization DBack in Juricke et al. (2020).

We performed two experiments. The first uses the standard FESOM settings de-
scribed in Scholz et al. (2019) with Leith viscosity (“Control” in the following). The GM
parametrization is active in this experiment, but only a very small background thickness
diffusion is present in elements smaller than 25km (i.e. almost everywhere). The second
experiment uses the new viscosity coefficient combined with kinematic backscatter with
a = 1.5 and 7; = 0.03, and the GM eddy parametrization is switched off entirely. The
parameters are as for KBack1.5 in the previous section, so that we retain this name here.
Both experiments use COREII forcing (Large & Yeager, 2009).

For both experiments, we first performed a spinup over the years 1979-2009. Each
run was then continued over the complete COREII cycle (1948-2009), using the spinup
results as initial conditions. Only the final years 1979-2009 from the full COREII cycle
are used for comparison with observational estimates.

The snapshots of the absolute velocity (Fig. 8a,b) show that, in general, KBackl.5
has more energetic currents, with larger velocities even over “calm” areas in the centers
of the ocean basins. Currents in the Southern Ocean show more spatial variability, and
well defined eddies form at the Agulhas retroflection in KBack1.5, while Control does not
show Agulhas eddies in the southern Atlantic.

The temporal standard deviation of sea surface height (“SSH variability”) is often
used as a measure of eddy variability (e.g. Sein et al., 2017; Juricke et al., 2020). FE-
SOM2, as well as many other ocean models, tends to considerably underestimate SSH
variability in eddy-permitting configurations (e.g. Penduff et al., 2010; Sein et al., 2017).
As mesoscale eddies cannot be fully resolved at eddy-permitting resolution, SSH variabil-
ity is especially underestimated in regions of strong mesoscale eddy activity, i.e. in the
Southern Ocean and the western boundary currents (Sein et al., 2017). Thus, in general,
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FIGURE 8. Increase in instantaneous velocities and in temporal variabil-
ity of SSH due to kinematic backscatter: Snapshots of velocity (in log-
arithmic scale) at 100m depth for the (a) Control with Leith viscosity
and (b) KBackl.5. Temporal standard deviation of SSH is computed for
the period of 1979-2009 for (c) Control, (d) KBackl.5, (e) their difference
KBack1.5—Control, and (f) the AVISO observational estimates.

an increase in variability will be an improvement when compared to observational esti-
mates of AVISO (http://www.aviso.altimetry.fr; Le Traon, Nadal, & Ducet, 1998;
Ducet, Le Traon, & Reverdin, 2000). The use of kinematic backscatter combined with
the new viscosity coefficient leads to a considerable increase of SSH variability over most
energetically active areas of the oceans (Fig. 8c, d, e). This is especially noticeable in
the Southern Ocean, the Gulf Stream and the Kuroshio, with most pronounced changes



22 S. JURICKE, S. DANILOV, N. KOLDUNOV, M. OLIVER, D. V. SEIN, D. SIDORENKO, Q. WANG

Control temperature bias at KBack1l.5 temperature bias at
Om om

-5.00 —3.75 —2.50 —1.25 0.00 1.25 2.50 3.75 5.00 -5.00 —3.75-2.50 —1.25 0.00 1.25 2.50 3.75 5.00
deg C deg C

FIGURE 9. Improvements due to kinematic backscatter are visible in tem-
perature biases, comparing the model mean from 1979-2009 for the (left
column) Control to the (right column) KBackl.5 simulation, with biases
relative to the PHC climatology.

for the Kuroshio and the Agulhas currents, where also the underestimation of Control
is largest. The increase in these regions is over 0.1m, which is substantial, but still
not enough to reach the levels observed by satellite altimetry (compare Fig. 8c and 8d
with 8f).
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There are clear differences between the two experiments in terms of temperature
biases with respect to the PHC (PHC 3.0, updated from Steele, Morley, & Ermold,
2001) climatology (Fig. 9). At the surface, the infamous cold bias over the North-West
corner of the Atlantic Ocean (see, e.g., Wang, Claus, Greatbatch, & Sheng, 2017) is
considerably reduced in KBackl.5, although it does not disappear completely. This
is also true for the same bias at 100m depth. Eddy-mean flow-interactions play an
important role in defining the path and the intensity of the Gulf Stream (e.g. Kang
& Curchitser, 2015). The enhanced eddy activity in KBackl.5 leads to an improved
simulation of the path of the Gulf Stream and its extension (cf. the discussion in Juricke
et al., 2020). Furthermore, we observe a general decrease of the 100 m warm bias in
the northern North Atlantic. There are also reductions of biases at 100 m depth along
the Southern Ocean fronts, especially in the Atlantic sector, while the Gulf Stream gets
warmer. At 500m depth, the most striking difference is a reduction of the biases in
the whole Southern Ocean. Temperatures in the North Atlantic also move closer to
climatology, while differences in the Pacific Ocean are less pronounced. The cold bias
at 1000 m west of the Strait of Gibraltar largely disappears in KBackl.5 and the warm
bias in the Southern Ocean is reduced.

