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Key Points:

• Extension of the subgrid energy equation of the kinetic energy backscatter parame-
terization by adding advection and a stochastic term.

• Both additional terms improve several flow characteristics in two idealized test cases,
a channel and a double-gyre.

• Scale analysis reveals the necessity of sufficient scale separation between viscous en-
ergy dissipation and energy injection via backscatter.

Abstract

Viscosity in the momentum equation is needed for numerical stability, as well as to arrest
the direct cascade of enstrophy at grid scales. However, a viscous momentum closure tends
to over-dissipate eddy kinetic energy. To return excessively dissipated energy to the system,
the viscous closure is equipped with what is called dynamic kinetic energy backscatter. The
amplitude of backscatter is based on the amount of unresolved kinetic energy (UKE). This
energy is tracked through space and time via a prognostic equation. Our study proposes to
add advection of UKE by the resolved flow to that equation to explicitly consider the effects
of nonlocality on the subgrid energy budget. UKE can consequently be advected by the
resolved flow before it is reinjected via backscatter. Furthermore, we suggest incorporating
a stochastic element into the UKE equation to account for missing small-scale variability,
which is not present in the purely deterministic approach. The implementations are tested
on two intermediate complexity setups of the global ocean model FESOM2: an idealized
channel setup and a double-gyre setup. The impacts of these additional terms are analyzed,
highlighting increased eddy activity and improved flow characteristics when advection and
carefully tuned, stochastic sources are incorporated into the UKE budget. Additionally,
we provide diagnostics to gain further insights into the effects of scale separation between
the viscous dissipation operator and the backscatter operator responsible for the energy
injection.

Plain Language Summary

Oceanic swirls or “eddies” have a typical size of 10 −100 km, which is close to the small-
est scales that global ocean models commonly resolve. For physical and numerical reasons,
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these models require the addition of artificial terms that influence the flow near its smallest
scales. Common approaches have the drawback of introducing systematic loss of kinetic en-
ergy contained in the eddies, which leads to errors that also affect the oceanic circulation on
global scales. In our research, we compensate for this error by returning some of the missing
energy back into the simulation, using a so-called kinetic energy backscatter scheme. In this
work, we continue the development of an already existing and successful backscatter scheme,
adding certain improvements to the way energy is budgeted and returned to the flow: we
ensure that the local energy budget is attached to each fluid parcel as it is transported by
the large-scale flow, and we also add a random forcing term that mimics unknown sources
of such energy to bring its statistical properties closer to reality. We demonstrate that these
modifications effectively improve the characteristics of the simulated flow.

1 Introduction

Mesoscale eddies play an important role in determining ocean circulation. They contain
a large part of the kinetic energy (KE) of the ocean, contribute to the transfer of heat and
properties, and impact the form and evolution of ocean currents. Their horizontal size
is proportional to the Rossby radius of deformation, which reaches up to 200 km in the
low latitudes, decreasing to less than 10 km in high latitudes. In addition, the Rossby
radius decreases in shelf areas reflecting weak density stratification and small depth. These
variations in the Rossby radius are driving in the varying size distributions of mesoscale
eddies in the global oceans.

Mesoscale eddies are generated through different types of instabilities, with the most
prominent sources being the baroclinic instability and the instabilities of the mean flow.
Baroclinic instability releases available potential energy (APE) maintained by the mean
forcing of the ocean, transferring it into eddy kinetic energy (EKE) across a range of scales
near the Rossby deformation radius (Ferrari & Wunsch, 2009).

A direct cascade of enstrophy to small scales and an inverse cascade of energy to large
scales usually accompany the dynamics of mesoscale eddies. Eddy kinetic energy is partly
transferred to mean kinetic energy, but the rest of the upscale transfer is stopped by large-
scale friction, eddy killing by winds at the surface, interactions with topography, or wave
generation. Enstrophy and some energy go downscale, reaching grid scales where they
need to be dissipated through horizontal eddy viscosity in global ocean models. In nature,
at even smaller scales of the cascade, the flow transitions to ageostrophic turbulence and
waves, and finally to three-dimensional turbulence, the energy of which is converted to heat
by molecular dissipation. The dynamical mechanisms associated with up- and down-scale
energy cascade of meso- and submeso-scale eddies were investigated, e.g., in the works of
Schubert et al. (2020), Contreras et al. (2023), and Srinivasan et al. (2023).

In climate studies, ocean models are integrated over hundreds of years, which limits
their resolution to coarse (around 1◦) or eddy-permitting resolutions (around 1/4◦) (Hewitt
et al., 2020). Baroclinic instability in an ocean model is not resolved at coarse resolution,
and eddy-driven transfers of buoyancy and other properties are absent. The APE cannot be
converted to EKE; it has to be taken out by parameterizations compensating for the missing
eddies. This is generally done by the Gent-McWilliams (GM) parameterization (Gent &
McWilliams, 1990; Gent, 2011), which introduces the so-called eddy bolus velocities. Bolus
velocities model the eddy-driven property fluxes and release the APE. In addition to GM,
the missing mixing by eddies along isopycnal surfaces is parameterized by isopycnal diffusion
(Redi, 1982).

Horizontal grids with a cell size around 1/4◦ or 1/6◦ are often described as “eddy-
permitting.” Such grids are sufficiently fine to represent large eddies and simulate baroclinic
instability in parts of the ocean. The GM parameterization must be carefully tuned on
eddy-permitting meshes, as described in Hallberg (2013). However, the range of resolved
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scales on such meshes is not large enough, and viscous closures (e.g., Fox-Kemper et al.,
2008) intended to eliminate enstrophy and energy at grid scales also affect the scales where
eddies are generated by baroclinic instability and where the bulk of EKE is residing. As
a result, both EKE and eddy generation are excessively dissipated and damped. Until
the resolution reaches the level of resolving sub-mesoscale dynamics (generally finer than
5 km at midlatitudes), the entire range of scales, including large scales, will be exposed to
over-dissipation, as illustrated, e.g., by Soufflet et al. (2016). It leads to an underestimated
transfer of heat, salt, momentum and misrepresentation of the mean dynamics of the ocean
and the forcing sensitivity of models.

For a more accurate ocean simulation and better representation of eddy dynamics,
energy dissipated due to horizontal viscosity should be returned back to the system. The
kinetic energy backscatter parameterization proposed for the ocean in Jansen et al. (2015)
and developed further by Juricke et al. (2019) is intended to help in such situations. By
reinjecting energy, energy backscatter transfers the excessively dissipated energy back to
the scales of eddy generation. It thereby compensates for the over-dissipation of the large
scales and energizes the entire range of scales.

The concept of energy backscatter in its deterministic and stochastic forms has a long
history of research in atmospheric and ocean sciences. Physical and numerical approaches
to the compensation of excessive energy losses for atmospheric parameterization were men-
tioned in the works of, e.g., Berner et al. (2009), Leutbecher et al. (2017), Dwivedi et al.
(2019). Idealized ocean models were enhanced by backscatter to account for the dynamics
of unresolved mesoscale eddies in the works of e.g. Frederiksen et al. (2013), Jansen and
Held (2014), Jansen et al. (2015), Zanna et al. (2017).

The task of backscatter implementation has simple solutions, such as a kinematic
backscatter, proposed in Juricke et al. (2020). It reduces viscous over-dissipation by sub-
tracting the locally averaged viscous force multiplied by a tuning coefficient. This parame-
terization does not increase computational cost and significantly improves ocean simulations
toward the high-resolution truth. However, it acts without using an additional budget equa-
tion to keep track of past developments of the flow, i.e., this version of backscatter does not
have temporal memory.

More physically grounded and reliable is the concept of dynamic energy backscatter.
Here, the amplitude of backscatter depends on a prognostic subgrid energy budget (see
Jansen et al., 2015; Juricke et al., 2019). The subgrid kinetic energy budget controls how the
excessively dissipated energy is returned back to the resolved scales. Other subgrid budgets
were recently developed, for instance, by Uchida et al. (2022) who propose a subgrid potential
vorticity model in a quasi-geostrophic framework. This study focuses on the subgrid kinetic
energy budget of Juricke et al. (2019). It controls how the excessively dissipated energy is
returned back to the resolved scales. Our contribution to the theory and practical use of
the dynamic kinetic energy backscatter is threefold: (1) adding an advection term to the
prognostic subgrid energy budget, (2) adding a stochastic term to the subgrid energy budget
accounting for missing small-scale energy transfers, and (3) changing the scale of backscatter
to investigate how the scale of energy reinjection is affecting the energy spectrum of the
resolved flow.

A set of numerical simulations is used to investigate the consequences of these three
changes to backscatter. We run the Finite-volumE Sea ice-Ocean Model (FESOM2, Danilov
et al., 2017; Scholz et al., 2019) for two middle complexity setups: a channel setup and
a double-gyre setup, described in detail in Section 2.4. Channel simulations allow us to
compare results with the previous works mostly tested on the channel setup (e.g., Juricke et
al., 2020). However, it has several disadvantages, such as high variability of area-integrated
kinetic energy due to the channel’s narrowness or a lack of spatial separation between
regions of release and dissipation of energy. On the other hand, the double-gyre setup
has more defined areas of creation and dissipation of kinetic energy and a longer zonal
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direction that allows eddies to develop and evolve in space. It also has the advantage of
being more intuitively understandable and closer to reality, as it represents the idealized
physical processes of subpolar and subtropical gyres in the North Atlantic or North Pacific
basins. The double-gyre setup can be extended to include more complicated coastlines and
bottom topography to create an even more realistic representation of basin dynamics.

