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Abstract. Optimal balance is a non-asymptotic numerical method for com-

puting a point on an elliptic slow manifold for two-scale dynamical systems
with strong gyroscopic forces. It works by solving a modified differential equa-

tion as a boundary value problem in time, where the nonlinear terms are

adiabatically ramped up from zero to the fully nonlinear dynamics. A ded-
icated boundary value solver, however, is often not directly available. The

most natural alternative is a nudging solver, where the problem is repeatedly

solved forward and backward in time and the respective boundary conditions
are restored whenever one of the temporal end points is visited. In this paper,

we show quasi-convergence of this scheme in the sense that the termination

residual of the nudging iteration is as small as the asymptotic error of the
method itself, i.e., under appropriate assumptions exponentially small. This

confirms that optimal balance in its nudging formulation is an effective al-
gorithm. Further, it shows that the boundary value problem formulation of

optimal balance is well posed up to at most a residual error as small as the

asymptotic error of the method itself. The key step in our proof is a careful
two-component Gronwall inequality.

1. Introduction

Optimal balance is a non-asymptotic numerical method for computing a point
on an elliptic slow manifold for two-scale dynamical systems with strong gyroscopic
forces. It is based on adiabatically deforming the system from the full nonlinear
vector field to a linear vector field where the fast-slow splitting can be inferred from
the spectrum of the associated linear operator. So long as the homotopy between
linear and nonlinear vector field approximately preserves the level of fast energy,
this computation yields a highly accurate approximation to a point on a nearly
invariant slow manifold of the nonlinear system. The method is applicable for slow
manifolds in the general sense of MacKay [13] which may not be exactly invariant
as in classical singular geometric perturbation theory [5, 8]. In particular, normal
hyperbolicity is not required.

While the underlying ideas are much older, optimal balance was introduced by
Viúdez and Dritschel [18] in the context of semi-Lagrangian schemes for geophysical
fluid flow [6, 7]. The authors observed excellent nonlinear separation of (slow)
Rossby and (fast) gravity waves. Cotter [3] subsequently pointed out the connection
to the theory of adiabatic invariance, investigated earlier for a finite dimensional
toy model in [4]. Gottwald et al. [10] provide a detailed analysis of the asymptotic
error of optimal balance in the same finite dimensional setting, but with a finite
time horizon for the homotopy between the nonlinear and the linear system. In

Date: April 24, 2023.
2020 Mathematics Subject Classification. Primary 34E13; Secondary 34B15, 37M21.

1



2 GÖKCE TUBA MASUR, HAIDAR MOHAMAD, AND MARCEL OLIVER

1 10 100

spatial wavenumber k

10−10

10−8

10−5

10−2

101

Ek(qm − q∗)

m = 1

m = 2

m = 3

m = 4

m = 5

m = 10

m = 20

Figure 1. Decrease of the nudging error with the number of nudg-
ing iterationsm in an application of optimal balance to the rotating
shallow water equations. Shown is the spectral energy density Ek
of the difference of successive nudging iterates qm from the given
basepoint potential vorticity q∗ as a function of k, the modulus of
the wavenumber vector. The Rossby number of this simulation is
ε = 0.1. Adapted from [14].

this case, additional order conditions on the ramp function appear and prevent the
use of analytic ramp functions. Nonetheless, when the ramp function is of Gevrey
class 2, the balance error can be exponentially small.

The practical numerical implementation of optimal balance requires solving a
boundary value problem in time. The boundary conditions are, respectively, ab-
sence of fast linear modes at the linear end of the homotopy, and the requirement
that a complementary set of variables, a “basepoint coordinate” parametrizing the
slow manifold, takes a specified value at the nonlinear end. When the dynamical
system is low-dimensional, a standard solver for boundary value problems, some-
times even a simple shooting scheme, can be used. For large or complex models,
this is not practical. However, optimal balance can be implemented via backward-
forward nudging where the homotopy is repeatedly integrated backward or forward
in time between the linear and the full nonlinear state. At each temporal boundary,
the respective boundary condition is imposed while the complementary variables are
left unchanged. This is similar, even though the precise details differ, to “backward-
forward nudging” described by [1], so we borrow their terminology. The scheme
as such was already used by [18] and found to work well. The key advantage of
a backward-forward nudging implementation of optimal balance is that any exist-
ing numerical code can be turned into an optimal balance solver so long as the
mode splitting of the linearized system is understood, which opens possibilities for
accurate diagnostics even for complex operational atmosphere and ocean models.

Two theoretical questions, however, were left open until now. First, can we prove
that the optimal balance boundary value problem is well posed? Second, if so, can
we prove that the implementation by nudging actually converges to the solution
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of this boundary value problem? A detailed numerical study of optimal balance
for the rotating shallow water equations in their primitive variable formulation
[14, 15] found that, while the method does return well-balanced states as expected,
convergence of the sequence of nudging iterates to a given basepoint takes place
only up to a small residual that does not go away as the number of iterations grows
large. Figure 1 shows typical diagnostic output of a simulation of a two-dimensional
shallow water flow, where the basepoint variable q∗ is the potential vorticity field.
For selected members of the sequence of nudging iterates, indexed by m, we display
the nudging residual as the difference between qm and the prescribed basepoint q∗ in
terms of its spectral energy density Ek(qm−q∗), where the scalar total wavenumber
k is defined as the modulus of the two-dimensional wavenumber vector. The best
residual is reached within five iterations; subsequent iterations show no further
improvement. The termination residual is very small for low spatial wavenumbers
and grows somewhat larger toward high spatial wavenumbers.

