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We introduce the method of degenerate variational asymptotics for a class of sin-
gularly perturbed ordinary differential equations in the limit of strong gyroscopic
forces. Such systems exhibit dynamics on two separate time scales. We derive ap-
proximate equations for the slow motion to arbitrary order through an asymptotic
expansion of the Lagrangian in suitably transformed coordinates. We prove that
the necessary near-identity change of variables can always be constructed, and that
solutions of the slow limit equations shadow solutions of the full parent model at
the expected order over a finite interval of time.
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1. Introduction

We consider systems of differential equations of the form

q̇ = p , (1.1a)

ε ṗ = Jp−∇V (q) , (1.1b)

where q : [0, T ] → R2d is the vector of positions, p the vector of corresponding
momenta, J is the canonical symplectic matrix in 2d dimensions, V is a smooth
potential and ε is a small parameter. The system supports slow motion on the time
scale t = O(1) and fast motion on the time scale t = O(ε−1). Our goal is to study
variational approximations of the motion on a quasi-invariant slow manifold.

In the simplest physical interpretation of (1.1) with d = 1, the model describes
the motion of a single charged particle in a planar potential V under the influence
of a magnetic field normal to the plane of motion. The limit ε→ 0 corresponds to
the somewhat unphysical situation that the mass of the particle is going to zero
while its charge is held constant.

The motivation for studying (1.1) as written comes from the observation that the
model arises in direct analogy to the semigeostrophic limit in geophysical fluid dy-
namics (Cotter & Reich 2006; Oliver 2006; Gottwald et al. 2007; Frank & Gottwald
2013). (This limit is also known as “Phillips type 2 scaling” or the “frontal dynam-
ics regime.”) In this interpretation, Jq̇ represents the Coriolis force and the limit
ε→ 0 is the limit of a rapidly rotating earth. For the geophysical background and
extended bibliography, we refer the reader to Salmon (1998), Cullen (2006) and
Vanneste (2013).
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System (1.1) is Hamiltonian, albeit with a noncanonical symplectic structure.
Hence, we would expect that there exist approximate slow manifolds in the sense
that they are almost invariant under the evolution and on which the dynamics is
given by an equation of the form q̇ = Fslow(q) which can be constructed as an
asymptotic series in ε up to a small remainder (MacKay 2004).

We note that the equations of motion for the slow degrees of freedom cannot
be determined by direct inspection, except for the leading order term obtained by
setting ε = 0 in (1.1). However, there are several ways to construct Fslow(q) to any
order. Most directly, we can re-insert the slow equation at order εn to eliminate ṗ
at order εn+1, iterating up order by order. The construction can be made rigorous
using an iteratively constructed sequence of transformations that separate fast and
slow motions, which we shall review in Section 2. These transformations generally
neither rely on nor preserve the Hamiltonian structure and would work equally well
if ∇V were replaced by an arbitrary vector field. It is possible, though, to choose
a canonical transformation in the Hamiltonian case as pointed out for example,
by Nĕıshtadt (1984) in the context of averaging. We note that classical averaging
also yields an equation for the amplitudes of the fast motions which, in general,
can resonate with the slow dynamics. Here, however, we are only concerned with
the dynamics on slow manifolds where resonances are not a concern. For a more
recent account on slow-fast splittings in a variety of related contexts, see Cheng &
Mahalov (2013) and references therein.

A second approach in the Hamiltonian context is the use of normal form trans-
formations (Gelfreich & Lerman 2002; Murdock 2003; Sanders et al. 2007; Uldall
Kristiansen & Wulff 2012). This technique has been applied by Cotter and Reich
(2006) to a system of precisely the form (1.1) showing, in particular, that it is
possible to construct an exponentially accurate slow manifold.

In this paper, we analyze a new construction which is based on the variational
formulation of (1.1). Namely, the system is equivalent to the Euler–Lagrange equa-
tion for the Lagrangian

Lε(q, q̇) =
ε

2
|q̇|2 − 1

2
q̇TJq − V (q) , (1.2)

which reads
ε q̈ − Jq̇ +∇V (q) = 0 . (1.3)

Our approach is based on the observation that, formally, the leading order La-
grangian is affine, i.e. is linear in the velocity. We shall construct our approximate
slow vector field by applying carefully chosen near-identity transformations to the
Lagrangian that push the non-affine contributions into terms which are of succes-
sively increasing order in ε. Then, by truncating the ε-expansion of the Lagrangian,
we drop all non-affine terms. As we will show in this paper, these equations pro-
vide an approximation to the slow dynamics accurate to the order to which the
procedure is carried out.