The outline of the article is as follows. We begin in Section 2 with the model essentials,
which include the methodology used to create the new components of the subgrid energy
budget for energy backscatter, the description of the two modeling setups that we use
to test the implementations and the diagnostics used to investigate the effect of the new
components. Section 3 describes the results and improvements achieved in simulations
whereas the advection and stochastic components in the UKE applied independently and
simultaneously. The paper closes with discussions and conclusions in Section 4.

2 Model essentials

2.1 Equations of motion

We solve the primitive equations in idealized ocean basins with eddy viscosity and
backscatter. The horizontal momentum equation reads

∂tuh + f ez × uh + (uh · ∇h + w∂z)uh + ∇hp/ρ0 = V (uh) + B(u, e) + ∂z(νv ∂zuh) , (1)

where u = (u, v, w) denotes the full three-dimensional velocity field, uh = (u, v) and ∇h =
(∂x, ∂y) the horizontal velocity field and horizontal gradient, respectively, f the Coriolis
parameter, ez the unit vertical vector, p the pressure, ρ0 the reference density, V (uh) the
horizontal eddy viscosity, B(u, e) the backscatter operator, described in more detail below,
and νv the coefficient of vertical viscosity.

The vertical momentum equation reduces to hydrostatic balance in the form

∂zp = −gρ = bρ0 , (2)

where g is the gravitational acceleration and ρ is the deviation of density from its reference
value ρ0; b denotes buoyancy.

The equations for potential temperature T and salinity S take the form

∂tT + ∇ · (uT ) = ∇(K∇T ) , (3)
∂tS + ∇ · (uS) = ∇(K∇S) , (4)

where K is the diffusivity tensor in the form of a symmetric 3 × 3 matrix that aims at
minimal mixing of tracers across surfaces of isoneutral density, and ∇ = (∇h, ∂z) denotes
the gradient in three dimensions. We assume a linear equation of state, in particular, density
is linearly dependent only on temperature; salinity tracer stays constant in time. In this
case, isoneutral K implies no mixing.

The horizontal viscosity operator in Eq. (1) is biharmonic and has the form described
in Juricke et al. (2020), which was found to be minimally dissipative for FESOM. The
backscatter term in Eq. (1) is anti-dissipative. As in Jansen et al. (2015) and Juricke et
al. (2019), the amplitude of its coefficient varies locally for each grid cell and is based on a
subgrid energy budget e = e(x, y, z, t), the unresolved kinetic energy (UKE), which satisfies
the prognostic equation

∂te = −cdis Ėdis − Ėback + ∇h · (νC ∇he) . (5)

UKE has the physical dimension of energy. In the numerical implementation, e is determined
for each velocity control volume. The first term on the right-hand side of the equation is
a kinetic energy source diagnosed from the dissipative term in the horizontal momentum
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equation (1). cdis is a parameter that represents the share of direct energy cascade to
microscales. If cdis is smaller than 1, part of the kinetic energy goes to small scales and is
dissipated. (1 − cdis) can be interpreted as a hidden sink term for the flow. The second
term −Ėback is a UKE sink (on average) and represents the rate of energy returned to the
resolved flow via the backscatter operator. The last term is UKE harmonic diffusion, which
redistributes subgrid energy and has a significantly smaller magnitude when compared to
the other terms. νC is a diffusion coefficient roughly corresponding to the average eddy
thickness diffusivity over the baroclinically forced region according to Jansen et al. (2015)
but the amplitude of this coefficient is of minor importance (cf. the discussion in Juricke et
al. (2019)).

The feedback of Eq. (5) to Eq. (1) is established through the backscatter operator
B(u, e), which is a discrete harmonic operator chosen as in Juricke et al. (2019, Eq. B.2).
This operator requires the specification of a cell-local backscatter coefficient νB , which, for
grid cell c, is chosen as

νB
c = −c0

√
Sc

√
max(2ec, 0) , (6)

where the c0 determines the rate at which dissipated energy is reinjected into the resolved
flow; it is constant across grid. Further, Sc corresponds to the area of the top face of cell c
and ec is the UKE for cell c.

To reduce the contribution from grid-scale fluctuations (for a discussion, see Juricke et
al., 2019) and to control the scales at which energy is injected into the momentum equation
via backscatter, it is necessary to apply a smoothing filter within the following terms: the
UKE source term Ėdis, the backscatter term Ėback, and the backscatter contribution B(u, e)
to the momentum equation (1). The filtering procedure is implemented by repeated applica-
tion of a single averaging operator that averages cell centroid quantities to the common cell
vertex and then averages the new vertex quantities back to the cell centroids. The optimal
choice of filtering for Ėdis, Ėback and B(u, e) employed here follows the recommendation of
Juricke et al. (2019) with some modifications that will be discussed later.

2.2 Deterministic backscatter with subgrid energy advection

The existing implementations of dynamic kinetic energy backscatter by Jansen et al.
(2015), Juricke et al. (2019), Juricke et al. (2020b), Klöwer et al. (2018) are either consid-
ering the balance of unresolved (subgrid) EKE (i.e., UKE) as taking place locally or being
distributed by the barotropic (vertical mean) flow (Jansen et al., 2019). This is arguably a
simplification, as UKE should be transported by the fully resolved 3D flow, and a question
arises whether ignoring this transport is a good approximation. Indeed, one may expect
that input (i.e., generation) of subgrid energy and its dissipation are not colocated, and the
UKE density at a given point is influenced by its input in regions upstream. Only when the
flow statistics are homogeneous in the direction of the mean flow (e.g., a uniform zonally
re-entrant channel flow) can the advection be assumed to be of minor importance. But
even in such cases, eddies may be strong enough to introduce inhomogeneities affecting the
distribution of UKE in space.

Considering the inclusion of UKE advection as an extension to the dynamic backscatter
of Eq. (5) introduces the challenge of selecting adequate advective velocities, adding com-
plexity to the model. We chose to implement full 3D advection of UKE. We assume that
the subgrid flow is predominantly advected by the resolved flow. Alternatives exist such
as, e.g., Jansen et al. (2019) where barotropic subgrid energy is advected by the resolved
2D barotropic flow. While stochastic advection is another potentially interesting approach,
constraining it presents its own set of challenges, as discussed in the literature on stochastic
advection (e.g., Hu and Patching (2023)).

Consequently, we extend Eq. (5) by incorporating full advection of UKE in three di-
mensions by the velocity field of the resolved flow. The subgrid energy budget equation
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with the new term has the following form

∂te = −cdis Ėdis − Ėback + ∇h · (νC∇he) − u · ∇e, (7)

where u is the resolved three-dimensional velocity. We study the effect of UKE advection
using the channel and double-gyre setups described in Section 2.4. The flow in the channel
setup is statistically homogeneous in the zonal direction so that the regions of kinetic energy
production and dissipation coincide. This makes it more challenging to analyze the direct
effect of the subgrid advection term on local energy transfers. In the double-gyre setup,
these regions are separated, which can help to interpret the effects of UKE advection. All
simulations were conducted under a “linear free surface” condition. In general, this implies
a loss of exact conservation for tracers, but has negligible impact on the KE and UKE
budgets.

We will demonstrate in Section 3.3 that accounting for UKE advection leads to con-
sistent but modest improvements compared to control simulations in which the advection
of UKE was ignored. This conclusion holds even for the channel setup with zonally homo-
geneous mean flow. The introduction of the advection term in the subgrid equation does
not negatively affect the numerical stability of the model, even though Juricke et al. (2019)
speculated that this might be the case.

2.3 Stochastic backscatter

Stochastic backscatter can offer more freedom in how to return energy to the resolved
scales than deterministic backscatter and can also be used to represent missing variability
and subgrid uncertainties. However, the question of the optimal form of the stochastic
contribution in backscatter schemes remains open. Among existing studies, stochastic eddy
forcing is applied to the QG model in Mana and Zanna (2014); stochastic parameterizations
extracting information from the subgrid eddy statistics are studied in Grooms and Majda
(2013), Grooms et al. (2015); stochastic forcing is applied to velocity and temperature
equations in Cooper (2017); stochastic perturbations are tested on various parameterization
schemes in Juricke et al. (2017). Perezhogin (2019) develops and compares deterministic
and stochastic kinetic energy backscatter schemes for the primitive equations of the ocean.
Li et al. (2023) proposed a stochastic modeling approach for mesoscale eddies within the
framework of a quasi-geostrophic model, relying on the decomposition of the Lagrangian
velocity. The interest of the ocean modeling community in stochastic schemes remains high
and is expected to increase further during this decade (Fox-Kemper et al., 2019).

We propose to combine the deterministic backscatter with a stochastic approach by
adding a new stochastic term to the UKE budget. Among several available options for
representing stochastic aspects of unresolved eddies, our assumption is that the absent
subgrid energy should closely mirror the structure of the high-resolution EKE. Therefore,
the new term is designed to improve the simulated eddy variability using data from a high-
resolution reference simulation denoted as truth. The additional stochastic term is added
to the UKE equation (Eq. (5)). It aims to add missing spatial and temporal variability.