In this paper, we revisit the issue mathematically in the simpler context of the
finite dimensional model problem that was already used in related previous studies
[4, 9, 11]. Without assuming well-posedness of the boundary value problem, we split
the error into the termination residual of the iteration and the “balance error,” the
residual fast energy of the optimal balance formulation as analyzed in [10]. We
prove that the termination residual is small and of the same order of magnitude as
the balance error. This result, first, provides a rigorous foundation that optimal
balance in a backward-forward nudging implementation is indeed a very effective
algorithm. Second, it highlights that care must be taken to find a good termination
criterion for the nudging iteration, cf. the discussion in [14, 15]. Third, it shows that
we can side-step the question of well-posedness of the optimal balance boundary
value problem, assumed but not proved in [10]: our result implies that the problem
is well posed at worst up to a residual of the same small order of magnitude as the
overall error of the method.

For small problems, such as the numerical test case studied in [10], it is possible to
apply a proper boundary value problem solver. The results obtained there suggest
that at least in some cases, the boundary value problem is actually well-posed and
the termination residual can be brought to zero. It is likely, though, that the class
of problems for which quasi-convergence in the sense of this paper holds is strictly
larger than the class of problems for which the boundary value problem is well
posed in a strict sense.

The remainder of the paper is structured as follows. In Section 2, we introduce
the model equations and sketch the standard asymptotic construction of the slow
manifold. Section 3 introduces optimal balance and extends the asymptotic con-
struction to the non-autonomous optimal balance equations. The key estimates
from [10] are reviewed in Section 4 and adapted to the choice of parameters re-
quired in the context of this paper. Our new results are contained in the main
Section 5: We introduce the nudging scheme and estimate the termination residual
with a careful Gronwall estimate over the entire backward-forward integration cy-
cle. The main result, quasi-convergence of the scheme, is stated as Theorem 6 or 7
for the respective case that algebraic or exponential order conditions are satisfied.
The paper concludes with a discussion of scope and possible improvements to our
results. A short appendix recalls a Gronwall inequality for systems of differential
inequalities, one of the main ingredients in our argument.
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2. The model

As in [4, 9, 10, 11], we consider the finite-dimensional toy model

q̇ = p , (1a)

ε ṗ = Jp−∇V (q) , (1b)

where q : [0, T ] → R2d is a vector of positions, p : [0, T ] → R2d is the vector of
corresponding momenta, ε is the time-scale separation parameter considered to be
small, J is the standard symplectic matrix on Rd with d even, and V is a sufficiently
smooth potential.

For the purpose of defining and analyzing optimal balance, this system is par-
ticularly easy because the slow subspace of the linear system, i.e. when V = 0, is
given by p = 0. This, however, is not a true restriction but rather a convenient
choice of variables. A hierarchy of slow manifold in the sense of [13] is then given
by the finite power series expansion

pslow ≡ Gn(q) =

n∑
i=0

gi(q) ε
i , (2)

where the coefficient vector fields gi are recursively defined by

g0(q) = −J∇V (q) ,

gk(q) = −J
∑

i+j=k−1

Dgi(q) gj(q) . (3)

The series generally does not converge, but it is very easy to prove that solutions to
q̇ = Gn(q) are shadowed by a solution of (1) for finite n and finite times; see, e.g.,
[9]. System (1) is Hamiltonian so that, provided V is analytic, Hamiltonian normal
form theory gives exponentially close shadowing over exponentially long times [4].

3. Optimal balance

Optimal balance provides a numerical procedure to compute an approximation
to the map (2) for a given “basepoint” q without the need to analytically compute
any of the terms on the right hand side. It works by selectively turning off the
nonlinear term in the equation via a “ramp function” ρ : [0, 1]→ [0, 1] with ρ(0) = 0
and ρ(1) = 1. In addition, we assume that either ρ ∈ Cn([0, 1]) and satisfies the
algebraic order condition of order n ∈ N∗,

ρ(i)(0) = ρ(i)(1) = 0 for i = 1, . . . , n , (4)

or, alternatively, that ρ is of Gevrey class 2 on [0, 1] and satisfies the exponential
order condition

ρ(i)(0) = ρ(i)(1) = 0 for all i ≥ 1 . (5)

Recall that a function f ∈ C∞(U) for U ⊂ R open is of Gevrey class s (in short,
f ∈ Gs(U)) if there exist constants C and β such that

sup
x∈U

∣∣f (n)(x)
∣∣ ≤ C n!s

βn
(6)

for all n ∈ N. Here, we need this estimate to be uniform up to the boundary of the
interval [0, 1]. An example of a ramp function satisfying this condition is

ρ(θ) =
e−1/θ

e−1/θ + e−1/(1−θ)
. (7)
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The method of optimal balance requires solving the boundary value problem in
time,

q̇ = p , (8a)

ε ṗ = Jp− ρ(t/T )∇V (q) , (8b)

with boundary conditions

p(0) = 0 and q(T ) = q∗ . (8c)

The boundary condition at the linear end where t = 0 expresses the absence of fast
motion, and the boundary condition at the nonlinear end where t = T expresses the
matching with a prescribed basepoint q∗. The approximation to the slow manifold
G is then given by

G(q∗) = p(T ) . (9)

Optimal balance is nicely illustrated by applying it to the following classical
example of an exact local slow manifold. This example is used, for instance, by
MacKay [13] as a starting point for showing that generic Hamiltonian systems do
not possess exactly invariant slow manifolds.

