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This paper demonstrates that the shallow water semigeostrophic equations arise from
a degenerate second order Hamilton principle of very special structure. The associated
Euler–Lagrange operator factors into a fast and a slow first order operator; restricting
to the slow part yields the geostrophic momentum approximation as balanced dynamics.
While semigeostrophic theory has been considered variationally before, this structure
appears to be new. It leads to a straightforward derivation of the geostrophic momentum
approximation and its associated potential vorticity law. Our observations further affirm,
from a different point of view, the known difficulty in generalizing the semigeostrophic
equations to the case of a spatially varying Coriolis parameter.

1. Introduction

A variational derivation of balance models for rotating shallow water in the semi-
geostrophic limit was first suggested by Salmon (1983, 1985, 1988), who used the leading
order balance relation to constrain the Hamilton principle. By reversing the order of
Salmon’s two steps, namely the application of a constraint and a change of coordinates,
the author was subsequently able to provide a more flexible variational construction which
can be used, in principle, to derive balance models at any order of accuracy (Oliver, 2006).
A particular advantage of this new construction is the ability to include the case of spa-
tially varying Coriolis parameter in a straightforward manner (Oliver & Vasylkevych,
2013).

The classical treatment of this limit, which is also known as Phillips type 2 scaling
(Phillips, 1963) or the frontal dynamics regime (Reznik et al., 2001), goes back to Eliassen
(1948, 1962), who introduced the geostrophic momentum approximation, where the ad-
vected velocity, but not the advecting velocity, is replaced by the geostrophic velocity.
Hoskins (1975) realized that the resulting dynamics is described by potential vorticity ad-
vection in suitably changed coordinates. Horizontal plane versions of this transformation
even go back to Yudin (1955) as remarked in Blumen (1981), and to Eliassen (1962). Now
known as the Hoskins transformation, it has subsequently been interpreted as a Legendre
duality (Cullen & Purser, 1984; Cullen & Purser, 1988; McIntyre & Roulstone, 2002),
and can be constructed as the solution of an optimal transportation problem (Benamou
& Brenier, 1998; Cullen, 2006). The connection with optimal transportation has raised
considerable interest in semigeostrophic theory from the mathematical community, lead-
ing to a number of rigorous results on the solution theory of semigeostrophic equations
in various settings (Cullen & Gangbo, 2001; Jian & Wang, 2007; Cullen, 2008; Ambrosio
et al., 2012; Figalli, 2013).

The purpose of this paper is to clarify the role of the shallow water semigeostrophic
equations within the variational approach to balanced dynamics. In particular, we shall
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derive the geostrophic momentum approximation from a variational ansatz, which is a
complete reversal of the classical argument. As an aside, we illustrate how the semi-
geostrophic potential vorticity law arises from the particle relabeling symmetry. We fur-
ther identify the special structure of the semigeostrophic Lagrangian which is related
to but structurally different from Salmon’s L1 Lagrangian and its subsequent general-
izations. In particular, we show that the semigeostrophic Lagrangian is an affine second
order Lagrangian. Further, the Hoskins transformation between physical and geostrophic
coordinates can be identified with a self-adjoint differential operator in the time domain
which commutes with time differentiation and with the symplectic structure matrix.
While a variational approach to the shallow water semigeostrophic equations has been
considered before (Salmon, 1988; Oliver, 2006), this semigeostrophic Hamilton principle
has, to the best of our knowledge, not been spelled out explicitly before.

For large-scale motion in the atmosphere, as opposed to the ocean where the radius
of deformation is much smaller and outside of the frontal scaling used by Hoskins, the
geostrophic momentum approximation is only valid on scales where the variation of the
Coriolis parameter f is not negligible. Thus, there is considerable interest in developing
semigeostrophic theory which allows for spatially varying f . However, the structure of the
geostrophic momentum approximation is very special so that the geometric structures
in the case when f is a constant do not generalize in a canonical way. In our derivation,
this can be traced to the emergence of commutator terms which are incompatible with
the truncation to an affine second order Lagrangian. We consider it an open question
whether there is a relaxed set of structure requirements which may lead to an equation
of similarly appealing simplicity when f is spatially varying. This situation contrasts
with the generalized large scale semigeostrophic equations, which generalize Salmon’s
L1 dynamics and which do extend naturally to the case of non-constant f (Oliver &
Vasylkevych, 2013). A different approach has been pursued by Cullen et al. (2005), who
extended the optimal transport formulation of semigeostrophic motion to non-constant
f without involving the equations of motion directly.