We call this approach the method of degenerate variational asymptotics. The
term variational asymptotics generally refers to perturbation techniques that are
performed at the level of the variational principle. We say it is degenerate because
the affine target Lagrangian is degenerate, in fact totally singular (Popescu 2009),
which implies that the phase space is constrained to R2d, the expected dimension
of the slow manifold.
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The construction is based on ideas first developed in the context of rotating
fluid flow (Oliver 2006). It has three distinct advantages. First, the resulting slow
equations are again variational, therefore, under suitable restriction of phase space,
also Hamiltonian (Oliver & Vasylkevych 2011). Second, the new construction in-
volves only differentiation and is therefore easy to carry out in an automated way.
Third, the transformation which renders the Lagrangian affine to some given or-
der is by far not unique. For systems of ordinary differential equations of the form
(1.1), all of the possible resulting slow systems are asymptotically equivalent as
we shall show below. For partial differential equations, however, the choices that
can be made will affect the functional setting, hence the well-posedness of the slow
system as an initial value problem (Oliver & Vasylkevych 2013, 2014). Based on
these examples, we expect that the freedom in the choice of transformation will be
crucial to proving similarly strong results in the PDE context.

One of the crucial observations in the PDE context, more specifically for semi-
geostrophic theory, is that a transformation to an (essentially) canonical Hamilto-
nian slow system as originally suggested by Salmon (1985) turns out to be precisely
the situation when well-posedness of the Cauchy problem breaks down. This has
led us to consider alternative constructions of the type considered here which allow
us to manipulate both, the symplectic structure and the Hamiltonian, in a con-
trolled way. Hence, we see the present work as a first step towards establishing
corresponding results for infinite dimensional reduced slow dynamics.

Our main result is of shadowing type: when the solution to the full system (1.1) is
initially prepared so that it is consistent with the appropriately transformed solution
to the variational slow system of order n modulo possible errors at O(εn+1), then
it remains O(εn+1)-close over times of order one.

The remainder of the paper is structured as follows. We next describe a standard
non-variational construction of the slow equation. In Section 3, we detail the method
of degenerate variational asymptotics and show that the process can be carried out
to any order. Section 4 discusses the resulting slow Euler–Lagrange equations. Sec-
tion 5 contains our main shadowing result, Theorem 5.1. In Section 6, we illustrate
the construction by explicitly performing the computation up to second order. The
paper concludes with some final remarks.

2. Nonvariational construction

In this section, we recall a classical construction of the splitting into slow and fast
variables similar to what has been used, for example, by Nĕıshtadt (1984). The
result does not depend on the variational structure of the parent system; it only
relies on the anti-symmetry of J and the associated oscillatory nature of the fast
dynamics.

Theorem 2.1. For n ≥ 0 fixed, suppose V ∈ Cn+2 and set

Fnnv(q) =

n∑
i=0

fi(q) ε
i (2.1)

with coefficient functions fi recursively defined via

f0(q) = −J∇V (q) , (2.2a)
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fk(q) = −J
∑

i+j=k−1

Dfi(q) fj(q) . (2.2b)

For fixed initial positions q0 ∈ R2d, let q(t) denote a solution to the nonvariational
limit system

q̇ = Fnnv(q) (2.3)

with q(0) = q0. Let qε(t) solve the full parent dynamics (1.1) consistently initialized
via qε(0) = q0 and pε(0) = Fnnv(q0). Then for every T > 0 there exists ε0 > 0 and
c = c(q0, T ) such that

sup
t∈[0,T ]

‖qε(t)− q(t)‖ ≤ c εn+1 (2.4)

for all 0 < ε ≤ ε0.

Proof. Introduce a new fast variable wn+1 = pε − Fn+1
nv (qε), so that

q̇ε = Fnnv + wn+1 + εn+1 fn+1 , (2.5a)

ẇn+1 =
(1

ε
J −DFn+1

nv

)
wn+1 +

1

ε

(
JFn+1

nv −∇V
)
−DFn+1

nv Fn+1
nv . (2.5b)

Substituting in the expansion (2.1), we can iteratively determine the fi such that
the inhomogeneity in (2.5b) is of order εn+1. This immediately yields (2.2) as a
recursive formula for the nonvariational vector field. Left-multiplying (2.5b) with
wn+1 gives

d

dt
‖wn+1‖ ≤ ‖DFn+1

nv ‖ ‖wn+1‖+O(εn+1) (2.6)

so that, if wn+1 = O(εn+1) initially, it will remain so for times of order one. As the
two last terms in (2.5a) are both O(εn+1), the dynamics is predominantly slow and
can be approximated to O(εn+1) by q̇ = Fnnv(q) over times of order one.