Take a slow harmonic oscillator, written in action-angle variables (I, θ) so that
the action I ≡ 1 is constant and the angle θ ∈ R/2π has constant rate of change
which drives, via a nonlinear coupling function f(θ), a fast harmonic oscillator
written in complex representation, namely

θ̇ = 1 , (10a)

ε ṗ = ip+ f(θ) . (10b)

The form of this equation is different from (1), but can be brought into a more
similar form by a change of variables the details of which do not matter for the
point to be made. Expanding f as a Fourier series,

f(θ) =
∑
k∈Z

fk eikθ , (11)

and inserting the ansatz p = G(θ) into (10), we find that the slow manifold is given
by

G(θ) =
∑
k∈Z

fk
ε

i(kε− 1)
eikθ (12)

away from the resonances ε = 1/k. The corresponding ramped system for the
optimal balance boundary value problem reads

θ̇ = 1 , (13a)

ε ṗ = ip+ ρ(t/T ) f(θ) . (13b)

Using the optimal balance boundary conditions (8c), with θ in place of q, we can
readily write out the solution of (13b) as

p(T ) =

∫ T

0

ei(T−t)/ε ρ(t/T ) f(θ∗ + (t− T )) dt . (14)
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To see that this expression is indeed a good approximation of G(θ∗), we must insert
the Fourier expansion for f and integrate by parts:

p(T ) =
∑
k∈Z

fk

∫ T

0

e
i(T−t)
ε +ik(θ∗+(t−T )) ρ(t/T ) dt

=
∑
k∈Z

fk e
iT
ε +ik(θ∗−T )

∫ T

0

e(
−i
ε +ik)t ρ(t/T ) dt

=
∑
k∈Z

fk e
iT
ε +ik(θ∗−T ) ε

i(kε− 1)

[
e(
−i
ε +ik)T −

∫ T

0

e(
−i
ε +ik)t ρ

′(t/T )

T
dt

]
. (15)

In the last equality, we have used that ρ(0) = 0 so that the boundary term at t = 0
vanishes. The contribution from the first term in brackets coincides with (12). The
contribution from the remainder integral is, at this point, O(ε) provided that ε is
suitably bounded away from resonances. However, its order in ε can be improved
by further integration by parts: So long as ρ(i)(0) = ρ(i)(T ) = 0 for i = 1, . . . , n, the
boundary terms of the (n + 1)st integration by parts vanish and the contribution
from the remaining integral is O(εn+1). Thus,

p(T ) =
∑
k∈Z

fk
ε

i(kε− 1)
eikθ

∗
+O(εn+1) . (16)

To get exponential estimates, some assumption on the growth of derivatives of ρ is
necessary. The corresponding analysis could proceed along the lines of [10].

We conclude that optimal balance is consistent in the case where an exact slow
manifold (locally) exists, but introduces a small error even there. The interesting
case, however, is when an exactly invariant slow manifold does not exist, e.g., when
the action of the slow oscillator in (10) is not constant in time but varies across one
or more of the resonances. Then, especially for Hamiltonian systems, exponentially
accurate normal forms are the best we can expect. Optimal balance works in both
cases and can be exponentially accurate, whether or not an exactly invariant slow
manifold exists.

4. Remainder estimates

The analysis of optimal balance in [10] works by constructing an asymptotic
expansion analogous to (2) for the ramped system. This expansion defines a time-
dependent manifold on which the non-autonomous dynamics of (8) remains pre-
dominantly slow.

The explicit form of the expansion is only used for the theoretical analysis, and
reads

pslow ≡ Fn(q, t) =

n∑
i=0

fi(q, t) ε
i , (17)

where the coefficient vector fields fi are recursively defined by

f0(q, t) = −ρ(t/T ) J∇V (q) ,

fk(q, t) = −J∂tfk−1 − J
∑

i+j=k−1

Dfi(q, t) fj(q, t) (18)
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for k = 1, . . . , n. An n-term approximation to the fast component of the motion is
then given by

w(t) = p(t)− Fn(q, t)

(we suppress the dependence of w on n to keep the notation simple), and the model
(8) can be rewritten in q-w variables as

q̇ = Fn + w , (19a)

ẇ =
(1

ε
J −DFn

)
w +Rn(q) , (19b)

with remainder given by

Rn(q) = −εn ∂tfn(q)−
2n∑
s=n

εs
∑
i+j=s
i,j≤n

Dfi(q)fj(q) (19c)

(we suppress the explicit dependence of Rn, Fn, and fi on time t to keep the
notation simple), and where the boundary conditions (8c) now read

w(0) = 0 and q(T ) = q∗. (19d)

In the following, we review estimates on the slow vector field and on the remain-
der of the asymptotic series. When the series defined in (17–19) is truncated at
a fixed order n, these estimates are straightforward and stated as Lemma 1 be-
low. When we go for exponential estimates, we need an optimal truncation of the
asymptotic series. Full details can be found in [10]; Lemma 2 below states these
results in the form required here, together with only a sketch of the proof.