To generate correlated patterns for the stochastic forcing, we first ran a higher-resolution,
10 km simulation and calculated surface EKE for every mesh element for each simulated
day of a 9-year simulation. Then we coarse-grained the field to the eddy-permitting mesh
by calculating the average amount of EKE over four neighboring cells. The coarse-grained
high-resolution EKE is then demeaned and decomposed into empirical orthogonal functions
(EOFs) and the corresponding set of principal components (PCs) that reflect the temporal
dynamics of each EOF. We then retain only the leading EOF with the largest contribution
to the total variance. Here, we choose the cutoff at 50% of the total explained variance,
thereby reducing the number of EOFs from thousands to dozens.

The main motivation for using the EKE structure of the high resolution for the stochas-
tic contribution to the UKE budget is based on the assumption that the EKE distribution
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is not accurately represented at a coarser resolution. We use the stochastic term to partly
– via the amplitude of the stochastic term – compensate for missing EKE activity at a
coarser resolution. Such terms could be added directly to the right-hand side of the mo-
mentum equations. However, we opted for an inclusion into the existing UKE budget for
this study, to employ the backscatter strategy as a means to ultimately inject the energy at
the adequate scales.

We also attempted to use data on the difference between coarse and fine resolution runs
for the EOF decomposition (see Section 3.6 for more information). However, we decided
against it due to the lack of a clear physical argument in favor due to the distinct evolution of
processes in these simulations. Another supplementary experiment was conducted using the
coarse-grained kinetic energy tendencies derived from the fine-resolution simulation. The
tendency data exhibited substantial fluctuations, leading to an increase in the number of
EOFs on multiple occasions. We did not find sufficient evidence confirming enhanced model
performance despite the considerable increase in EOF modes that needed to be included.
Hence, we ultimately opted to use the fine-resolution EKE data.

It should be noted that there is a continuous debate on how to create relevant and
cost-efficient patterns for stochastic noise, e.g., in studies such as Storto and Andriopoulos
(2021), Leutbecher et al. (2017), Subramanian and Palmer (2017), and Christensen (2020)).
This remains a key area of investigation and will continue to drive future research.

Based on the EOF decomposition, we introduce a new stochastic term in the UKE
equation, Eq. (5), which now reads

∂te = −cdis Ėdis − Ėback + ∇h · (νC∇e) + C1 e
∑

i

EOFi(xh) PCi(t) . (8)

The summation is over i, the ordinal number of the EOF, and C1 is a constant. Each EOFi

has dimensions equal to the number of control volumes in a horizontal layer, and each PCi

is a numerical value representing a realization of a stochastic process.

The corresponding PCs follow Ornstein–Uhlenbeck processes

d PCi = −µi PCi dt + σ dWi , (9)

where the dW is an increment of the standard Wiener process and the mean reversion rates
µi are determined by fitting the Euler–Maruyama discretization of Eq. (9), which is an
AR(1) process, to daily mean data. The fitting procedure assumes the acquisition of two
parameters (lag-1 correlation and variance) that comprehensively characterize the AR(1)
process. For simplicity, the variance parameter σ is taken the same across all the PCi, and
is absorbed into the tuning parameter C1.

We assumed that the accumulated variance of the AR1 process (which is equal σ2

1−µ2 )
has an upper limit equivalent to the variance of the EKE field in the fine-resolution simu-
lation. The rationale behind this is to avoid injecting more than the entire variance of the
fine resolution into the coarse resolution through the stochastic term. This upper limit is
stringent in a nonlinear context due to two factors: 1) considering only the first N EOFs
(N depends on the setup), which explain 50% of the variability, and 2) injecting via UKE.
As the noise reaches resolved velocities, it undergoes several rounds of smoothing, generally
reducing variance. Hence, we have redirected our attention from attempting to quantita-
tively replicate a portion of the high-resolution variance through C1 to understanding C1
as a tuning parameter. This approach enables a comparison of the stochastic term of UKE
with other UKE components (the specific values of C1 are detailed in Section 3).

The prefactor e of the stochastic term in Eq. (8) is a heuristic choice, corresponding
to multiplicative noise. Multiplicative noise tends to outperform simple additive noise (see,
e.g., Berner et al., 2017) as it scales with the prognostic properties. The argument is
that with low levels of UKE, also the associated uncertainty tends to be low. At high
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levels of UKE, however, one assumes large levels of associated uncertainties (see, e.g., the
description of the stochastically perturbed parameterization tendencies in Shutts, 2005, and
the stochastic schemes of Juricke et al., 2017). Scaling with e also allows for a more flow-
dependent injection of noise, rather than simple additive noise. It also leads to an immediate
vertical scaling of the noise amplitude. To enforce vertical structure, alternative approaches
could be used such as using analytical or modeled data from fine-resolution vertical profiles
(e.g., Yankovsky, Bachman, & K. Shafer Smith, 2023) or the average magnitude of UKE at
a specific level, but using the readily available information via the UKE variable e is a more
interpretable choice.

In Section 3, the effect of the implementations described above will be compared to
the impact of the older version of the UKE budget for kinetic energy backscatter following
Juricke et al. (2019), stated as Eq. (5). The latter already substantially improves the mean
state. Despite the general capacity of the backscatter to inject as much kinetic energy as we
want, the subgrid equation is designed to limit this amount of energy input. With stochastic
forcing in the subgrid equation, we could continue to increase the amount of input arbitrarily.
However, it will not necessarily bring a simulation closer to the high-resolution truth but
simply make it more energetic. Consequently, model stability may also become an issue.
Therefore, the diagnostics introduced in Section 2.7 and the tuning of C1 focus not only
on the mean kinetic energy. Other flow variables and their variability will be considered in
order to capture the overall effect of the addition of the stochastic term as part of the UKE
budget. Different intensities of the data-driven stochastic term will be tested. We find that
certain intensity ranges benefit the flow. However, exceeding these intensity intervals can
lead to serious artifacts.

2.4 Simulation setups

We use two different setups of the FESOM2 model, which solves the primitive equations
on a quasi-B-grid. The surface mesh is triangular, and there are 40 vertical layers, with
layer depth varying from 9 m in the top layer to 370 m in the bottom layer, which divide the
domain into small triangular prisms. Both setups are bounded vertically by a flat bottom at
a depth of 4000 m. The bottom boundary conditions are taken as linear friction. The viscous
operator is a discrete biharmonic operator. The biharmonic viscosity coefficient is specified
in terms of harmonic viscosity as νc′c = γ0lc′c+γ1|uc′ −uc|lc′c+γ2|uc′ −uc|2lc′c, where c and
c′ are the neighboring grid cells, lc′c is the length of the edge between the cells, and γ0, γ1,
γ2 are the tuning coefficients, the values of which are provided in Table A1. The coefficient
γ0 determines the amplitude of the background viscosity, γ1 represents the non-dimensional
scaling factor and γ2 facilitates effective dissipation in situations with significant velocity
differences. The missing dimensional factor is hidden in computations of the inner Laplacian,
which contains cell area (for details, see Juricke et al., 2020). We use the Pacanowsky –
Philander vertical mixing scheme (Pacanowski & Philander, 1981) for both setups. For a
discussion of alternative mixing schemes, see Scholz et al. (2022).

The first of two test configurations is a zonally periodic channel following Soufflet et al.
(2016). The size of the channel is 4.5◦ (about 500 km) in the zonal direction and 18◦ (about
2000 km) in the meridional direction. The initial density profile changes gradually along
the meridional direction as well as vertically (Fig. 2a). It is directly associated with the
temperature gradient by a linear equation of state. The density gradient allows the model
to form a jet in the middle of the channel. To continuously maintain a quasi-stationary
turbulent regime, the zonally averaged velocity and temperature fields are relaxed to the
initial mean temperature and velocity state in the entire domain.

The Rossby radius of deformation (approximately 20 km in the center and ±5 km from
south to north) is governed by the predefined vertical stratification to which the model is
relaxed. Thus, we choose a coarse grid consisting of equilateral triangles with 20 km edge
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length, which is eddy-permitting, and a fine grid where the edge length is 10 km thus (barely)
eddy-resolving (see Fig. 1a,b).

Figure 1. Channel (a,b) and double-gyre (c,d) setups. Annual-mean EKE [m2/s2] (after spin-
up) for the coarse grid simulation (a,c) and for the fine grid simulation (b,d), which was determined
by the formula: u2+v2−u2−v2

2 . Aerial view of the surface layer.

The second setup follows Levy et al. (2010) and represents a double-gyre configuration,
in the following referred to as the DG setup. It uses a rectangular domain with its left
corner at 30◦N, rotated by 45◦. The size of the domain is 28.3◦ (about 3140 km) on the
long side and 21.2◦ (about 2350 km) on the short side. Vertical walls bound it on all four
sides. Here, we use a mesh formed of right-angled triangles instead of equilateral triangles
to avoid castellated boundaries. The short sides of the right-angled triangles are equal to
20 km and 10 km, corresponding to the coarse and high-resolution simulations.