Remark 1. It is easy to check that the slow system of Theorem 2.1 is nonvariational
with respect to the canonical symplectic structure: the first order term f1 in (2.2)
is not closed, hence cannot be written as the gradient of a potential. It is more
difficult to exclude whether, at least for special V , (2.3) may be variational with
respect to a noncanonical structure. Numerical evidence, however, indicates that
this is generally not the case. E.g., when d = 1, V is a quartic potential, and ε > 0
is fixed, solutions of the slow system blow up in a finite time, larger though than
the time of validity of the estimate of Theorem 2.1.

3. Degenerate variational asymptotics

We now describe the method of degenerate variational asymptotics. A key ingre-
dient is the construction of a transformation qε = Φn[q], where q will be the slow
variable. We use the square bracket notation to indicate that we seek Φn as a func-
tional of q which shall not only depend on q but also on a certain number of its
derivatives. We begin by describing the methods in three steps, then we prove that
the required transformation can always be found.
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Step 1. Fix n ∈ N, insert the ansatz

qε = Φn[q] ≡
n∑
i=0

εi

i!
q[i] (3.1)

with q[0] = q into the Lagrangian Lε(qε, q̇ε), expand, and collect powers of ε. In
this process, arbitrary time derivatives which are null-Lagrangians—they do not
contribute to the equations of motion—may be added or subtracted as convenient.

Step 2. Choose, iteratively at order ε1, . . . , εn the coefficients q[1], . . . , q[n] as func-
tions of q and its time time derivatives q(1), . . . , q(n) in such a way that the expanded
Lagrangian is of the form

Lε(qε, q̇ε) =

n∑
i=0

εi

i!
L[i](q, q̇) +O(εn+1) , (3.2)

where each L[i](q, q̇) is an affine function of q̇.

Step 3. Truncate terms of order larger than εn and compute the Euler–Lagrange
equation of the resulting reduced Lagrangian.

As the notation suggests, we can operate with (3.1) as if it were a power series
expansion in ε. In the end, however, this procedure is defining a transformation
between qε, representing the solution in the old, physical coordinates, and q, rep-
resenting the solution in the newly constructed coordinate system.

In Section 6, we illustrate the procedure by explicit computation up to terms of
second order. In the following, we shall show that the procedure can be performed
to any order. This result is a prerequisite for our main theorem. We write α to
denote an `-tuple of nonnegative integers where, depending on context, ` = i or
` = i − 1 and, following the usual multi-index convention, α! = α1! · · ·α`! and
|α| = α1 + · · ·+ α`.

Proposition 3.1. For every fixed n ∈ N, there exists a transformation of the form
(3.1) with coefficients

q[i]

i!
=

(
− 1

2

i

)
J i q(i) +

∑
1·α1+2·α2+···

+(i−1)αi−1≤i−1

T iα(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(i−1)

)⊗αi−1
]
, (3.3)

where for q fixed, Tα(q) is an |α|-linear form in its remaining arguments and ⊗α
denotes an α-fold repetition of the argument, such that, up to perfect time deriva-
tives,

Lε(qε, q̇ε) = Lnslow(q, q̇) + εn+1 LnR(q, q̇, . . . , q(n+1)) (3.4)

with an affine leading contribution

Lnslow(q, q̇) = − 1
2 q̇

TRn(q)− Vn(q) (3.5)

containing at most n derivatives of V and a remainder LnR containing at most n+1
derivatives of V . The perturbation expansions are near-identity in the sense that
Φn[q] = q + εΨn[q], Rn(q) = Jq + εGn(q) and Vn(q) = V (q) + εWn(q).
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Proof. We begin by inserting (3.1) as an ansatz into Lε and develop into a Taylor
series with integral remainder,

Lε =

n∑
i=0

εi

i!
L[i] +

1

n!

∫ ε

0

(ε− s)n L[n+1]
s ds , (3.6)

where, via the Faà di Bruno formula (Johnson 2002), the ith derivative with respect
to ε of Lε is given by

L
[i]
ε

i!
=

1

2

∑
j+k=i−1

(
q̇
[j]
ε

j!

)T(
q̇
[k]
ε

k!

)
− 1

2

∑
j+k=i

(
q̇
[j]
ε

j!

)T
J

(
q
[k]
ε

k!

)

−
∑

1·α1+···+iαi=i

1

α!
D|α|V (qε)

[(
q
[1]
ε

1!

)⊗α1

, . . . ,

(
q
[i]
ε

i!

)⊗αi
]
, (3.7)

and where we set L[i] ≡ L[i]
0 for every i ≥ 0.

We will now iteratively construct the q[i] of our transformation such that the

corresponding L
[i]
ε become affine. At level i = 0, we set q[0] = q. Now let i ≥ 1 and

assume that q[0], . . . , q[i−1] have already been constructed. Noting that, for arbitrary
u and v,

u̇TJv + v̇TJu = 2 u̇TJv (3.8)

up to a perfect derivative, we isolate the two terms which contain the currently
undetermined q[i], writing

L[i] =
i!