2. Setting

Our starting point is the rotating shallow water system which, in non-dimensionalized
variables, reads

ε (∂tu+ u · ∇u) + f u⊥ +
Bu

ε
∇h = 0 , (2.1a)

∂th+∇ · (hu) = 0 (2.1b)

where u = (u1, u2) denotes the horizontal velocity, u⊥ = (−u2, u1), h denotes the layer
depth, and f the non-dimensionalized Coriolis parameter, where we assume that ei-
ther f = 1 or f = O(1). The dynamical regime is characterized by the Rossby number
ε = U/(ΩL) and the Burger number Bu = gH/(Ω2L2), where U , Ω, L, and H denote
the characteristic velocity scale, rate of rotation, horizontal, and vertical length scales,
respectively. Here, we consider the semigeostrophic regime where ε = Bu � 1; we re-
mark that quasi-geostrophic regime is a different distinguished limit where Bu = O(1)
and h = 1 +O(ε).

It is well known that the shallow water equations arise as the Euler–Lagrange equa-
tions from a Hamilton principle (e.g. Salmon, 1998). Our construction is based on this
formulation.

In the following, we will always write x to denote an Eulerian position, a to denote a
Lagrangian label, and η to denote the flow map, so that the particle initially at location
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a has position x = η(a, t) at time t. All fields are functions of the Eulerian position;
when we need to evaluate at the Lagrangian label, we write out the composition with the
flow map explicitly. In particular, the relation between the Lagrangian and the Eulerian
velocity is written as η̇(a, t) = u(η(a, t), t), which we abbreviate as

η̇ = u ◦ η . (2.2)

Similarly, the relation between the flow map and the Eulerian height field is given by
h(η(a, t), t) = h0(a)/det∇η(a). Without loss of generality, we can set h0 = 1 (then the
initial flow map may deviate from the identity map), so that we can operate with the
simplified short-hand expression

h ◦ η =
1

det∇η . (2.3)

These conventions are common in the mathematical literature, less so in the geophysical
fluid dynamics community. Nonetheless, we believe that there is clear advantage to our
notation as it is unambiguous about implied dependences and, moreover, treats maps,
vector fields, and coordinate labels as mathematically distinct objects.

By the Liouville theorem, equation (2.3) is equivalent to the continuity equation (2.1b).
The momentum equation (2.1a) is the Euler–Lagrange equation for the shallow water
Lagrangian in semigeostrophic scaling,

L =

∫ (
R ◦ η · η̇ + 1

2 ε |η̇|
2 − 1

2 h ◦ η
)

da , (2.4)

where R is a vector potential for the Coriolis parameter so that ∇⊥ ·R = f . In other
words, (2.1a) describes stationary points of the action

S =

∫ t2

t1

Ldt (2.5)

with regards to variations δη of the flow map that vanish at the arbitrary end points t1
and t2. To see this, we compute the variation of each of the terms in turn. First,

δ

∫
R ◦ η · η̇ da =

∫ (
(∇R ◦ η δη) · η̇ +R ◦ η · δη̇

)
da = −

∫
η̇⊥ · δη da , (2.6)

where we dropped a perfect time derivative in the last equality as it does not contribute
to the Euler–Lagrange equation. Second,

δ

∫
|η̇|2 da = −2

∫
η̈ · δη da , (2.7)

again up to a perfect time derivative. Last, we compute

δ

∫
h ◦ η da =

∫ (
δh ◦ η +∇h ◦ η · δη

)
da

= −
∫
h∇ · (hw) dx+

∫
∇h ◦ η · δη da

=

∫
hw · ∇hdx+

∫
∇h ◦ η · δη da

= 2

∫
∇h ◦ η · δη da , (2.8)

where w is the Eulerian variation vector field implicitly defined via δη = w ◦ η whence,
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by the Liouville theorem, δh must satisfy the “density Lin constraint” δh+∇· (hw) = 0.
Noting that the variation δη is arbitrary, (2.6–2.8) imply the momentum equation (2.1a).

3. Variational Asymptotics

The general construction follows Oliver (2006). We denote the flow map in the original
physical coordinates by ηε and take the point of view that ε parameterizes a family of
near-identity deformations of the flow map which can be regarded as the flow of a change-
of-variables vector field. The idea is motivated by generalized Lagrangian mean construc-
tions (Andrews & McIntyre, 1978; Marsden & Shkoller, 2001; Holm, 2002; Salmon, 2013).
The goal is to choose this change-of-variables order by order such that the variational
principle and equations of motions take a convenient form.

Here, aiming at the semigeostrophic equations which are a second order model, we
need to keep track of terms up to first order in ε. Hence, we make the ansatz

ηε = η + εη′ (3.1)

where η will denote the flow map in the newly constructed frame and η′, formally an
expansion coefficient, will later be chosen as a function of η and its time derivatives.