The initial temperature profile follows Pacanowski and Philander (1981) and Levy et
al. (2010). It is rapidly nonlinearly decreasing from the surface to a depth of 500 m and
slowly linearly decreasing to 0 ◦C below (Fig. 2b). There is no initial meridional temperature
gradient. The initial vertical temperature stratification adjusts during the simulation based
on forcing and internal mixing, but due to the depth of the setup, this process takes several
decades. Surface forcing is based on a mean northern hemisphere wind stress (Fig. A1b)
and heat flux. Wind forcing is an essential flow driver through Ekman pumping. A si-
nusoidal wind stress profile forces a subpolar gyre in the north and a subtropical gyre in
the south, thereby imitating North Atlantic dynamics. The heat flux can be divided into
several components, i.e. latent, sensible, and radiative heat flux (Levy et al., 2010). As a
simplification, we only use sensible and radiative heat fluxes here. Both enter the surface
directly, while radiative heating is also distributed vertically over the first couple of layers
according to a solar penetration profile. The exact sensible heat flux expression used in the
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simulation is −γ(Tocean − Tatm), where γ is a transfer coefficient, which is taken to be equal
to 4 W m−2 K−1, Tocean is the sea surface temperature and Tatm is the apparent air temper-
ature (Fig. A1a). The solar radiation model (Fig. A1c) takes the losses due to cloudiness,
reflection and albedo into account. Latent heat flux due to evaporation is neglected, and so
is any freshwater flux (i.e., salinity is constant throughout). The annual cycle was removed
compared to a similar configuration of Levy et al. (2010).

Figure 2. Vertical temperature and density profiles. Panel (a) shows the initial vertical tem-
perature stratification in the channel (domain averaged), while panel (b) displays both the initial
(dashed line) and equilibrium (solid line) vertical temperature stratification in the double-gyre
setup (domain averaged). Panel (c) shows the annual mean of the vertical density profile along 2.5◦

longitude in the channel, and panel (d) shows the annual mean of the vertical density profile along
15◦ longitude in the double-gyre setup after spin-up.

We use cartesian geometry for the channel setup (i.e., we replace the cosine of latitude
by one) and spherical geometry for the double-gyre simulation. For the Coriolis parameter,
we use the β-plane approximation f = f0 + βd, where d is the meridional distance from the
zero-degree latitude. The constants here and above are chosen to agree with those originally
proposed for these test cases, and are specified in Table A1.

Fig. 2c,d show the stratification of both setups. It is evident that the double-gyre setup
has a more complex vertical stratification that changes with integration time until it reaches
a (quasi-)equilibrium state, while for the channel, stratification is continuously relaxed back
to the initial state.

We used an advection scheme with a combination of 3rd order upwind and 4th order
central fluxes. Further study of other high-order schemes and their effect on the backscatter
parameterization is planned (see the related discussion in Ménesguen, Gentil, Marchesiello,
& Ducousso, 2018 and Soufflet et al., 2016).

All simulations were conducted under a “linear free surface” condition. In general, this
implies a loss of exact conservation for tracers but has a negligible impact on the KE and
UKE budgets.

Table 1 provides a summary of simulation configurations. The 10 km simulation is
the high-resolution reference for both configurations, the 20 km is the low-resolution refer-
ence without backscatter. The other simulations are also on the low-resolution 20 km grid
and include backscatter with and without the advection and stochastic terms in the UKE
equation.
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Table 1. An overview of the essential parameters for the simulation setups. ∆x is a side of an
equilateral grid triangle for the channel simulation. For the double-gyre simulation, ∆x corresponds
to the smallest side of a right-angled grid triangle.

Simulation
name

∆x
(km)

Smoothing
cycles Backscatter

UKE
advection

Stochastic
backscatter
amplitude

20 km 20 (2,2,4) no no no
20 km+BS 20 (2,2,4) deterministic no no
20 km+BS (no BS filter) 20 (2,2,0) deterministic no no
20 km+BS+ADV 20 (2,2,4) deterministic yes no
20 km+BS+ADV (no BS filter) 20 (2,2,0) deterministic yes no
20 km+SBS (high) 20 (2,2,4) stochastic no high
20 km+SBS (middle) 20 (2,2,4) stochastic no middle
20 km+SBS (low) 20 (2,2,4) stochastic no low
20 km+SBS (middle)+ADV 20 (2,2,4) stochastic yes middle
20 km+SBS (low)+ADV 20 (2,2,4) stochastic yes low
10 km 10 (2,2,4) no no no

2.5 How much filtering is necessary?

In both deterministic and stochastic energy backscatter parameterizations, one has to
decide about the scale of energy injection. Spatial smoothing applied to the injection ensures
a scale separation between energy reinjection and energy dissipation (see discussion, e.g.,
in Grooms (2023)). Spatial filtering operators commonly involve only the nearest discrete
cells for the reason of parallel implementation. Every cycle of spatial filtering applied to
the operators increases the scales on which these operators act. Both over-smoothing and
insufficient smoothing hamper performance of the backscatter term (e.g., Juricke et al.,
2019).

Understanding scale separation is also essential when several parameterizations are ap-
plied simultaneously. Jansen et al. (2019) consider a generalized energy-based parameteriza-
tion that combines the GM parameterization and backscatter approach proposed in Jansen
et al. (2015). The GM parameterization dissipates APE at the grid scales and represents the
effect of the conversion of APE into EKE. However, GM classically ignores the respective
EKE input into the momentum equations. A significant result of Jansen et al. (2019) is
the opportunity to freely tune the model between non-eddy-resolving and eddy-resolving
regimes by coupling GM to the backscatter parameterization.

We aim to better understand the effects of scale separation between energy injection and
dissipation, especially when additional advection of UKE is incorporated into the subgrid
energy budget. The initial choice of smoothing filter cycles in this study aligns with the
guidance from Juricke et al. (2019), with two cycles assigned to the UKE source term Ėdis
and the backscatter term Ėback in the UKE equation (Eq. (5), (7), or (8)), and four cycles
for B(u, e) in Eq. (1). This choice corresponds to (2,2,4) in Table 1. Further optimization
may be possible. However, as discussed by Juricke et al. (2019), the choice of filtering
options may also be influenced by the desired resolution of the simulations. Juricke et al.
(2019) increased filtering because, at higher resolutions, a greater number of filtering cycles
was required to achieve sufficient scale separation and maintain stability in backscatter
simulations at 10 km compared to 20 km resolutions. Furthermore, the use of filters raises
the question of whether smoothing grid-scale contributions could interfere with the impact
of the newly implemented advection term in the UKE equation. Advection and smoothing
both affect where and at which scales energy is reinjected.
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In our study, we ran additional simulations where we reduced the number of filter cycles
for the contribution of backscatter in the momentum equation to zero (i.e., for B(u, e) in
Eq. 1). We then analyze the effect of filtering via spectral diagnostics. Such diagnostics
were not carried out by Juricke et al. (2019), due to the lack of appropriate Fourier analysis
methods on unstructured grids at that time.

2.6 Spin-up

Both setups start with the prescribed temperature stratification and a small initial
perturbation. The perturbation leads to the emergence of turbulence in a short time, as
evidenced by the growth of kinetic energy over the first year (Fig. 3) and by the presence
of eddies in the vorticity field (not shown). The channel simulation reaches a statistically
steady state after a little more than one year, maintained by the relaxation of the velocity
and temperature fields. For our diagnostics, we thus take nine years after a single spin-
up year. In the DG setup, isopycnals become inclined because of Ekman pumping in the
southern part of the domain and Ekman suction in the northern part of the domain as a
consequence of the sinusoidal wind forcing. This process is much slower, so we require a
50-year spin-up to reach a quasi-equilibrium state.

Besides the difference in spin-up time, Fig. 3 also indicates different levels of surface KE
fluctuation between the two setups. The comparatively larger fluctuations in the channel vs.
double-gyre setup are explained by the fact that the channel is narrow in the zonal direction
and, therefore, cannot host many eddies simultaneously. As a result, the resolved daily
EKE changes greatly along the eddy life cycles. To mitigate the impact of fluctuations, we
use 9-year averaging for both setups, i.e., a simulation length of 9 years after the respective
spin-up.

Figure 3. The variability of surface kinetic energy over time (the calculation was performed for
the total integrated field, considering area weights). The blue line represents a 10-year simulation
of the channel setup. The highlighted solid blue box indicates the 9 years chosen for analysis,
excluding the first spin-up year. After a 50-year spin-up, the orange line corresponds to the double-
gyre setup, with the 9 years chosen for analysis indicated by a solid orange box. The grey line
indicates the amplitude of the initial drift of the double-gyre setup.

Overall, we use the DG setup as an extension of the idealized zonally-periodic channel
setup as, in this case, regions where eddies are generated and where they are dissipated

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

are not necessarily colocated. It is also longer in the zonal direction, which allows multiple
eddies to develop and evolve in space. In addition, the DG setup could be extended to
include more complicated and realistic coastlines and bottom topography. One of our aims
is to understand how the complexity of the setup affects the efficiency of the initial UKE
equation (Eq. (5)) and the new UKE components of Eqs. (7) and (8) implemented in this
study.