2

∑
j+k=i−1

(
q̇[j]

j!

)T(
q̇[k]

k!

)
− q̇TJq[i] − i!

2

∑
j+k=i
j,k≥1

(
q̇[j]

j!

)T
J

(
q[k]

k!

)

−DV (q) q[i] −
∑

1·α1+···
+(i−1)αi−1=i

i!

α!
D|α|V (qε)

[(
q[1]

1!

)⊗α1

, . . . ,

(
q[i−1]

(i− 1)!

)⊗αi−1
]
.

(3.9)

Let us now explicitly determine the leading order term of the transformation. Sub-
stituting in the expression for q[j] for j = 0, . . . , i − 1 from (3.3), we see that only
the two sums on the first line of (3.9) contain the maximal number of i + 1 time
derivatives. Looking only at the leading order contribution, these terms read,

i!

2

[ ∑
j+k=i−1

(
− 1

2

j

)(
− 1

2

k

)(
Jj q̇(j)

)T
Jk q̇(k) −

∑
j+k=i
j,k≥1

(
− 1

2

j

)(
− 1

2

k

)(
J q̇(j)

)T
Jk+1 q(k)

]

=
i!

2
q̇T J i−1 q(i)

[ ∑
j+k=i−1

(
− 1

2

j

)(
− 1

2

k

)
+
∑
j+k=i

(
− 1

2

j

)(
− 1

2

k

)
− 2

(
− 1

2

i

)(
− 1

2

0

)]

=
i!

2
q̇T J i−1 q(i)

[(
−1

i− 1

)
+

(
−1

i

)
− 2

(
− 1

2

i

)]
= −i! q̇T J i−1 q(i)

(
− 1

2

i

)
, (3.10)
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where the second identity holds modulo perfect derivatives, the third identity is
due to the Vandermonde identity and the last identity uses Pascal’s rule together
with

(
0
i

)
= 0. Since the terms in (3.10) must be annihilated by the term −q̇TJq[i]

in equation (3.9), we demand that

q[i] = i!

(
− 1

2

i

)
J i q(i) + lower order terms . (3.11)

We now proceed to successively eliminate terms which contain j = i − 1, . . . , 2
derivatives, until only terms with j = 1 time derivatives are left. The resulting
expressions are combinatorially extremely complex, but the process can be sum-
marized by lumping all terms depending on the same set of derivatives of q into a
single multilinear expression. Namely, after full insertion of (3.3) into (3.9), where
the T iα are considered ansatz functions which are yet to be determined, elimination
of the leading order contribution through (3.11), and the removal of perfect time
derivatives, we can write, initially with j = i− 1 and W i−1 ≡ 0,

L[i] = −
[
q̇T J + DV (q)

] ∑
1·α1+···+jαj≤j

T iα(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(j)
)⊗αj

]
+ q̇T

∑
1·α1+···+jαj≤j

U jα(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(j)
)⊗αj

]
+W j(q)

= q̇T
∑

1·α1+···+jαj=j

(U jα − J T iα)(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(j)
)⊗αj

]
−DV (q)

∑
1·α1+···+jαj≤j

T iα(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(j)
)⊗αj

]
+ q̇T

∑
1·α1+···

+(j−1)αj−1≤j−1

(U jα − J T iα)(q)
[(
q(1)
)⊗α1

, . . . ,
(
q(j−1)

)⊗αj−1
]

+W j(q) . (3.12)

The first sum on the right of (3.12) contains all terms with the maximal j+ 1 time
derivatives which can be eliminated by setting T iα ≡ −J U jα for the indices which
appear in the first sum. This choice must be substituted back into the second sum
on the right of (3.12). After possible integration by parts, i.e. the removal of perfect
derivatives, these terms can be merged into the third sum on the right of (3.12) if
they contain at least one time derivative or into W j if they do not. Rearranging
terms, we again find an expression of the form (3.12) with j decreased by 1. This
procedure can be repeated until j = 1 when the remaining expression is affine and all
the T iα which appear in (3.3) are fully determined. This completes the construction
of the transformation (3.1).

To see that the remainder Lagrangian has the indicated form, it suffices to insert
the transformation into the Taylor remainder from (3.6), noting that the highest
possible time derivative in the resulting expression is of order n+ 1.

Remark 2. Proposition 3.1 and all subsequent results in this paper remain valid
and otherwise unchanged if we add arbitrary point transformations, i.e. functions
of q only, to the q[i] at each order i ≥ 1.
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Remark 3. In Proposition 3.1 we are able to state a general expression for the
leading term of the transformation at any order. A similarly explicit expression for
all terms, however, appears to be combinatorially too complex to be useful.