Overall, kinematic backscatter with the new viscosity coefficient leads to improve-
ments in the ocean dynamics that translate into reduced hydrographic biases. The
bias reductions are similar to those obtained with the dynamic energy backscatter pa-
rametrization of Juricke et al. (2020) and are associated with enhanced eddy activity
and associated changes in eddy heat transport. However, different from the dynamic
backscatter of Juricke et al. (2020) — which required solving an additional subgrid en-
ergy equation as well as a time step reduction to 10 minutes for the global simulations —
kinematic backscatter does not induce extra costs in terms of computation time. Here,
we can keep the same, relatively large time step of 20 minutes for both Control and
KBackl.5. Further, our implementation of kinematic backscatter comes at no additional
cost for the computation of the operators. As KBack1.5 runs stably with the larger time
step despite enhanced eddy activity, we conjecture that the time step reduction neces-
sary for dynamic backscatter on global meshes in Juricke et al. (2020) is primarily due
to an intermittently excessively large negative viscosity coefficient there, not due to the
more vigorous eddy activity. How to transfer this positive result to dynamic backscatter
requires further studies.

Improvements with KBack1.5 compared to the previous FESOM2 default setup Control
with Leith viscosity are substantial without additional cost and obvious drawbacks.
While DBack may energize the flow even more, as discussed in Section 5, this additional
increase in EKE does not yet justify the increase in computational cost. However, further
adjustments to DBack may change this assessment and ultimately challenge KBackl.5,
especially since DBack automatically scales with resolution without additional tuning.

7. Di1scuUssIONS AND CONCLUSIONS

We describe a simplified, “kinematic” implementation of an energy backscatter pa-
rametrization, together with a new flow-dependent parametrization for the viscosity
coefficient. The new scheme is tested in an idealized channel and in a global mesh
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configuration. In both tests, it leads to considerable improvements in simulated ocean
dynamics as well as hydrography in comparison with classical viscosity closures.

Viscosity affects a range of scales in the vicinity of the grid scales, commonly creating
excessive dissipation on eddy-permitting meshes. Recognizing this, we propose to reduce
the viscous force by subtracting its locally averaged value multiplied with some coeffi-
cient. In this case, viscous damping remains unchanged at grid scales, but is reduced at
larger scales or replaced by anti-dissipation.

We reiterate that the viscous operator with its new local coefficient of viscosity dis-
cussed here is not a physical viscosity in a strict sense. Rather, we regard it as a numerical
filter which prevents accumulation of grid-scale noise. It preserves total momentum and
dissipates kinetic energy, but violates more subtle physical principles. However, this
occurs at small scales where all operators deviate from their continuous counterparts.
The utility of our approach is supported by the simulations shown in this paper.

We describe the implementation of kinematic backscatter for cell velocities on a tri-
angular mesh and show that, in practice, subtraction of the mean viscosity multiplied
with a coefficient larger than one (up to 1.5 in the case of FESOMZ2) is possible, which
allows the simulated flows to be re-energized. In contrast to dynamic backscatter (see,
e.g., Juricke et al., 2019), kinematic backscatter does not use a consistent subgrid energy
budget, but rather relies on the heuristics that (i) net dissipation must be reduced on
eddy-permitting meshes, (ii) dissipation near the grid scale cannot be reduced for rea-
sons of numerical stability, and (iii) nonlinear interactions will act to restore the cascade
of energy across scales.