2.7 Diagnostics

We examine a set of mean quantities calculated for each vertical layer z to diagnose the
effect of our changes in the subgrid equation. As a main diagnostic, we use vertical profiles
of the area-averaged layer-wise mean eddy kinetic energy

EKE(z) =
∑

i

1
2

(
(u(z) − u(z))2

i + (v(z) − v(z))2
i

)
Ai

/ ∑
i

Ai , (10)

where Ai denotes the area of grid cell i, and the overbar denotes the time average of 9 years.
We also examine the vertical profiles of the root mean square of vertical velocity anomalies

wRMS(z) =
√∑

j

(w(z) − w(z))2
j Bj

/ ∑
j

Bi , (11)

where j denotes the vertex index and Bj is the area of the median-dual cell associated with
vertex j. As they show the amplitude of the time-averaged vertical velocity fluctuations
for each vertical layer, they enable the detection of vertical fluctuation anomalies that may
appear due to the wrong viscosity and backscatter settings. The different cell areas in
Eq. (10) vs. (11) arise because in FESOM2, scalars and pressure are located on vertices,
while horizontal velocities are located on centroids of triangles. The vertical velocities are
computed at the scalar locations, too. Lastly, vertical profiles of buoyancy flux, which
characterize the vertical profile of the release of APE, are computed as

w′ b′(z) =
∑

j

(w(z) − w(z))j (b(z) − b(z))j Bj

/ ∑
j

Bj . (12)

A too-high RMS vertical velocity or big changes in the profiles of APE to EKE conversion
(Eq. (12)), as a rule, indicate an excitation of unphysical small-scale waves, which signal
the need for tuning dissipation and/or backscatter.

Taking the scalar product of the horizontal momentum equation (Eq. (1)) with uh, we
obtain an evolution equation for the (horizontal) kinetic energy density

1
2∂t|uh|2 = −uh · (uh · ∇h)uh − 1

ρ0
uh · ∇hp + uh · V (uh) + uh · ∂z(νv ∂zuh) . (13)

The pressure gradient work term − 1
ρ0

uh · ∇hp is the source term for the integrated
kinetic energy. In the case of the DG setup, wind forcing is either a source or a sink and
comes to the system via the last term in Eq. (13). In the case of the channel setup, the
relaxation of the zonal mean profile to the prescribed one acts as a source for mean KE.

Using incompressibility and hydrostatic balance, Eq. (2), we obtain

1
ρ0

uh · ∇hp = 1
ρ0

∇h · (uhp) − 1
ρ0

p ∇h · uh = 1
ρ0

∇h · (uhp) + 1
ρ0

p
∂w

∂z

= 1
ρ0

∇ · (up) − 1
ρ0

w
∂p

∂z
= 1

ρ0
∇ · (up) + 1

ρ0
ρgw = 1

ρ0
∇ · (up) − wb . (14)

wb is a local measure of APE to EKE conversion, but not a local measure of the respective
source in the EKE equation, which includes the divergence of pressure flux. The relative role
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of the pressure divergence term in Eq. (14) can be reduced by integration over a sufficiently
large domain, and it will be zero if the integration is extended to the entire domain. The
positive buoyancy flux releases APE and is linked to an increase in KE.

A similar expression holds for the eddy part of the pressure gradient work and buoyancy
flux. In this study, we focus on the eddy part w′ b′ and take it as a local diagnostic for the
transfer from APE to EKE even though, strictly speaking, it only holds in an (sufficiently
large) area-integrated sense.

As an essential part of diagnostics, we compute the horizontal power spectra of the
different contributions to the viscous and backscatter parameterizations. Spectras are com-
puted based on the data of the surface layer. In order to use the discrete Fourier transform,
we interpolate velocity and dissipation power fields to a regular quadrilateral grid. Then
the 2D spectra are condensed to 1D spectra over the module of wave number. We apply
cubic interpolation for zonal and meridional velocities to compute kinetic energy spectra
and nearest-neighbor interpolation for zonal and meridional velocities and dissipation ten-
dencies to compute the dissipation power following the results of Juricke et al. (2023). The
motivation is the smooth nature of the kinetic energy field and the non-smooth, discrete
representation of the dissipation and backscatter operators.

The DG setup was simulated and analyzed assuming a spherical geometry. Hence, it was
necessary to convert the grid and vector fields into Cartesian coordinates before performing
interpolation. We first transformed the mesh and velocities to a new spherical system of
coordinates such that the center of the domain is at the equator. After this transformation,
we selected the central rectangular area of the domain (see the box in Fig. 4) for further
interpolation and Fourier transform.

Spectra are computed as an average of the daily output for nine years with the smallest
resolved wavelength corresponding to wavenumber π/h, where h is the height of an equi-
lateral grid triangle (see discussion in Juricke et al., 2023). We denote as hc the height of
the coarse grid triangle and as hf the height of the fine grid triangle in the channel. In the
case of the DG setup, the minimum wavelength is 2h, i.e., wavenumber π/h, where h is the
smaller side. The limiting wavenumber depends on direction: it is π/h along small sides
and

√
2π/h in the direction along and perpendicular to the large side. Since we are willing

to discuss spectra averaged over angles, we have to stop at π/h.

Figure 4. A snapshot of the relative vorticity in the double-gyre setup, showing the designated
area for Fourier decomposition (black box).
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As a final diagnostic, here specifically for the DG setup, we evaluate vertical density
profiles. As mesoscale eddy parameterizations ultimately strive to reproduce a precise rep-
resentation of the ocean stratification, we examine the alignment of the isopycnal contours
with those of the reference simulation.

3 Results

3.1 Eddy-permitting simulations are overdissipative

To assess the effects of incorporating the new components into the subgrid energy
budget, we first look at changes in eddy kinetic energy (Fig. 5a,b) for the simulations that
only have the viscosity parameterization. Comparing the simulation results for “20 km”
(grey line) and “10 km” (black line), we observe that the low-resolution simulation has a
significant EKE deficit for the DG setup, even more than in the channel.

Variability of the vertical velocity also differs greatly between the two resolutions
(Fig. 5c,d), but here with opposite tendencies between the two setups. For the DG setup,
vertical fluctuations at low resolution are larger at the majority of the depth levels, while it
is the opposite for the channel (consistent with Soufflet et al. (2016)), but also located at
greater depth as compared to the high-resolution reference. The changes in wRMS may reflect
the change in stratification in the DG setup associated with the resolution modification.

Buoyancy fluxes, which serve as an indicator of APE release, are substantially reduced
at low resolution for both simulations (Fig. 5e,f), especially the near-surface peak is much
weaker. In the DG setup, moreover, a significant reduction of energy production is observed
along the entire water column.

3.2 Dynamic backscatter improves the energy cycle

We first switch on dynamic backscatter as in Juricke et al. (2019). This improves all
diagnostics on the coarse grid toward the values on the fine grid (solid blue line in Fig. 5).
We note, in particular, that the point of maximum vertical velocity variability in the DG
setup moves closer to the surface, as it should (Fig. 5d). Moreover, the upper part of the
buoyancy flux profile for the channel becomes more distinct with backscatter, hence agreeing
with Soufflet et al. (2016) who observe a dominant peak (due to mesoscale instability) at
1000 m depth and a secondary isolated peak (due to submesoscale instability) closer to the
surface. For the DG setup, mesoscale production is the most improved (Fig. 5f).

3.3 Impacts of added advection in the UKE equation

When the advection term is included in the subgrid UKE equation, it improves the
backscatter effect, bringing it even closer to the high-resolution truth for both setups (solid
orange line on Fig. 5a,b). For the channel setup, subgrid energy advection increases EKE
beyond what is observed in the 10 km reference. This is not necessarily a negative result
because we do not resolve the full eddying flow even at 10 km resolution (Soufflet et al.,
2016). We expect that even the 10 km is underestimating EKE.

For both setups, the presence of advection in the subgrid equation correctly shifts
the profile of RMS vertical velocity to the direction of the high-resolution truth, although
the amplitude of the shift is small (Fig. 5c,d). The profile of RMS vertical velocity is a
convenient diagnostic of numerical instabilities in the deep ocean. Such instabilities may
occur when background viscosity is too small (see Juricke et al., 2020). Here, we do not
see any indication of the onset of numerical instability, with or without subgrid energy
advection. In the DG setup, vertical velocity variability even decreases when advection is
included, which indicates that subgrid energy advection does not induce spurious waves.
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Figure 5. Vertical profiles for the channel setup (left column) and the double-gyre setup (right
column). Each setup includes layer and time-averaged (9 years) diagnostics for EKE [m2/s2] (a,
b), the RMS vertical velocity anomalies [m/s] (c,d), and buoyancy flux [m2/s3] (e,f). Figures a, b,
and f have a gap on the vertical axis to better highlight changes closer to the surface.

At the same time, subgrid energy advection enhances the release of APE near the peaks
(Fig. 5e,f), thereby reducing biases in energy production and enhancing EKE.
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Figure 6. The 9-year average of 2D buoyancy flux [m2/s3] (a–d) and the 9-year average of the
dissipation power [m2/s3] (e–h) computed as the dot product of the velocity field and its dissipation
tendency. The dissipation field is also coarse-grained to the 100 km grid. Plots are provided for
the following DG setup configurations: coarse resolution simulation (a,e), coarse resolution with
deterministic backscatter (b,f), coarse resolution with deterministic backscatter and subgrid energy
advection (c,g), and fine resolution simulation (d,h).