4. Euler–Lagrange equations

Generally, if L(q, q̇, . . . ) is a Lagrangian, the corresponding Euler–Lagrange equa-
tion is equivalent to computing critical points of the action

S =

∫ t2

t1

L(q, q̇, . . . ) dt (4.1)

with respect to variations δq that vanish at t1 and t2. For the slow Lagrangian Lnslow
from Proposition 3.1, we obtain after integration by parts that

δSnslow =

∫ t2

t1

δqT
(
1
2 (DRn(q)−DRn(q)T ) q̇ −∇Vn(q)

)
dt . (4.2)

Thus, setting

Jn(q) =
DRn(q)−DRn(q)T

2
, (4.3)

we can write the slow Euler–Lagrange equation as

ELnslow[q] ≡ −Jn(q)q̇ +∇Vn(q) = 0 . (4.4)

In the following, if fε : [0, T ] → R2d denotes a family of functions defined for
ε ∈ (0, ε0], we say that fε = O(εm) if dj/dtjfε = O(εm) as ε→ 0 for every j ∈ N0.
As a first basic result, we obtain that solutions to (4.4) are slow in this sense. For
simplicity, we assume that V is smooth throughout.

Proposition 4.1. Let q denote a family of solutions to the slow Euler–Lagrange
equation (4.4), implicitly parametrized by ε, with q(0) fixed. Then q = O(1).

Proof. Recall that Jn(q) = Jq + εGn(q). Thus, on every fixed bounded set, Jn(q)
is uniformly invertible for ε small enough. Thus, for any fixed T > 0, uniform
boundedness of supt∈[0,T ]|q(t)| for small ε follows by a direct application of the
Gronwall lemma to (4.4). Further, uniform boundedness of q̇ follows directly from
the slow equation of motion; boundedness of higher time derivatives is similarly
obtained by successive time differentiation of (4.4) followed by expressing the time
derivatives as functions of q upon resubstitution of q̇ from the slow equation, which
can always be done as Jn(q) is uniformly invertible.

Remark 4. When V is convex, the restriction on ε in the proof of Proposition 4.1
can be chosen uniform in T . This can be seen as follows. For fixed q(0), choose
b > |V (q(0))|. Convexity of V implies that there existsB such that |z| < B whenever
|V (z)| < b. Recall that Vn(q) = V (q)+εWn(q). Continuity of Wn implies that there
exists c such that |Wn(z)| < c for all |z| < B. Choose ε < |b− V (q(0))|/(2c). Since
Vn is conserved under the evolution of (4.4), this means that V (q) is constrained
to a ball of radius |b− V (q(0))|/2 about Vn so that, in particular, |V (q)| < b and q
remains correspondingly constrained to |q| < B for all times.
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Next, we estimate the residue when inserting the transformed solution of the
slow Euler–Lagrange equation into the expression for the full Euler–Lagrange equa-
tion.

Proposition 4.2. As before, let q denote an ε-parametrized family of solutions to
the slow Euler–Lagrange equation (4.4) with q(0) fixed. Then ELε[Φn[q]] = O(εn+1).

In the proof, we make use of a simple lemma.

Lemma 4.3. Let

Aε = I + ε

k∑
i=0

aiε(t)
di

dti
(4.5)

be a family of linear operators with any finite number of nonzero coefficients aiε =
O(1). Suppose further that fε is a family of O(1)-functions, m times differentiable
in ε for some m ∈ N0. Then Aεfε = O(εm) implies fε = O(εm).

Proof. Expand fε into a Taylor series of order m and match coefficients order by
order.

Proof of Proposition 4.2. We begin by computing the full Euler–Lagrange equation
in the transformed frame of reference. Varying the corresponding action, we find

δS = δ

∫ t2

t1

Lε

(
Φn[q],

d

dt
Φn[q]

)
dt

=

∫ t2

t1

δqT DΦn[q]∗
(

DqLε

(
Φn[q],

d

dt
Φn[q]

)
− d

dt
Dq̇Lε

(
Φn[q],

d

dt
Φn[q]

))
dt

=

∫ t2

t1

δqT DΦn[q]∗ ELε[Φn[q]] dt , (4.6)

where DΦ∗n denotes the adjoint of DΦn. Since, by Proposition 3.1,

Lnslow(q, q̇) = Lε

(
Φn(q),

d

dt
Φn(q)

)
− εn+1 LnR(q, . . . , q(n+1)) , (4.7)

we correspondingly have that

ELnslow[q] = DΦn[q]∗ ELε[Φn[q]]− εn+1 ELnR[q] , (4.8)

where the first term on the right was derived in (4.6) and the second term on the
right denotes the Euler–Lagrange equation of the remainder which, without further
computation, is seen to be some expression with smooth dependence on at most
2(n+1) derivatives of q. Thus, supposing q solves the slow Euler–Lagrange equation,
ELnR[q] = O(1) and, moreover, the left hand expression in (4.8) is zero, so that

DΦn[q]∗ ELε[Φn[q]] = O(εn+1) . (4.9)

Finally, recalling that Φn is a near-identity transformation, we observe that DΦn[q]∗

is of form (4.5). The claim thus follows by Lemma 4.3.
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5. Shadowing theorem

We are now in a position to state and prove our main shadowing result. The proof
is in essence an application of the nonvariational splitting introduced in Section 2
to the equation satisfied by the difference between the full motion and the slow
motion.