We insert this ansatz into the shallow water Lagrangian and truncate terms at O(ε2)
as convenient, so that

Lε =

∫ (
1
2 η
⊥
ε · η̇ε + 1

2 ε |η̇ε|
2 − 1

2 hε ◦ ηε
)

da

=

∫ (
1
2 η
⊥ · η̇ε + 1

2 ε (η′⊥ + η̇) · η̇ε − 1
2 hε ◦ ηε

)
da+O(ε2) . (3.2)

In Oliver (2006), we characterized a class of variational balance model arising from affine
first order Lagrangians. Here, we aim at obtaining an affine second order Lagrangian
from (3.2). This is achieved by setting

η′ = η̇⊥ , (3.3)

so that the semigeostrophic Lagrangian reads

Lsg =

∫ (
1
2 η
⊥ · η̇ε − 1

2 hε ◦ ηε
)

da . (3.4)

This Lagrangian is clearly affine. Moreover, due to the occurrence of a time derivative in
the transformation (3.1), it is a Lagrangian of second order.

We now compute the Euler–Lagrange equation associated with Lsg. Later, in Section 5,
we shall demonstrate that it implies the shallow water semigeostrophic equations in their
usual form. Taking the variation of the semigeostrophic action and using (2.8) to compute
the variation of the potential energy term, we obtain

δSsg =

∫∫ (
1
2 δη

⊥ · η̇ε + 1
2 η
⊥ · δη̇ε −∇hε ◦ ηε · δηε

)
da dt

=

∫∫ (
1
2 δη

⊥ · η̇ − 1
2 ε δη̇

⊥ · η′ − 1
2 η̇
⊥ · δηε −∇hε ◦ ηε · δηε

)
da dt

+

∫ (
1
2 ε δη

⊥ · η′ + 1
2 η
⊥ · δηε

)
da

∣∣∣∣t2
t1

=

∫∫
δη⊥ε ·

(
η̇ −∇⊥hε ◦ ηε

)
da dt+

∫ (1

2
η⊥ · δη +

ε

2

∂

∂t
(η · δη)

)
da

∣∣∣∣t2
t1

. (3.5)
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Note that we have made use of (3.1) and (3.3) in several places, so that all steps in this
computation are true identities to all orders. We have also kept all contributions from
partial integration in time, as we will need to refer to these terms in Section 4 below.

Since Lsg is a second order Lagrangian, we impose that δη and δη̇ vanish at the
temporal end points, so that the boundary terms in (3.5) drop out. When ε is small
enough, the transformation (3.1) defines an invertible linear operator on the test function
space, so that δηε, for fixed label a, can be chosen arbitrarily in the class of smooth and
compactly supported test functions on [t1, t2]. These considerations show that the Euler–
Lagrange equation reads

η̇ =∇⊥hε ◦ ηε (3.6)

or, setting ηε = ξε ◦ η and η̇ = u ◦ η,

u =∇⊥hε ◦ ξε . (3.7)

In other words, we recover the well-known relation that the velocity in geostrophic coor-
dinates equals the geostrophic velocity in physical coordinates.

The argument above is formally correct, but it obscures that the configuration space of
the balance model is the group of flow maps in geostrophic coordinates. This means that
we really ought to write (3.5) entirely in terms of η, using (3.1) and (3.3) to eliminate
all references to ηε.

Let us therefore rethink the argument in these terms. To isolate the emerging structure
from the details of the computation, we take a more abstract point of view, writing Φ
to denote the transformation from geostrophic to physical coordinates. Then, ηε = Φ[η],
where Φ[η] = η+ε η̇⊥, so that Φ can be regarded as a first order differential operator on
the time domain; we write Φ∗ to denote its formal adjoint. Our particular transformation
operator is evidently self-adjoint, but let us first proceed without assuming so.

We let J denote the canonical symplectic matrix, angle brackets denote the space-time
L2 inner product, and consider h as a functional acting on flow maps implicitly defined
via (2.3). Then, in particular, hε ◦ ηε ≡ h[ηε] = h[Φ[η]], so that

Ssg = 1
2 〈η, J

d
dtΦ[η]〉+ 1

2 〈h[Φ[η]], 1〉 . (3.8)

Referring to (2.8) as before, noting that differentiation and J commute with Φ, and
dropping boundary terms from integration by parts, we obtain

δSsg = 1
2 〈δη, JΦ[η̇]〉+ 1

2 〈η, JΦ[δη̇]〉+ 〈uG[Φ[η]],Φ[δη]〉
= 1

2 〈δη,Φ[J η̇]〉+ 1
2 〈δη,Φ

∗[J η̇]〉+ 〈δη,Φ∗[uG[Φ[η]]]〉 (3.9)

where the geostrophic velocity uG is also regarded as a functional acting on flow maps
defined via uG[η] =∇h ◦ η.