Based on the vertical profile diagnostics, we conclude that adding the advection term to
the subgrid equation has a positive effect, with differing changes depending on the test case.
This conclusion is supported qualitatively by a two-dimensional horizontal view of the pro-
duction term (see Fig. 6), which shows the buoyancy flux at the depth level where it reaches
its maximum (differing between the two setups) and the dissipation power on the surface
level for the different configurations. The reason for looking at different vertical levels is
motivated by the different EKE and APE diagnostics peaks at different levels. Dissipation
power involves the combined impact of both the viscous closure and the backscattering
term in simulations incorporating backscatter. In the local sense we consider the dissipation
power as a measure of KE dissipation, which would not be a valid assumption in the integral
sense. Both diagnostic fields exhibit significant fluctuations. In order to better distinguish
between areas of dissipation and anti-dissipation, we conservatively remapped the dissipa-
tion field to a coarse mesh with 100 km resolution. It removes the flux contributions that
are largest at grid scales, arising from the triangular grid structure of FESOM2 (see the
discussion in Juricke et al., 2019). Due to the added advection term in the UKE equation,
the central jet’s energy production areas are extended. They reach further into the jet
domain, albeit the jet is in the wrong position compared to the high-resolution simulation
(Fig. 6c). Additionally, advection in the UKE equation prevents backscatter work in the
border layer, as demonstrated in Fig. 6g. With the addition of UKE advection, backscatter
now focuses primarily on the eddy regions within the domain, resulting in a more physical
process representation.

Furthermore, we conducted an assessment comparing the time scale of UKE advection
with the scale of subgrid kinetic energy. We obtained (not shown) that the scales of subgrid
advection are of similar order as the scales associated with the residence time of kinetic
energy within the UKE budget. This assessment suggests that there is sufficient time for
advection to play a significant role before energy is reinjected.

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Kinetic energy and dissipation spectra for the channel and DG setups average over
9 years. The vertical lines show the largest wavenumbers (smallest wavelength) on coarse and fine
meshes. The second peak in the kinetic energy spectra plot corresponds to wavenumber 29. The
wavenumber k is displayed in units of 2π/domain size.

3.4 Spectral diagnostics

Spectral diagnostics of EKE (Fig. 7a,b) show the expected scalings (i.e., −5/3 and −3)
in certain wavenumbers ranges. However, the simulated spectral slopes deviate relatively
early (i.e., at low wavenumbers) from theoretical expectations in the 20 km simulation with-
out backscatter. Backscatter significantly increases the energy level, especially at mid-range,
without adding much energy to the small scales (which is generally not desirable for reasons
of numerical stability). Including advection results in a minor positive change to KE across
all scales. For the channel, a rather close agreement is reached between the simulations
with backscatter and the high-resolution simulation. Adding UKE advection even leads to
a slight overshoot. For the DG setup, the level of KE is still deficient at very small and
large scales, even with added UKE advection.

In all DG setup simulations, one can observe a spectral density pile-up near the finest
grid scale (2hc). While this is generally seen as related to insufficient dissipation, the same
effect can be observed in channel simulations when considering the finest grid scale and has
been (at least partially) identified as an artifact of the interpolation from the triangular to
a rectangular grid when computing Fourier spectra (Juricke et al., 2023).

Dissipation power spectra (Fig. 7c,d) show the total dissipation (in the case of simu-
lations with the purely viscous closure without backscatter) or the sum of total dissipation
and backscatter (in the case of simulations with backscatter) across scales. One might ex-
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pect that viscous dissipation is concentrated at small scales. However, if the resolution is
insufficient, it affects all scales and peaks at scales where the energy content is maximal (also
see the discussion in Soufflet et al., 2016). On the other hand, backscatter has a distinct
injection maximum at large scales and a dissipation maximum at small scales. The points
where the dissipation power spectrum crosses the k-axis mark the scales at which there is
a change from energy dissipation to energy injection. When there are more smoothing cy-
cles, the point of intersection moves towards larger scales. Conversely, reducing smoothing
causes the intersection point to shift towards smaller scales. The 20 km simulation without
backscatter is more dissipative than the 10 km, and the influence of dissipation is mostly at
the long-wave part of the spectrum. This changes completely with backscatter: energy is
injected on large scales, propagates in both directions of the energy cascade, and actively
dissipates along the direct cascade on smaller scales. We observe that the added subgrid
energy advection component enhances the backscatter effect on the large scales and dissipa-
tion near the grid scales. In summary, adding UKE advection enhances both total kinetic
energy and total dissipation - which follows from the energizing effect of backscatter - across
all scales. It does not, however, noticeably affect the scale at which the overall dissipation
(small scales) changes to backscatter (large scales).

3.5 Sufficient filtering is important

Insufficient backscatter smoothing causes significant deviations for all diagnostics. When
disabling the filter in the backscatter operator, we observe a loss of energy for all simula-
tions (dashed lines in Fig. 5a,b,c,d). For the channel, the performance is even worse than the
20 km simulation without backscatter (Fig. 5a,b). Concerning vertical velocity (Fig. 5c,d),
it either substantially enhances variability (DG setup) or reduces it (channel). We also ob-
served significant unphysical fluctuations on small scales in the energy spectra (Fig. 7a,b).
The further detrimental impact of insufficient smoothing is seen in snapshots of the vorticity
fields: Eddies and filaments get a highly distorted “patchy” structure and do not propagate
in a physically fully coherent way (not shown).

The simulations with insufficient backscatter filtering illustrate the minimal scales where
non-smoothed backscatter injects energy into the system. In the case of the channel setup
(Fig. 7c), we observe the additional isolated peaks of energy injection (wave number 34) and
energy dissipation (wave number 29). They coincide with the double peaks in KE (Fig. 7a).
The general nature of the twin peaks in kinetic energy spectra (consistent between the
setups) can only be speculated at this point. They may be related to the formulation or
filtering of the UKE components Ėdis and Ėback which ultimately determine the backscatter
coefficient. Alternatively and most likely, they are a product of the procedure of collapsing
spectra from 2D to 1D, where different directions in the grid may show up as two peaks
rather than one.

We do not exclude the potential interference between the role of UKE advection and
the degree of backscatter operator smoothing, as both affect the locality of the backscatter
parameterization. However, we can clearly state that insufficient scale separation between
dissipation and backscatter causes serious flow deviations and is an inadequate parameteri-
zation option for FESOM2. It should be noted that both a variable viscosity coefficient and
smoothing have an impact on the transition wavenumber. Consequently, careful considera-
tion is needed as to whether the transition wavenumber should actually be independent of
the solution or if it should also be “tuned” for the resolved regime (i.e., backscattering into
the inverse rather than the forward cascade). We have seen in our experiments (see also
Juricke et al. (2019)) that the latter seems to be the case. Therefore, filtering additionally
accounts for the fact that the transition wavenumber should be moved according to the flow,
either by adjusting the viscosity/backscatter coefficients or by smoothing. At this point, a
generalization regarding smoothing to other grid types or models can not be made.
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Figure 8. The explained variance (red line), the cumulative variance (grey bars), and the fitted
coefficient (µi) (blue) for the AR(1) process are listed for each EOF mode.

3.6 EOF analysis

The first EOFs of the kinetic energy of the high-resolution simulation correspond to
the highest variability of KE and are determined by the fluctuations of the mean flow.
The presence of a strong localized jet in the DG setup allows the first few EOFs to be
relatively large-scale and to capture a large part of the variability in KE, whereas the
removed mean flow variability of the channel setup makes the first EOFs already much
smaller-scale. Constructing the spatial correlation of the stochastic subgrid term based on
EOFs with very fine local structures can excite undesirable noise. This needs to be kept in
mind and treated with caution. To explain a reference percentage of variability (i.e., 50%
in our case), one needs to consider 18 EOFs for the channel setup and only 7 EOFs for the
DG setup (see Fig. 8). The decreasing values of the fitted coefficients of the autoregression
process for the corresponding PC accompany the decrease in the explainable capacity of the
EOFs. In conclusion, as the EOF mode increases, we observe a shift towards EOFs featuring
smaller-scale patterns and PCs with reduced lag coefficients.

As an alternative approach, we also calculated the kinetic energy difference between
the coarse-grained data and the output of a coarse-resolution simulation instead of just the
pure coarse-grained high-resolution kinetic energy. Through this second approach, we could
take the systematic differences in kinetic energy between the outputs of simulations with
different resolutions Consequently, we te meaningful EOF patterns of missing kinetic energy
variability. In the following, however, we will focus on the initial approach, i.e., the patterns
generated directly from the kinetic energy data of the coarse-grained high-resolution data.
The reason for this is that for the second approach, it was necessary to keep substantially
more EOF modes (more than twice as many) to retain 50% of variability, leading to a much
more small-scale structure of stochastic forcing patterns that could potentially cause model
numerical instabilities and undesired excitation of grid-scale noise. Another reason is that
eddy formation differs between high and coarse resolutions. For instance, a large eddy in
high resolution does not always align with the eddy pattern observed in coarse resolution,
as examined in the analysis of relative vorticity dynamics (not shown). Thus, we have not
found enough reasons to alter our method of selecting data. Furthermore, we did not find
sufficient evidence to justify the use of KE tendencies data as well. Increasing the number of
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EOFs on multiple occasions did not lead to an improvement in model performance. However,
other options on how to create the EOF patterns are possible.