Theorem 5.1. Suppose that V is smooth. For n ≥ 0 and q0 ∈ R2d fixed, let q
denote a solution of the slow Euler–Lagrange equation (4.4) with q(0) = q0. Let qε
solve the full parent dynamics (1.1) consistently initialized via qε(0) = Φn[q]

∣∣
t=0

and

pε(0) = d
dtΦn[q]

∣∣
t=0

. Then for every fixed T > 0 there exist ε0 > 0 and c = c(q0, T )
such that

sup
t∈[0,T ]

‖qε(t)− Φn[q(t)]‖ ≤ c εn+1 (5.1)

for all 0 < ε ≤ ε0.

Proof. We set z = Φn[q]. By Proposition 4.2, ELε[z] = O(εn+1). The equivalence of
the model equation (1.1) and its Euler–Lagrange equation (1.3) allows us to write

ż = r , (5.2a)

ε ṙ = Jr −∇V (z) +O(εn+1) . (5.2b)

We now let u = qε − z, v = u̇, and—following the construction in the proof of
Theorem 2.1—introduce the fast variable w = v − Fn+1(z, u) with Fn+1 yet to be
determined. Then

u̇ = w + Fn+1 (5.3a)

ẇ =
1

ε

(
Jv +∇V (z)−∇V (qε)

)
−DzF

n+1 ż −DuF
n+1 u̇+O(εn)

=

(
1

ε
J −DuF

n+1

)
w +

1

ε

(
JFn+1 +

∫ 1

0

D∇V (z − λu)udλ

)
−DzF

n+1 ż −DuF
n+1 Fn+1 +O(εn) . (5.3b)

Expanding

Fn+1(z, u) =

n+1∑
i=0

fi(u, z) ε
i , (5.4)

we can, as in the proof of Theorem 2.1, choose the fi order by order as to eliminate
all but the first term on the right of (5.3b) up to a remainder of O(εn+1). The
Gronwall lemma yields, once again, that if w = O(εn+1) initially, it will remain so
for times of order one. (Note that w is only O(εn+1) but not O(εn+1) as it contains
small amplitude fast oscillations with frequencies of order ε−1.)

Hence, u satisfies

u̇ = Fn+1(u) +O(εn+1) . (5.5)

When qε is consistently initialized as assumed, u = O(εn+1) initially, so it remains
so for times of order one. This directly implies the claim of the theorem.

Article submitted to Royal Society



Slow dynamics via degenerate variational asymptotics 11

Remark 5. As the coefficients of a Taylor series are uniquely defined, a variation
of the proof of Theorem 5.1 can be used to show that any parent system which is
an O(εn+1) perturbation of (1.1) must share the same nonvariational slow system
q̇ = Fnnv(q). In particular, the nonvariational slow vectorfield Fnnv and the variational
slow vectorfield Fnvar = J−1n (q)∇Vn(q) arising from (4.4) differ only by O(εn+1).

Remark 6. Using the explicit expressions for the first and second order model we
derive in Section 6 below, it is easy to simulate the model problem numerically.
Such experiments suggest that in general we cannot expect an order of accuracy
of the shadowing result, or a time scale of validity better than what is provided
by Theorem 5.1. However, it has been observed by Oliver (2006) that in the very
special situation of first order slow equation for a harmonic potential, the order of
accuracy is actually better by one as compared to the generic case.

Remark 7. The proof of Theorem 5.1 requires only that V ∈ C2(n+1). Although we
can then only assert that the right hand side in (4.9) is O(εn+1), careful tracking
of time differentiability shows that all other arguments will continue to hold true.
However, it is not clear whether this restriction is really necessary as the slow
Euler–Lagrange equation at order εi depends on at most i+ 1 derivatives of V .

6. Explicit expressions

In this section, we derive the variational slow equation and the associated change
of coordinates up to second order. The expressions we write out are unambiguous
by noting that all vectors are column vectors, the symbol D acts as a row vector, ∇
as a column vector, Hess = D∇ denotes the Hessian, and ∆ the Laplace operator.