Lemma 1. Let B(0, r) ⊂ R2d for some r > 0 and fix T1 > 0. Assume that
ρ ∈ Cn([0, 1]) and V ∈ Cn+1(B(0, r)) for some n ∈ N. Then there exist constants
C1, C2, and C3 such that for any 0 < ε < T ≤ T1 and t ∈ [0, T ],

‖Fn(q1, t)− Fn(q2, t)‖ ≤ C1 ‖q1 − q2‖ , (20a)

‖DFn(q1, t)−DFn(q2, t)‖ ≤ C2 ‖q1 − q2‖ , (20b)

and

‖Rn(q, t)‖ ≤ C3

( ε
T

)n
(20c)

for any q1, q2, and q ∈ B(0, r). The constants may depend on ρ, V , n, and T1, but
are independent of ε and T .

Proof. Estimates (20a) and (20b) follow directly from the local Lipschitz property
of V and its higher order derivatives. Note that the terms of Fk contain powers of
T−1 at most up to order k. Thus, all constants in such terms can be bounded by
C(T1) (ε/T )k ≤ C(T1). To prove (20c), it suffices to factor out (ε/T )n from Rn(q),
then use the available bounds on ρ and V and their derivatives together with the
assumption ε < T < T1. �

To obtain exponential estimates, we assume that V is analytic and ρ is of Gevrey
class 2.
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Lemma 2. Fix r > r′ > 0 and T1 > 0. Assume that ρ ∈ G2(0, 1) and V is analytic
on B(0, r). Then there exist positive constants C1, C2, C3, c, and γ, each depending
only on ρ, V , and T1, such that if

n =
⌊γ ε
T

⌋
, (21)

then

‖Fn(q1)− Fn(q2)‖ ≤ C1 ‖q1 − q2‖ , (22a)

‖DFn(q1)−DFn(q2)‖ ≤ C2 ‖q1 − q2‖ , (22b)

and

‖Rn(q)‖ ≤ C3 e−c
3
√

T
ε (22c)

for 0 < ε < T ≤ T1 and all q1, q2, q ∈ B(0, r′).

Proof. For every n ∈ N, [10, Lemma 6] together with a Cauchy estimate asserts
that

‖Fn(q1)− Fn(q2)‖ ≤ 1

r1 − r
sup

q∈B(0,r1)

‖Fn(q)‖ ‖q1 − q2‖ , (23a)

‖DFn(q1)−DFn(q2)‖ ≤ 1

(r2 − r)(r3 − r2)
sup

q∈B(0,r3)

‖Fn(q)‖ ‖q1 − q2‖ (23b)

for r′ < r1, r2 < r3 < r. Fixing r3, we then need to prove that there exists
n = n(ρ, V, T1,

ε
T ) such that (22c) is satisfied and supq∈B(0,r3) ‖Fn(q)‖ is bounded

independent of n. We briefly sketch the main ideas: The key observation is that
each of the terms appearing in the expression for Rn and Fn is a product of functions
which depend only on ρ and functions which depend only on V . Hence, each can be
written as an inner product of a coefficient vector encoding all ρ-dependence with
a coefficient vectors encoding all V -dependence as follows:

Rn = J

2n∑
k=n

εk

T k
〈Rk+1(ρ),Fk+1(V )〉 (24a)

and

Fn =

n∑
k=0

εk

T k
〈Rk(ρ),Fk(V )〉 . (24b)

A Hölder-like inequality will bound each inner product, so that we can estimate each
class of coefficients separately in its respective norm. Indeed, for the ρ-dependent
vectors, we use the Gevrey estimate (6),

|Rk(ρ)| ≤ C (k + 1)!2

βk+1
, (25)

where the constants C and β depend only on ρ and T1. On the other hand, using
a Cauchy estimate, there exist constants C, γ > 0 depending on V (and implicitly
on B(0, r)) such that

‖Fk(V )‖B(0,r3) ≤ C
(n
γ

)k
, (26)
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where ‖ · ‖B(0,r3) refers to the supremum norm on B(0, r3). Combining (25) with

(26) and using the Stirling inequality in the form m! ≤ em−1mm+1/2 for every
m ≥ 2, there exist constants C,α > 0 depending only on ρ, V , and T1 such that

‖Rn‖B(0,r3) ≤ C
2n∑
k=n

εk

T k
n3k

αk
≤ C δn

1− δ
, (27)

where we have bounded the sum by the corresponding infinite geometric series

under the assumption that δ ≡ εn3

αT < 1, and similarly

‖Fn‖B(0,r3) ≤ C
1− δn+1

1− δ
. (28)

An optimization of the overall bound leads to the choice

n =
⌊(αδT

ε

) 1
3
⌋
, (29)

so that

‖Fn‖B(0,r3) ≤
C

1− δ
(30a)

and

‖Rn‖B(0,r′) ≤
C

1− δ
δ(αδT/ε)