The crucial point is that the Euler–Lagrange equation implied by (3.9) is second order
in time. Thus, it is not a balance model in the usual sense. However, so long as Φ is
self-adjoint, the Euler–Lagrange equation takes the special form

Φ∗[J η̇ + uG[Φ[η]]] = 0 , (3.10)

i.e., it factors into an inner equation and an outer differential operator Φ∗ = Φ which is
a singular perturbation of the identity. The inner equation

J η̇ + uG[Φ[η]] = 0 (3.11)

is the true balance model as it does not support motion on time scales faster than O(ε0);
in concrete terms, it is given by (3.6) or (3.7). Any solution to (3.11) is clearly a solution to
the full Euler–Lagrange equation (3.10). Conversely, however, (3.10) supports fast motion
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on O(ε−1) time scales as well. Therefore, the variational procedure outlined above will
only yield a balance model if the Euler–Lagrange equation has a fast-slow factorization
as in (3.10). Direct calculation, however, shows that this structure is fragile: a varying
Coriolis parameter will either lead to spatially varying J , which introduces unwanted
commutator terms when taking the variational derivative, or destroy the self-adjointness
of Φ, or both in an unstructured way.

4. Potential vorticity as Noetherian conservation law

We shall now give a direct derivation of the semigeostrophic potential vorticity equa-
tion as a Noetherian conservation law arising from the invariance of the semigeostrophic
Lagrangian under particle relabeling. The connection between potential vorticity and
particle relabeling is rather well known. Variants in the literature range from Salmon’s
(1998) textbook exposition, which uses entirely elementary component-based vector cal-
culus, Bridges, Hydon & Reich’s (2001) interpretation in terms of multisymplectic struc-
ture, and the entirely abstract Noether theorem in Marsden & Ratiu (1994) which can
be shown to apply in this setting as well. The purpose of this section is to show that our
somewhat non-standard semigeostrophic Lagrangian (3.4) falls into this setting and to
give a complete and concise derivation of the potential vorticity law.

We begin by noting that a particle relabeling is a measure preserving transformation
acting on labels a. Let us consider a one-parameter family Φλ of relabeling transforma-
tions chosen such that Φ0 = Id. The variation δΦ = ∂Φλ/∂λ

∣∣
λ=0

then is a divergence
free vector field which can be represented as the exterior derivative of a “variation stream
function” θ, i.e., δΦ =∇⊥θ.

Let us now take such particle relabeling variations about a trajectory η which satisfies
the Euler–Lagrange equation (3.6). Then, ηλ(a, t) = η(Φλ(a), t), so that δη =∇η δΦ =
∇η∇⊥θ. While such relabeling will never alter the Eulerian solution, the key observation
is that the semigeostrophic Lagrangian remains invariant under particle relabeling as well,
hence δSsg = 0. To proceed, we note that the computation performed in (3.5) holds true
for variations about any one-parameter family of deformations of η, so that we can reuse
it here. As we now vary about a solution of the Euler–Lagrange equation, the double
integral on the right of (3.5) vanishes and we are left with only the temporal boundary
term contributions. I.e.,

0 = δS =
1

2

∫
η⊥ · δη da

∣∣∣∣t2
t1

+
ε

2

d

dt

∫
η · δη da

∣∣∣∣t2
t1

=
1

2

∫
η⊥ · ∇η∇⊥θ da

∣∣∣∣t2
t1

+
ε

2

d

dt

∫
η · ∇η∇⊥θ da

∣∣∣∣t2
t1

= −
∫

det∇η θ da

∣∣∣∣t2
t1

, (4.1)

where we have integrated by parts in the last step and noted that the O(ε) term drops
out by anti-symmetry. As θ is arbitrary, this expression implies material conservation in
geostrophic coordinates of the potential vorticity

q = det∇η ◦ η−1 =
1

h
. (4.2)

We first note that this is indeed a potential vorticity, as its dimensional form reads
q = f/h. Second, following our notational convention, h is the height field in geostrophic
coordinates, defined as the inverse Jacobian of the geostrophic coordinate flow map. Thus,
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equation (4.2) coincides with the familiar potential vorticity formula which is stated, for
example, as equation (9.3) in McIntyre & Roulstone (2002), where the symbol h in their
paper refers to the height field in physical coordinates, which is hε in our notation. This
explains the appearance of the Jacobian of the Hoskins transformation in their formula.