Step 1. Inserting the ansatz qε = q+ε q′+ 1
2 ε

2 q′′ for the second order transformation
into Lε(qε, q̇ε) and expanding in powers of ε, we obtain, up to terms of order ε3

and perfect time derivatives, that

Lε = L[0] + εL[1] + 1
2 ε

2 L[2]

with

L[0] = − 1
2 q̇

TJq − V (q) , (6.1a)

L[1] = 1
2 |q̇|

2 −DV (q) q′ − q̇TJq′ , (6.1b)

L[2] = 2 q̇T q̇′ − q′TD∇V (q)q′ −DV (q) q′′ − q̇′TJq′ − q̇TJq′′ . (6.1c)

Step 2. The leading order Lagrangian is already affine. This is generally necessary
for the construction to work. At first order, we need to remove the quadratic term
1
2 |q̇|

2 from L[1]. This requirement implies

q′ = − 1
2 Jq̇ + q′point , (6.2)

where q′point is an arbitrary function of q. For reasons that will become apparent
later, we consider choices which are proportional to the first term under the sub-
stitution of the time derivative by the leading order slow equation. This singles out
the family of transformations

q′ = − 1
2 Jq̇ + µ∇V (q) , (6.3)
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where µ ∈ R remains arbitrary. Substituting this expression back into (6.1b) we
find that the first order Lagrangian is of the form

L[1] = − 1
2 q̇

TR1(q)− V1(q) (6.4)

with

R1 = (1 + 2µ) J∇V and V1 = µ |∇V |2 . (6.5)

Moving to the next order, we correspondingly obtain

L[2] = − 3
4 q̇

TJq̈ + 3
2 µ q̇

TD∇V q̇ + 1
4 q̇

TJD∇V Jq̇ + 1
2 µ q̈

T∇V + µ∇V TD∇V Jq̇
− µ2∇V TD∇V ∇V − µ2 q̇TD∇V J∇V −DV q′′ − q̇TJq′′ . (6.6)

To render this expression affine, we must choose

q′′ = − 3
4 q̈ + 1

4 D∇V Jq̇ − (µ− 3
4 ) JD∇V q̇ + q′′point , (6.7)

where, arguing as before, we choose as free point transformation the three-parameter
family of vector fields

q′′point = ν1∇V ∆V + ν2 D∇V ∇V + ν3 JD∇V J∇V . (6.8)

Inserting this choice back into L[2], the second order Lagrangian reads

L[2] = − 1
2 q̇

TR2(q)− V2 (6.9)

with

R2(q) = −( 1
4 − µ− ν2) JD∇V ∇V − ( 3

4 + ν3 − µ− µ2) D∇V J∇V + ν1 J∇V ∆V
(6.10)

and

V2 = 1
2 (µ2 + ν2 + ν3)∇V T D∇V ∇V + 1

2 (ν1 − ν3) |∇V |2 ∆V . (6.11)

Step 3. According to (4.4), the general Euler–Lagrange equation is of the form

(J + ε J1 + 1
2 ε

2 J2) q̇ = ∇(V + ε V1 + 1
2 ε

2 V2) (6.12)

where V1, V2 are given above and J1, J2 can be computed via (4.3). In particular, un-
der the assumption that d = 1 which permits a number of algebraic simplifications,
we find that

J1 = ( 1
2 + µ) ∆V J (6.13)

and

J2 = 1
2

[
(µ+ ν1 + ν2 − 1

4 ) DV ∇∆V + (µ+ ν2 − 1
4 ) |HessV |2

+ 2 (µ2 + µ− ν3 − 3
4 ) det HessV + ν1 (∆V )2

]
J . (6.14)
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We conclude this section with two interesting observations. First, the transfor-
mation can be chosen such that Ji = 0 for i ≥ 1 so that the resulting symplectic
structure is canonical. By inspection, this is the case when

µ = − 1
2 , ν1 = 0 , ν2 = 3

4 , and ν3 = 1 . (6.15)

Second, the transformation can always be chosen such that the transformation,
when applied to a solution of the resulting slow Euler–Lagrange equation, is of the
form qε = q +O(εn+1). We speak of a near-near identity transformation as it can
be replaced by the exact identity in the statement of Theorem 5.1 without reducing
the order of accuracy. To see how this case arises, first note that the Euler–Lagrange
equation computed up to O(ε) reads(

1 + ε ( 1
2 + µ) ∆V

)
Jq̇ = ∇V + 2εµD∇V ∇V . (6.16)

Using this expression to consistently eliminate all time derivatives from the second
order transformation Φ2, we find that

qε = q + ε (µ− 1
2 )∇V + 1

2 ε
2
[
( 1
2 + µ+ ν1)∇V ∆V

+ (ν2 − 2µ+ 1
4 ) D∇V ∇V + (µ+ ν3 − 3

2 ) JD∇V J∇V
]

+O(ε3) . (6.17)

Hence, all terms except for the O(ε3) remainder vanish if we choose

µ = 1
2 , ν1 = −1 , ν2 = 3

4 , and ν3 = 1 . (6.18)

Theorem 5.1 assures that the order of the approximation is not affected by the
values of the free parameters. Each choice of parameters and indeed each choice of
q′point and q′′point leads to asymptotically equivalent slow equations.