Kinematic backscatter uses a simple new viscosity coefficient based on velocity dif-
ferences between the nearest neighbors. The coefficient can, therefore, be efficiently
computed together with the necessary operators, resulting in a slight reduction in com-
putational costs compared to the Leith scheme with its more complex viscosity coef-
ficient. More importantly, kinematic backscatter comes at much lower computational
cost compared to dynamic backscatter for two reasons. First, the current implementa-
tion of dynamic backscatter requires a time step smaller than is necessary with kinematic
backscatter. Second, kinematic backscatter does not employ an additional prognostic
equation for subgrid energy. While this is computationally less expensive, it has the
drawback that there is currently no theory for the selection of the factor o which scales
the backscatter component of the new scheme. The selection may depend on the shape
of the energy spectrum of the simulated flow, thus, at least partially, on the energy
scattered back to larger scales by the scheme itself for values of & > 1. We were able run
eddy-permitting simulations stably with values for a up to 1.5, in the channel as well as
for the global ocean. Adjustments might be required on different meshes.

The EKE increase provided by our kinematic backscatter parametrization depends
on the strength of the chosen viscosity. The amplitude of the viscosity coefficient for
kinematic backscatter can be controlled by a scaling coefficient ;. The eddy-permitting
configurations (the channel at 20km and the realistic ocean at 1/4° mesh) run stably
with a small 1, i.e. 71 = 0.03. It creates much less dissipation than traditional viscosities
such as the Leith scheme. This reduced dissipation contributes to the EKE increase for
the 20km resolution channel even more than the backscatter component. However,
such a weak viscosity leads to a spurious behavior of the vertical velocity component
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w on a finer mesh (10km resolution), and a higher ;3 = 0.1 is needed to eliminate
it. For the viscosity coefficient with v; = 0.1, kinematic backscatter simulates nearly
the same EKE levels as reached in kinematic backscatter runs with the smaller ;. In
these simulations with increased i, any increase in EKE is now almost entirely due
to the backscatter component. Ultimately, EKE can be increased by tuning both the
viscosity coefficient and the backscatter component of the kinematic backscatter scheme.
The eventual increase in EKE is quite insensitive to the choice of the coefficient v,
when « is set to 1.5. We can conclude that with o = 1.5, the increased dissipation
due to a larger ~; is effectively compensated by similarly increased anti-dissipation,
and a larger 7; only adjusts the minimum dissipation near the grid scale, which is
necessary for model stability. In the future, more testing is required for all possible
options for the viscosity and backscatter components (including biharmonic viscosities)
to further optimize the scheme, by also taking into consideration additional aspects,
such as spurious dianeutral mixing that might accompany an increase in EKE (Ilcak,
Adcroft, Griffies, & Hallberg, 2012). An analysis of the behavior of kinetic energy and
energy dissipation close to the grid scales may provide further insights into the selection
of 71 and «a. The placement of velocities at triangle centers in FESOM?2 creates aliasing
in spectral analysis at grid scales, which is the reason why dissipation spectra were not
presented here. The development of alternative methods for scale analysis is the subject
of ongoing work.

Finally, we stress that energy backscatter parametrizations have a limited range of
resolutions where they provide substantial benefits, namely flows on eddy-permitting or
barely eddy-resolving meshes. There is no strong argument in favor of using backscatter
if the scales of EKE dissipation are well separated from the scales of EKE generation.
However, kinematic backscatter with o < 1 may still be useful as a means to combine
harmonic and biharmonic viscosities in those cases.

Eddy-permitting models will remain an essential part of coupled climate models for
years to come and in many applications fully eddy-resolving ocean simulations will re-
main unaffordable. This new kinematic backscatter parametrization provides an efficient
and easy-to-implement option to improve the simulation of eddy effects in global ocean
simulations and bring eddy-permitting simulations closer to computationally much more
expensive higher resolution setups.

APPENDIX A. HEURISTIC ARGUMENT FOR STABILITY OF THE SCHEME

In the following, we provide a heuristic argument for sustained stability of the scheme
(7) for « close to one: Let E(k) be the EKE spectrum of a simulated flow (for example,
obeying the quasigeostrophic scaling E(k) ~ k=3). Then a necessary condition for
stability is that the operator acts dissipatively on scales smaller than the forcing scale
(here kg, the reciprocal of the Rossby radius of deformation), i.e.,

w/h w/h
(23) 0> v B(k) dk = / (1—aFp) Vi E(k)dk.
kr kr
We know from (6) that Fj, < 1 and F}, tends to zero at the spectral cutoff kyax = 7/h, so
that the condition (23) is satisfied for some range of a > 1. Since, in practice, the forcing
scale is close to kpax, we cannot expect to see an inertial range with a clean power-law
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scaling, i.e. (23) will not give a useful quantitative bound: the range of admissible «
needs to be determined empirically.
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