5. Closing the evolution equation

Combining (3.1), (3.3), and the definition ηε = ξε ◦ η, we find that

ξε = id + εu⊥ . (5.1)

This expression is nothing but the well known Hoskins transformation between physical
and semigeostrophic coordinates. Then, using the Eulerian form of the semigeostrophic
Euler–Lagrange equation (3.7), we compute

∇(hε ◦ ξε) =∇hε ◦ ξε∇ξε = −u⊥ (I + ε∇u⊥) = −u⊥ − 1
2 ε∇|u|

2 . (5.2)

This identity is special as it shows that u⊥ must be the gradient of a stream function.
Writing u = ∇⊥ψ, recalling the definition (det∇ηε)−1 = hε ◦ ηε, and noting that the
Jacobian of a composition is the product of the Jacobians, we have h = hε ◦ ξε det∇ξε,
which, by (5.2), is nothing but the Monge–Ampère equation

h = (ψ − 1
2 ε |∇ψ|

2) det(I − ε∇∇ψ) . (5.3)

Advection of the potential vorticity implies that h = 1/q is also advected in semi-
geostrophic coordinates, i.e.,

∂th+∇⊥ψ · ∇h = 0 . (5.4)

Equations (5.3) and (5.4) constitute a closed formulation for the shallow water semi-
geostrophic equations in geostrophic coordinates. While this is well known (see, e.g.,
McIntyre & Roulstone 2002), equations (5.3) and (5.4) are usually derived from the
Eulerian equations of motion by applying the geostrophic momentum approximation.

Here, we recover the geostrophic momentum approximation a posteriori. Namely, writ-
ing out the Hoskins transformation in Lagrangian variables,

η = ηε + ε∇hε ◦ ηε , (5.5)

and differentiating in time, we find

η̇ = uε ◦ ηε + ε(∇ḣε ◦ ηε +∇∇hε ◦ ηε η̇ε) ≡∇⊥hε ◦ ηε . (5.6)

This expression is clearly equivalent to the shallow water momentum equation in their
geostrophic momentum approximation, which, setting uG =∇⊥hε, reads

ε (∂t + uε · ∇)uG + u⊥ε +∇hε = 0 . (5.7)

6. Discussion

Our derivation of the semigeostrophic equations from the shallow water Lagrangian
is a reversal of Salmon’s method: we first introduce a change of coordinates followed by
a truncation of higher-order terms. As the resulting variational principle is degenerate,
a balance constraint emerges by general theory in the form of a Dirac constraint; see
Salmon (1988) for a discussion of the Dirac theory in the context of balance dynamics.
This constraint is not needed in any explicit way. In this sense, our approach is different
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from that of Cullen et al. (1987) who derive semigeostrophic equations of motion via an
energy minimization principle followed by an explicitly imposed constraint.

More concretely, we have shown that the semigeostrophic equations arise from a Hamil-
ton principle with an affine second order Lagrangian Lsg. Its structure is such that one
time derivative in its Euler–Lagrange equation can be factored out, so that the slow
subsystem behaves like a balance model analogous to the balance models that arise
generically from affine first order Lagrangians.

This point of view provides a structural justification for the geostrophic momentum
approximation, usually justified purely in terms of asymptotic consistency. It also pro-
vides a different view on the problem of generalizing the semigeostrophic equations to a
spatially varying Coriolis parameter. The question then can be phrased as follows. Can
we generalize (3.1) in such a way that the computation in (3.5) still carries through such
that the resulting Euler–Lagrange equation still factors? Direct computation, however,
indicates that the commutator terms arising from non-constant f are a fundamental
obstacle to obtaining a balance model in this framework. This situation is unlike that
for the generalized large-scale semigeostrophic equations which extend naturally to the
case of varying f , see Oliver & Vasylkevych (2013). At this time, we cannot strictly
exclude the possibility that some relaxation of requirements could lead to a variable f
semigeostrophic theory in this variational setting, but any such derivation would require
considerable structural coincidences which derive from the abstract setting laid out at
the end of Section 3. As pointed out by one of the referees, the work of Bridges, Hydon
& Reich (2001) implies a similar geometric no-go result, although this is not explicitly
stated in their paper.

I thank Onno Bokhove, Mike Cullen, David Dritschel, Darryl Holm, Volodya Roubtsov,
and Vladimir Zeitlin for inspiring discussions on semigeostrophic theory, the Isaac Newton
Institute for its hospitality during the Mathematics of the Fluid Earth programme where
this work was performed, and the referees for valuable suggestions. I further acknowledge
support through German Science Foundation grant OL-155/3.
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