7. Discussion

The present paper gives a complete account of the approximation properties of
the slow limit equation derived via degenerate variational asymptotics to any finite
order n in a simple, finite dimensional model setting. There are various obvious
generalizations of our results as well as harder questions which are largely open.

First, as already seen in a special case in Section 6, there is always the possibility
of choosing a “near-near identity” transformation in the following way. Starting at
order i = 1, set q[i]point = −q[i], use the slow Euler–Lagrange equation of order
i − 1 to eliminate all time derivatives from q[i]point, subtract any carry-overs from
the previous iteration level, and compute the Euler–Lagrange equation to order i.
Using this O(εi) equation, recompute all q[j]point for j = 1, . . . , i, carrying all terms
up to order i. Then iterate up to order i + 1. The resulting transformation will
be zero up to slow terms of O(εi+1), yet satisfy the requirements of splitting the
Lagrangian as in Proposition 3.1.

Second, the construction obviously extends to general nondegenerate mass ma-
trices and to position dependent gyroscopic terms. We note that the construction
in Proposition 3.1 can always be performed so long as J(q) is invertible. If J is
singular, there is generally slow motion along the singular directions, known as
guiding center motion (Littlejohn 1983); it is open whether this can be analyzed in
our framework.
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Third, numerical evidence and results at low order by Gottwald et al. (2007)
suggest that it is possible to trade approximation order for time scale of validity,
i.e., that the slow equation shadow the full system to O(εn+1−j) on time scales
O(ε−j) provided the potential V is convex. A general proof is still open.

Fourth, state of the art Hamiltonian normal form theory yields exponential es-
timates which are based on an optimal truncation of a perturbation series for the
Hamiltonian. In this framework, Nehorošev (1977) type estimates can be used to
prove exponential estimates for the tracking of the slow manifold as a phase space
object, see also Benettin et al. 1987, Gelfreich & Lerman (2002), MacKay (2004)
and Uldall Kristiansen & Wulff (2012). Cotter & Reich (2006), in particular, ob-
tain specific results for our model (1.1), and Wirosoetisno (2004) and Vanneste
(2013) discuss closely related model problems. We believe that exponential esti-
mates should be possible within our framework as well, but they are considerably
more difficult due to the interactions between the simultaneous asymptotic series
for the symplectic structure matrix and the Hamiltonian.

Finally, we believe that the methods are not only applicable, but particularly
useful for problems in partial differential equations where the freedom to add ar-
bitrary point transformations at each order can be used to control the functional
setting of the resulting limit equations (Oliver & Vasylkevych 2013, 2014). This is
difficult in the classical setting of Hamiltonian perturbation theory where trans-
formations with frozen structure operator typically lead to buildup of unbounded
operators in the perturbation series.
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Nehorošev, N. N. 1977 An exponential estimate of the time of stability of nearly integrable
Hamiltonian systems. Russ. Math. Surv. 32, 1–65. Translated from Uspehi Mat. Nauk
32, 5–66, 287.

Oliver, M. 2006 Variational asymptotics for rotating shallow water near geostrophy: a
transformational approach. J. Fluid Mech. 551, 197–234.

Oliver, M. & Vasylkevych, S. 2011 Hamiltonian formalism for models of rotating shallow
water in semigeostrophic scaling. Discret. Contin. Dyn. S. 31, 827–846.

Oliver, M. & Vasylkevych, S. 2013 Generalized LSG models with spatially varying Coriolis
parameter. Geophys. Astrophys. Fluid Dyn. 107, 259–276.

Oliver, M. & Vasylkevych, S. 2014 A new construction of modified equations for variational
integrators. Submitted for publication.

Popescu, M. 2009 Totally singular Lagrangians and affine Hamiltonians. Balkan J. Geom.
Appl. 14, 60–71.

Salmon, R. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461–477.

Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford: Oxford University
Press.

Sanders, J., Verhulst, F. & Murdock, J. 2007 Averaging Methods in Nonlinear Dynamical
Systems. New York: Springer-Verlag.

Uldall Kristiansen, K. & Wulff, C. 2012 Exponential estimates of slow manifolds. Preprint,
arXiv:1208.4219v1.

Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu.
Rev. Fluid Mech. 45, 147–172.

Wirosoetisno, D. 2004 Exponentially accurate balance dynamics. Adv. Diff. Eq. 9, 177–
196.

Article submitted to Royal Society