1
3 ≤ C3 e−c

3
√

T
ε (30b)

where, in the last inequality, we have fixed δ ∈ (0, 1) such that the final constants
are positive. �

Remark 3. The proof as written above differs from the proof given in [10, Proof
of Theorem 4] in two trivial respects: The analysis in [10] is done with respect to
the slow time τ ≡ εt and considers a sequence of ramp times T = 1/ε for which
ρ(t/T ) = ρ(τ). With this choice, the ramp time T does not appear in the formulas
for Rk(ρ). Here, we use fast time t, so that time-derivatives of ρ(t/T ) which appear
in the expressions for Rk(ρ) have coefficients proportional to T−i, i = 0, . . . , k. To
account for this, we changed the definition of Rk(ρ), multiplying by T k, so that the
bound in (25) is uniform in T ∈ (0, T1]. The second difference is that we estimate
Fn and Rn on B(0, r3) and B(0, r′), only requiring that V is analytic on a larger
ball of radius r > r3 > r′ without an explicit requirement on their relative sizes.

5. The nudging scheme

To introduce the backward-forward nudging scheme, we write q∗ to denote the
prescribed basepoint coordinate, as before, and take an initial guess p0 for the
value of the fiber coordinate p = G(q∗). E.g., p0 = 0 or, if explicitly available,
p0 = G0(q∗), cf. (2). We then construct a sequence of approximates, pm, in the
following way.

Let q−m and p−m denote the solution to the ramped system (8a,b) backward in
time, endowed with the final condition

q−m(T ) = q∗ and p−m(T ) = pm . (31)

We stop the backward integration at t = 0 and initialize a forward solution, q+m
and p+m, to (8a,b) with initial condition

q+m(0) = q−m(0) and p+m(0) = 0 . (32)
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Linear end Nonlinear end

q−m(0)
p−m(0) discarded

q−m(T ) := q∗

p−m(T ) := pm

q+m(0) := q−m(0)
p+m(0) := 0

q+m(T ) discarded
p+m(T ) =: pm+1

Remove fast motion

here pm(0) = wm(0) is fast

Backward integration

w−m almost constant

Forward integration

w+
m almost zero

Restore basepoint

Jump in (qm, wm) small if T small
m := m+ 1

Figure 2. Schematic representation of the nudging cycle. The
arrow annotations indicate the behavior of the implicit fast variable
wm to explain the different steps of the proof of Proposition 4.

This solution is stopped at t = T and we set

pm+1 = p+m(T ) . (33)

In the following, we prove quasi-convergence of the sequence {pm} in the case of
the algebraic order condition and the exponential order condition.

To analyze the scheme, it is convenient to consider the ramped system in terms
of the slow-fast variables as in (19), writing w−m(t) and w+

m(t) for the fast variable
in the backward and forward integration steps, respectively. We emphasize that
this choice relates to the theoretical analysis of the method only. Numerically, w−m
and w+

m are not available. Similarly, we write wm to denote the fast variable at the
start of the backward-forward integration cycle. I.e.,

wm+1 = p+m(T )− Fn(q∗, T ) for m ≥ 0 (34)

and

w0 = p0 − Fn(q∗, T ) . (35)

(As before, we suppress the implicit dependence of wm on n.)
Figure 2 summarizes the nudging cycle which, in our notation, starts at the top

right and goes anticlockwise. The horizontal arrows indicate the backward/forward
integration steps of the ramped system along which the fast energy is adiabatically
preserved. The adjustment of the phase point at the linear end is of size ‖wm‖
by construction. At the nonlinear end, when the basepoint is restored, the ad-
justment in the q component, due to the structure of equation (19a), is roughly of
size ‖wm‖T , so can be made small by choosing T sufficiently small. The precise
statements and proofs are the following.

Proposition 4. Assume that ρ satisfies the algebraic order condition (4) of order
n ∈ N at least at time t = 0. Fix R > 0, T1 > 0, and p0, q

∗ ∈ R2d such that

max
{
‖q∗‖, ‖w0‖

}
≤ R for all 0 < ε ≤ T1 . (36)

Then there exist T0 ∈ (0, T1] and θ < 1 such that for any 0 < ε ≤ T ≤ T0, we have

‖wm+1‖ ≤ θ ‖wm‖+ c
εn

Tn
. (37)

The constants θ and c may depend on ρ, V , T0, and R, but are independent of T
and m.
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Proof. The proof consists of four steps. We initially do our analysis on a single
backward-forward nudging cycle where we assume that the analog of condition (36)
is satisfied at the start of the cycle, i.e.,

‖wm‖ ≤ R . (38)

In the final step, we prove that this conditions is maintained when going from one
nudging cycle to the next.