3.7 Impact of the stochastic subgrid energy source

Based on the magnitude of the other terms in the subgrid energy equation, we selected
three options for the noise amplitude coefficient C1 in Eq. (8): C1 = 0.001, which corre-
sponds to “low”-intensity noise (simulation “20 km+SBS(low)”), C1 = 0.005 corresponding
to “middle”-intensity noise (simulation “20 km+SBS(middle)”), and C1 = 0.01 (channel) or
C1 = 0.008 (DG setup) corresponding to the maximum amplitude that does not cause the
model to become numerically unstable (“20 km+SBS(high)”).

The first result of our simulations is that we can significantly enhance the model’s
kinetic energy levels via stochastic backscatter while preserving stability. We are inclined to
view this form of stochastic forcing as, ultimately, an injection of energy. Given the positive
contribution of the stochastic term due to the positively skewed distribution of UKE (as
negative values are generally prevented by the shut down of backscatter in such instances),
a positive input to UKE leads, to first order, to an increase in KE due to the backscatter.

We observe an energizing of the surface layers in the vertical energy profiles (Fig. 9a,b)
for all noise categories and, in particular, the energy increase beyond the reference simulation
for the “strong” noise. We also find a good agreement in kinetic energy with the high-
resolution reference simulation for the spectra at large scales (Fig. 10), which indicates that
we are able (at least partially) to reproduce the spectral slope using the added stochastic
term in the UKE equation. On the other hand, the vertical energy profile shows unphysical
energy growth in the lower layers of the model when using the “strong” stochastic term. It
is possible that a more careful tuning of the amplitude as a function of z might mitigate this
problem. However, this would be at the expense of introducing yet more tuning parameters
so that we restrict ourselves to testing with the stated form of multiplicative noise with
simple amplitude tuning. Diagnostics of vertical velocity anomalies (Fig. 9c,d) reveal that,
especially in the case of the channel setup, the high-amplitude stochastic term doesn’t
reflect the expected flow behavior at depth. Consequently, this amplitude is outside of an
acceptable range.

Snapshots of relative vorticity for the DG setup (Fig. 11) show that stochastic backscat-
ter energizes the field with eddies, especially along the jet area. However, we observe in-
creased eddy activity in the northern part of the DG domain that does not correspond to the
high-resolution truth. This effect can be caused by insufficient EOF selection, poor fitting
of the principal components, a locally overly large noise amplitude, or by the performance
of the EOF approach itself. We nevertheless confirmed the presence of additional eddy
dynamics along the jet (see Fig. 11d,e) and an improvement of the kinetic energy spectra
curve across the full range of scales (see Fig. 10). Our concern about near-grid-scale noise
caused by the stochastic component was not confirmed for the DG setup.

The results for the channel setup showed a worse performance of the EOF approach:
we obtained small-scale growth of kinetic energy (Fig. 10a), which could be explained as a
spurious wave generation caused by the additional stochastic backscatter term. Thus, the
robustness of the stochastic component, in particular, depends on the flow characteristics
and noise amplitude of extracted EOF patterns, which should be sufficiently large-scale.
This property was also validated when analyzing the simulations using data of KE difference
between two resolutions rather than total high-resolution KE data. In this case, the model
diagnostics showed a worsening in the relative vorticity fields and in energetics compared to
the high-resolution KE-based EOFs (not shown).
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Figure 9. Vertical profiles for the channel setup (left column) and the double-gyre setup (right
column) after incorporating a stochastic UKE term with varying amplitude. Each setup includes
layer and time-averaged (9 years) diagnostics for EKE [m2/s2] (a, b), the RMS vertical velocity
anomalies [m/s] (c,d), and buoyancy flux [m2/s3] (e,f). Figures a, b, and f have a gap on the
vertical axis to better highlight changes closer to the surface.

3.8 Combined effect of subgrid energy advection and stochastic forcing

Our final set of simulations assesses the combined effect of stochastic and advection
subgrid terms. Global diagnostics are summarized in Table 2. It shows generally favorable
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Figure 10. Kinetic energy spectra for different amplitudes of the stochastic UKE term. A dashed
red line represents the spectra of the low-amplitude stochastic term on the subgrid equation and is
almost identical to the spectra of the deterministic backscatter simulation data. The dashed-dotted
and solid red lines represent data simulated with middle and high-amplitude stochastic terms,
respectively.

Figure 11. Snapshots of relative vorticity for coarse resolution without backscatter (a), coarse
resolution with deterministic backscatter (b), fine resolution (c), and coarse resolution with varying
stochastic backscatter amplitudes (d-f). The black boxes show the designated area for Fourier
decomposition.

improvements when using some form of backscatter and, in particular, when using both
new subgrid terms together. However, it is difficult to pick a clear winner. Consequently,
we will also discuss sea surface height (SSH) differences as well as vertical density profiles.

RMSE SSH is a domain-averaged value of

√∑N

i=1
(SSH(20km)i−SSH(10km)i)2

N , where i is an
element of the surface layer, N is the total number of elements. For conciseness, we limit
the discussion to the DG setup and also restrict to the low (C1=0.001) and middle-intensity
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(C1=0.005) cases for the stochastic term. The large amplitude case has already been rejected
as performing poorly (see Fig. 9 and the discussion in Section 3.7).

Table 2. Summary of global diagnostics, averaged over a 9-year period, comparing the various
coarse-resolution model configurations relative to the high-resolution reference, which is normalized
to 100 %, except for RMSE SSH, where high-resolution simulation corresponds to 0. The top-
performing results for each diagnostic are set in red. It should be noted that the high-resolution
reference is not the final truth when it comes to, e.g., KE, as at even higher resolution, we expect
even higher KE levels. Consequently, achieving above 100 % can be seen as beneficial. The vertical
level at which the maximum of b′w′ occurs (max b′w′) varies between the channel and DG config-
urations. The vertically integrated buoyancy flux (vert. int.) is taken over the top 500 m for the
double-gyre setup.

Diagnostic
variable Setup 20 km 20 km+BS 20 km+BS+ADV

20 km+SBS (low) -
20 km+SBS (middle)

20 km+SBS (middle)
+ADV 10 km

Surface KE
m2/s2

CH
DG

0.0170 (82%)
0.0144 (44%)

0.0209 (101%)
0.0252 (76%)

0.0232 (112%)
0.0262 (81%)

0.0216 - 0.0246 (104 -119%)
0.0256 - 0.0281 (79-86%)

0.0215 (104%)
0.0266 (82%)

0.0207 (100%)
0.0325 (100%)

Surface EKE
m2/s2

CH
DG

0.0121 (77%)
0.0066 (33%)

0.0137 (87%)
0.0171 (84%)

0.0182 (115%)
0.0183 (90%)

0.0167 - 0.0194 (106-123%)
0.0173 - 0.0198 (85-98%)

0.0164 (104%)
0.0199 (98%)

0.0158 (100%)
0.0203 (100%)

max (b′ w′)
10−9 m2/s3

CH
DG

2.71 (83%)
2.99 (75%)

3.31 (122%)
3.15 (79%)

3.56 (133%)
3.24 (82%)

3.25 - 3.75 (100-138%)
3.10 - 3.26 (78-82%)

3.32 (123%)
3.23 (81%)

3.25 (100%)
3.97 (100%)

vert. int. (b′ w′)
10−6 m3/s3

CH
DG

2.68 (84%)
0.68 (54%)

3.32 (104%)
1.01 (81%)

3.58 (113%)
1.03 (82%)

3.25 - 3.76 (102-118%)
0.96 - 1.02 (77-82%)

3.30 (104%)
1.01 (81%)

3.18 (100%)
1.25 (100%)

RMSE SSH
cm DG 12.2 11.6 11.0 11.5 - 11.4 10.8 0

The SSH diagnostics show the time-averaged SSH for the coarse-grid simulation with-
out backscatter (Fig. 12a), coarse-grid simulation with backscatter (Fig. 12b), and the
fine-resolution simulation (Fig. 12c). The middle and bottom rows of Fig. 12 show the
time-averaged SSH difference between the coarse-grained high-resolution simulation and
the different combinations of subgrid terms as indicated in the subplot headings.

Two features deserve particular attention: first, we look at the flow separation from
the wall near the left corner of the domain. This point of separation is moved north when
the resolution is finer. The reason for this is the reduction of viscous dissipation in higher-
resolution simulations (see further discussion in Sein et al. (2016)). For vertical walls,
the sensitivity to the level of viscosity is higher than for sloped topography. Thus, the
backscatter, which has a limited impact on the location of the mean flow and mainly affects
the eddy part of the flow, can not completely fix the point of separation. However, we
observe the magnitude of the mean SSH difference decreases with backscatter (dark red in
the left corner in Fig. 12e–i vs. Fig. 12d). This moves the point of jet separation a little
further north.

The presence of the UKE advection term (Fig. 12f) decreases the difference to the
high-resolution simulation along the jet area. At the same time, it slightly worsens the SSH
difference in the south of the domain. The stochastic term helps to improve the southern
area SSH difference (Fig. 12g–i), but with accompanying growth of noise in the difference
field along the north-west boundary (Fig. 12i). Overall, combining the original backscat-
ter with the additional components reduces the domain-averaged RMSE SSH compared to
simulations with only the original backscatter or no backscatter at all (Table 2).

Second, the density profiles are compared on a North-South transect at 15◦ longitude
(Fig. 13). We observe a significant difference between coarse resolution without backscatter
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Figure 12. Over nine years, the sea surface height [m] was averaged and compared between
three simulations: coarse-resolution simulation (a), coarse-resolution simulation with deterministic
backscatter (b), and fine resolution (c). The difference in SSH between the high-resolution coarse-
grained simulation and the various coarse-resolution simulations (d-i) was also analyzed. Green
and red circles indicate specific regions of improvements and impairments compared to the low
resolution. Plot (i) corresponds to the best simulation incorporating middle amplitude stochastic
term and UKE advection.

and any of the simulations with backscatter: without backscatter, one can see a nearly
barotropic jet penetrating along the entire water column at around 30◦ N (Fig. 13a). The
lack of eddies together with the wind forcing lead to steep isopycnals. With backscatter,
eddies can form, which improves the form of isopycnals in the upper layers toward the slopes
seen in the reference simulation. In addition, the backscatter DG simulations after 9 years
might still contain some drift in the stratification, although probably small (i.e., the figures
might still change a bit if we let it run for longer).

Adding UKE advection (Fig. 13d vs. Fig. 13c, Fig. 13h vs. Fig. 13e and Fig. 13i vs.
Fig. 13f) straightens the slope of isopycnals, especially in the deep southern part of the
domain where the isopycnal levels bend too much in the backscatter-only case (Fig. 13c).
Moreover, the contours of the isopycnal surfaces become more variable, again more like
in the reference simulation. Adding the stochastic term straightens isopycnals along the
entire domain. The optimal results are obtained using the stochastic term of moderate
amplitude within the range of noise amplitudes. The low-amplitude noise does not have a big
impact, while the high-amplitude noise leads to excessive mixing near the surface (flattening
the isopycnals on Fig. 13g). When the UKE advection is switched on in addition to the
stochastic components (Fig. 13h,i), the isopycnals exhibit a smoother pattern, particularly
in the southern corner.

Based on SSH diagnostics (Fig. 12i) as well as EKE diagnostics (Table 2), the coarse-
resolution setup that utilizes a combination of the middle-intensity stochastic term and
advection component in the subgrid equation produces very good results. Furthermore, the
new terms individually have the potential to improve certain flow features (Table 2) and
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Figure 13. The annual average of the vertical density profiles along 15◦ longitude for the
double-gyre setup. The green circles indicate where specific improvements were made toward the
high-resolution reference simulation, while the red circles indicate areas with impairments. The
figures have a gap on the vertical axis to better highlight changes closer to the surface.

rectify the flow behavior in different regions of the DG field (Fig. 13d,f). However, compared
to the reference high-resolution simulation, coarse-resolution simulations with backscatter
still have weaker stratification (Fig. 13b vs. Fig. 13c-i).

4 Discussion and conclusion

In this work, we tested the performance of two additional contributions to the unre-
solved subgrid energy equation that is used in the framework of the kinetic energy backscat-
ter of Juricke et al. (2019), which is based on earlier work by Jansen et al. (2015). These
terms are additional subgrid energy advection and stochastic forcing and were employed in
two test cases, a channel and a double-gyre simulation.

The idea behind advecting subgrid kinetic energy by the three-dimensional resolved
flow is motivated by the fact that the locations of kinetic energy dissipation and forcing do
not necessarily coincide. Our results show that, indeed, this additional contribution to the
subgrid energy equation has modest but consistent positive effects: it corrects the behavior
of isopycnals, decreases the difference of SSH to the high-resolution simulation in eddy-rich
regions and improves the mean vertical profiles. The additional advection of subgrid energy
prevents the excessive activity of backscatter along the western boundary of the double-gyre
domain. Energetically, subgrid energy advection enhances energy creation and dissipation
on all scales, respectively. The potential concern regarding a negative impact on model
stability after incorporating subgrid energy advection, stated by Juricke et al. (2019), was
not confirmed in our experiments. At the same time, the advection of subgrid energy adds
only a 1.5% additional costs to simulation time. Moreover, no tuning is necessary as it is
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physically based. Our conclusion is, therefore, that subgrid kinetic energy should be treated
with advection.

The second additional, stochastic contribution to the subgrid energy budget has been
designed to enhance the simulated eddy variability by incorporating data on regions of en-
hanced eddy activity from a high-resolution simulation. Such a stochastic term can improve
diagnostics in the flow’s calm and active areas. Moreover, the spectral characteristics of the
flow with stochastic forcing in the subgrid energy equation improve across a wide range of
scales. However, we need to be cautious when using stochastic forcing: if its amplitude is
too large, it can cause serious distortions and artifacts, even while a consequently improved
energy spectrum may be close to expectations. Moreover, the acceptable level depends on
the setup and is difficult to assess a priori. To some extent, it is possible to guard against
such failures by looking for anomalies in the amplitude of vertical velocity fluctuations at
depth or an excess of eddies in calm regions of the domain. But careful monitoring and
tuning is critical. Furthermore, it will generally be necessary to recompute noise correlation
patterns for different domains individually.

None of the parameterizations examined in this study result in a degradation of the
vertical hydrography (Fig. 13, all simulations with backscatter). This outcome is contrary
to what would be anticipated if backscatter were to cause erroneously large vertical mixing.
A careful analysis of diapycnal mixing and contributions of backscatter to such terms within
different regimes and under different conditions will be carried out in future studies.

Stochastic forcing in the subgrid equation not only improves the flow characteristics,
when done carefully, but also allows generating ensemble simulations. This enables the
construction of distribution functions for output variables and measures the uncertainty of
the backscatter performance, an important potential direction for further research.

Several other aspects, which are worth further investigation, relate to the design of the
stochastic term. One potential alternative to the EOF method is the use of dynamical mode
decomposition as a tool to understand the flow variability and reduce the dimensionality of
the system (e.g., Franzke et al., 2022). Following the EOF approach, the selection of data
for decomposition and the number of the EOF modes, which explains a sufficient amount
of missing variability, remain at the modeler’s discretion.

Machine learning methods could capture the missing variability as an alternative to
classical stochastic methods. Deep learning methods driven by the data from an idealized
simulation (Bolton & Zanna, 2019) and from realistic coupled climate models (Guillaumin &
Zanna, 2021) were applied to ocean momentum forcing to represent the subgrid variability.
The authors showed that convolutional neural networks can be constructed to satisfy the
momentum conservation law and capture spatial and temporal eddy variability.

Finally, the necessary scale separation between the work of the backscatter and viscous
operators is crucial and can be diagnosed by spectral methods. When there is not enough
scale separation, the energy injection occurs in the dissipation scale range. This results in
highly disturbed flow filaments and prevents eddies from propagating in a physically coherent
manner. Ensuring adequate scale separation between injection and dissipation is crucial,
as insufficient differentiation between these scales can lead to significant flow distortion,
rendering it unsuitable as an eddy parameterization. However, the optimal configuration
may vary based on factors such as the filter, model specifications, the physical regime,
resolution, and other relevant aspects.

Potential research on parameterizing mesoscale eddies beyond the scope of dynamic
energy backscatter could be related to the position of large oceanic structures (for instance,
the jet in the case of the double-gyre setup) in coarse resolution simulations. Dynamic
backscatter, in any of its variations considered here, so far did not yield fundamental im-
provements, for example, of the point of jet separation in the double-gyre test case. This
is mostly likely due to the variety of processes interacting in such highly dynamic regions,
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which cannot all be improved by backscatter alone. However, improvements to the mean
flow by our default dynamic backscatter and an alternative form of dynamic backscatter
have also been observed by Juricke et al. (2020b) and Chang et al. (2023), respectively.
Nevertheless, new or extended approaches in this regard remain a focus of further research.

5 Open Research

Data Availability Statement

The model output data is publicly available at https://zenodo.org/record/8248679.
The latest stable FESOM2 release (with the new backscatter terms implementation soon
to be added) is available at https://github.com/FESOM/fesom2. Routines for the Fourier
spectra are available at https://zenodo.org/record/7270305 (Bellinghausen, 2022).
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Appendix A Appendix

Table A1. Table of setups coefficients.

Coefficients Channel Double-gyre

β-coefficient 1.6 · 10−11 1.8 · 10−11

Bottom drag (Cd) 0.005 0.001
Background viscosity amplitude (γ0[m/s])

(Formula 12 in Juricke et al. (2020)) 0.001 0.005
Coefficient of flow-aware viscosity (γ1)
(Formula 12 in Juricke et al. (2020)) 0.06 0.3

Coefficient γ2 0.2 0.2
Years of spin-up 1 50

Years of analysis/averaging 9 9
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Figure A1. The analytical forcing functions are based on latitude in the double-gyre setup.
These functions include air surface layer temperature (a), wind stress (b), and solar radiation (c).
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