Step 1: Obtain a bound on the generation of fast motion during backward inte-
gration. We work under the assumption that there exists T0 ≤ T1 such that

sup
t∈[0,T0]

max{‖q±m(t)‖, ‖w±m(t)‖} ≤ 2R . (39)

For the backward integration, by continuity, there is always T0 small enough such
that this condition is satisfied. Using the equations for w±m and q±m and bounding
the nonlinear terms via (39), we see that there exist C1, C2, and C3, depending
only on ρ, V , n, T1, and R, such that

± d

dt
‖q±m‖ ≤ C1 + ‖w±m‖ , (40a)

± d

dt
‖w±m‖ ≤ C2 ‖w±m‖+ C3

εn

Tn
. (40b)

Integrating (40b) backward in time, we find

sup
t∈[0,T ]

‖w−m(t)‖ ≤ eC2T ‖wm‖+
C3

C2
(eC2T − 1)

εn

Tn

≤ eC2T R+
C3

C2
(eC2T − 1)

εn

Tn
. (41)

Inserting this bound into (40a) and integrating backward, we find

sup
t∈[0,T ]

‖q−m(t)‖ ≤ R+ T

(
C1 + eC2T R+

C3

C2

(
eC2T − 1

) εn

Tn

)
. (42)

Thus, choosing T0 small enough, (39) is maintained also at the start of the forward
integration step, with a right-hand bound of 3R/2, say. By continuity, possibly
lowering the value of T0, (39) will be maintained over the forward evolution, too.
To get an explicit bound, we integrate (40b) forward. As ρ satisfies the algebraic
order condition (4) of order n at t = 0, we have w+

m(0) = 0 and therefore

sup
t∈[0,T ]

‖w+
m(t)‖ ≤ C3

C2

(
eC2T − 1

) εn

Tn
. (43)

Finally, inserting this bound into (40a) and integrating forward, we obtain

sup
t∈[0,T ]

‖q+m(t)‖ ≤ R+ 2T

(
C1 + eC2T R+

C3

C2

(
eC2T − 1

) εn

Tn

)
. (44)

Step 2: Obtain a bound on the deviation of q from the basepoint q∗ after com-
pleting one full cycle. Taking the difference between the backward and the forward
equation for q, we have

d

dt
(q+m − q−m) = Fn(q+m, t)− Fn(q−m, t) + w+

m − w−m .
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It follows that

d

dt
‖q+m − q−m‖ ≤ ‖Fn(q+m, t)− Fn(q−m, t)‖+ ‖w+

m − w−m‖ . (45)

Using estimate (20a), we find that there exists δ1 = δ1(ρ, V, n, T0, R) such that

d

dt
‖q+m − q−m‖ ≤ δ1 ‖(q+m − q−)‖+ ‖w+

m − w−m‖ . (46)

In the same manner, taking the difference between the backward and the forward
equation for w, we have

d

dt
(w+

m − w−m) =
1

ε
J(w+

m − w−m)

− (DFn(q+m, t)w
+
m −DFn(q−m, t)w

−
m) +Rn(q+m)−Rn(q−m) . (47)

Adding and subtracting DFn(q+m, t)w
−
m from the right-hand side and taking the dot

product with w+
m − w−m, we obtain

d

dt
‖w+

m − w−m‖ ≤ ‖DFn(q+m, t)‖ ‖w+
m − w−m‖+ ‖DFn(q+m, t)−DFn(q−m, t)‖‖w−m‖

+ ‖Rn(q+m)‖+ ‖Rn(q−m)‖ . (48)

The Lipschitz property (20b) and remainder bound (20c) then imply that there
exist constants δ2, δ3, and α, only depending on ρ, V , n, R, and T0, such that

d

dt
‖w+

m − w−m‖ ≤ δ2 ‖w+
m − w−m‖+ δ3 ‖q+m − q−m‖+ α

εn

Tn
. (49)

Thus, (46) and (49) form a system of differential inequalities which can be written
in matrix form as

ż(t) ≤ δA z(t) +K , (50)

where δ = max{δ1, δ2, δ3},

z(t) =

(
‖q+m(t)− q−m(t)‖
‖w+

m(t)− w−m(t)‖

)
, A =

(
1 1
1 1

)
, and K =

(
0

α (ε/T )n

)
, (51)

and where we read the inequality sign component-wise. A Gronwall inequality for
systems, recalled in the appendix, then shows that

z(t) ≤ z(0) + tK + δA

∫ t

0

eδ(t−s)A (z(0) + sK) ds

= U1(δ, t) z(0) + U2(δ, t)K , (52)

where the second step follows from A eδ(t−s)A = A e2δ(t−s) with

U1(δ, t) = I +
1

2
(e2δt − 1)A (53a)

and

U2(δ, t) = t

(
I − 1

2
A

)
+

e2δt − 1

4δ
A . (53b)

As q+(0) = q−(0), we then obtain

‖q+m(T )− q∗‖ = ‖q+m(T )− q−m(T )‖

≤ 1

2
(e2δT − 1) ‖w−m(0)‖+ α

e2δT − 2δT − 1

4δ

εn

Tn
. (54)
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Step 3: Translate the mismatch of the basepoint q into a bound on the fast
variable w at the start of the next nudging cycle. By the triangle inequality,

‖wm+1‖ = ‖p+m(T )− Fn(q∗, T )‖
≤ ‖w+

m(T )‖+ ‖Fn(q+m(T ), T )− Fn(q∗, T )‖

≤ C ‖q+m(T )− q∗‖+ c
εn

Tn

≤ C eC2T (e2δT − 1) ‖wm‖+ c(T )
εn

Tn
. (55)

Here, we used Lemma 1 together with (43) in the second inequality and estimate
(54) together with estimate (41) in the third inequality. A possible explicit formula
for c(T ) is

c(T ) = α1 (e2δT − 2δT − 1) + α2 (e2C2T − 1) , (56)

where αi = αi(ρ, V, n, T1, R). Since C, C2, δ, and the αi are uniform in m ∈ N and
T ∈ (0, T0], estimate (37) is satisfied by a further lowering of T0.

Step 4: We finally prove that T0 can be chosen such that (38) remains satisfied
in all nudging cycles provided it is satisfied initially. Estimate (55) implies, in
particular, that

‖wm+1‖ ≤ C eC2T (e2δT − 1)R+ c(T ) (57)

with limT→0 c(T ) = 0. Thus, for T0 again small enough, we ensure ‖wm+1‖ ≤ R,
which completes the proof. �

We now turn to the analogue of Proposition 4 when V is analytic and ρ ∈
G2(0, 1). Here, the truncation order n must be chosen optimally. The scheme is
initialized with

w0 = p0 − Fn(q∗, T ) , (58)

which apparently depends on n. However, choosing n as in Lemma 2, Fn(q∗, T )
can be bounded uniformly in ε < T < T1 for some T1 > 0. This bound depends on
T1, ρ, and V , in particular on the domain on which V is analytic. Thus, for a given
R > 0, fix ri, i = 1, 2, 3, such that 2R ≡ r′ < r1, r2 < r3 < r ≡ 3R and estimates
(22) are satisfied. Then, by the same steps as in the proof of Proposition 4, the
following is true.

Proposition 5. Assume that ρ satisfies the exponential order condition (5) at least
at time t = 0. Fix R > 0, S > 0, T1 > 0, and p0, q

∗ ∈ R2d such that V is analytic
on B(0, 3R),

‖q∗‖ ≤ R and ‖w0‖ ≤ S for all 0 < ε < T ≤ T1 , (59)

where n, implicit in the definition of w0, is chosen as a function of ε and T as in
Lemma 2. Then there exist T0 ∈ (0, T1] and θ < 1 such that for any 0 < ε ≤ T ≤ T0,
we have

‖wm+1‖ ≤ θ ‖wm‖+ d e−c
3
√

T
ε . (60)

The constants d and c may depend on ρ, V , T0, S, and R, but are independent of
T and m.

Propositions 4 and 5 already suffice to prove quasi-convergence of the nudging
sequence. However, we would like to assert that the sequence of nudging iterates
not only quasi-converges to some limit, but that this limit is representative of the
slow manifold of the original problem (1), not that of the ramped problem (8).
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This requires imposing an order condition not only at t = 0 but also at t = T . Our
final results can be stated in the following form.

Theorem 6 (Algebraic quasi-convergence). Assume that ρ satisfies the algebraic
order condition (4) of order n ∈ N. Suppose V ∈ Cn+1(B(0, 2R)) for some R > 0
and pick q∗, p0 ∈ R2d and T1 > 0 such that

max{‖q∗‖, ‖p0 −Gn(q∗)‖} ≤ R for all 0 < ε ≤ T1 . (61)

Choose T0 ∈ (0, T1] such that the main estimate (37) from Proposition 4 is satisfied
for all ε < T ≤ T0. Then there is a constant C = C(ρ, V, n, T,R) such that the
sequence of nudging iterates quasi-converges to a point Gn(q∗) on the approximate
slow manifold of order n in the sense that

lim sup
m→∞

‖pm −Gn(q∗)‖ ≤ C εn . (62)

Proof. The order condition (4) implies that Gn(q∗) = Fn(q∗, T ). Thus, by Propo-
sition 4,

‖pm+1−Gn(q∗)‖ = ‖wm+1‖ ≤ θ ‖wm‖+ c
εn

Tn
= θ ‖pm−Gn(q∗, T )‖+ c

εn

Tn
. (63)

Taking the limsup of this estimate, we find that

lim sup
m→∞

‖pm −Gn(q∗)‖ ≤ c

1− θ
εn

Tn
, (64)

which concludes the proof. �

The corresponding statement for exponential quasi-convergence is the following,
its proof completely analogous to the previous proof.

Theorem 7 (Exponential quasi-convergence). Assume that ρ satisfies the expo-
nential order condition (5). Fix R > 0, S > 0, T1 > 0, and p0, q

∗ ∈ R2d such that
V is analytic on B(0, 3R),

‖q∗‖ ≤ R and ‖p0 −Gn(q∗)‖ ≤ S for all 0 < ε < T ≤ T1 , (65)

where n is chosen as a function of ε and T as in Lemma 2. Choose T0 ∈ (0, T1]
such that the main estimate (60) from Proposition 5 is satisfied. Then there are
positive constants C = C(ρ, V, T ) and D = D(ρ, V, T ) such that

lim sup
m→∞

‖pm(T )−Gn(q∗)‖ ≤ D e−Cε
− 1

3 (66)

for all ε < T ≤ T0.

Remark 8. Gn in (66) is a truncated asymptotic series where the order of truncation
grows like ε−1/3. The exponent 1

3 may not be sharp, but its growth must be

sublinear in ε−1, in contrast with the scaling of the optimal truncation for the
original fast-slow system, which goes like ε−1 and yields an approximation to the
slow manifold to O(exp(−c/ε)), see, e.g., [4]. Gn is difficult to compute and need
not be known when applying the optimal balance method in practice. Still, (66)
expresses that the quasi-limit of the nudging sequence, i.e., the state returned by
the optimal balance method, is exponentially well-balanced.
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6. Discussion

Our results show that, in order to guarantee quasi-convergence, one first has to
choose the ramp time T sufficiently small. Quasi-convergence then holds for all
ε ≤ T , but to ensure small remainders, we actually need ε � T . This may seem
restrictive, but in practice, reasonably large values of T , comparable to the natural
time scales of the slow motion, work just fine [14, 15, 18].

One place where our estimates are overly conservative is the bound (39) which
we apply equally to the q and w components of the transformed system. As the
iterations progress, w will get successively smaller, so tracking separate bounds
for q and w would improve the constants. Thus, it may be possible to start with
T small and increase it as the iterations progress. This might improve the basin
of quasi-convergence as well as computational efficiency. Alternatively, the basin
of convergence may be extended by using damped nudging updates of the form
pm+1 = pm + α (p+m(T ) − pm) with α ∈ (0, 1). Here, once again, our practical
experience is that the algorithm is rather robust and does not usually require such
measures, but there may certainly be situations where they could help.

Our method of proof only gives an upper bound on the termination residual,
but does not prove that true convergence is impossible. It suggests, however, that
quasi-convergence is the best we should hope for, for the following reason: Both
the termination residual and the balance error arise from the same mechanism,
the spurious excitation of fast degrees of freedom via the late terms of a diverging
asymptotic series over an O(1)-interval of slow time. As such, we can control their
amplitude, but their phases will typically depend sensitively on the initial state of
a nudging cycle, and have no reason to converge. Thus, the nudging iterates land
in a ball whose radius is controlled by the amplitude of the spurious fast motion,
while the uncertainty of the landing point within the ball is due to the unstable
fast phases. As a rule of thumb, we should expect quasi-convergence for systems
that do not possess truly invariant slow manifolds.

The test problem used in this paper is a Hamiltonian system with a noncanonical
symplectic matrix which structurally resembles the equations for rapidly rotating
fluid flow, cf. the discussion in [4], albeit bypassing the difficulties related to the
functional setting and time horizon of existence of solutions for the full fluid equa-
tions. As such, it is a paradigm for a class of systems of interest in geophysical fluid
dynamics. Existence of approximately invariant slow manifolds for certain Hamil-
tonian systems with finitely many slow degrees of freedom, without restrictions on
the number of fast degrees of freedom, has been proved in [12]. The class of systems
considered there differs from our model problem as the authors assume a symplectic
matrix that is block-diagonal with respect to the splitting into slow and fast vari-
ables. However, the only structural feature we really use is that the fast subsystem
is skew to leading order in the scale separation parameter. We therefore conjecture
that optimal balance, as well as the analysis presented here, extends not only to
symplectic slow manifolds as in [12], but to a much larger class of systems where,
in particular, the slow subsystem is not structurally constrained. Including infinite
dimensional dynamical systems will bring its own set of challenges, but progress
should be possible along the lines of [12, 16, 17].

Another point of interest is the choice of time integration scheme. Solving the
optimal balance boundary value problem exactly requires accuracy on the fast time
scale, which can be very costly when the scale separation is strong. With the
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nudging solver, our experience indicates that it suffices to choose a time integration
scheme that is stable with a time step selected to ensure accuracy on the slow time
scale, making the method more computationally feasible. A precise understanding
of this phenomenon may be possible along the lines of this paper, but remains
outside of the present scope.
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Appendix

In the following, we recall a Gronwall inequality for systems which was proved in
[2] and put this theorem into a form which can be used to directly obtain estimate
(52).

Theorem 9. Fix n ∈ N∗ and let G(t) and H(t) be real-valued, continuous, non-
negative n× n matrices. Further, let z(t), a(t) ∈ Rn be continuous such that

z(t) ≤ a(t) +G(t)

∫ t

0

H(s) z(s) ds . (67)

Then,

z(t) ≤ a(t) +G(t)

∫ t

0

V (t, s)H(s) a(s) ds , (68)

where

V (t, τ) = I +

∫ t

τ

H(s)G(s)V (s, τ) ds . (69)

The inequalities above are satisfied component-wise.

Let A denote the n× n matrix whose components are all ones, and let δ > 0. It
is easy to check that δA is nonnegative. Indeed, given X = (x1, . . . , xn)T ∈ Rn, we
have

XTAX =

n∑
k=1

xk (AX)k =

n∑
k=1

xk

n∑
k=1

xj =

( n∑
k=1

xk

)2

≥ 0 . (70)

Then, writing

G(t) = δA , H(t) = I , and V (t, τ) = eδ(t−τ)A , (71)

we easily check that V (t, τ) satisfies (69). Theorem 9 then implies the following.
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Corollary 10. Let δ > 0, K ∈ Rn, and z(t) ∈ Rn be differentiable such that

z′(t) ≤ δA z(t) +K . (72)

Then

z(t) ≤ z(0) + tK + δA

∫ t

0

eδ(t−s)A (z(0) + sK) ds . (73)
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