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Parcel Eulerian–Lagrangian Hamiltonian formulations have recently been used
in structure-preserving numerical schemes, asymptotic calculations, and in alter-
native explanations of fluid parcel (in)stabilities. A parcel formulation describes
the dynamics of one fluid parcel with a Lagrangian kinetic energy but an Eulerian
potential evaluated at the parcel’s position. In this paper, we derive the geometric
link between the parcel Eulerian–Lagrangian formulation and well-known varia-
tional and Hamiltonian formulations for three models of ideal and geophysical fluid
flow: generalized two-dimensional vorticity-streamfunction dynamics, the rotating
two-dimensional shallow water equations, and the rotating three-dimensional com-
pressible Euler equations.

Keywords: Eulerian and Lagrangian fluid dynamics; variational principles;
Hamiltonian dynamics; rotating compressible Euler, shallow water and

vortical flows

1. Introduction

Conservation laws play an important role in geophysical fluid mechanics. In the ab-
sence of forcing and dissipation, conservations laws can be derived systematically
from the variational or Hamiltonian structure of the equations of fluid motion.
Conservation or near-conservation of mass, energy, and vorticity in the underly-
ing idealized model and its numerical treatment is considered desirable to enhance
stability and accurate ensemble forecasting, even though the dynamics of the atmo-
sphere and oceans are ultimately driven by forcing on the large scales and subject
to viscosity on the small scales.

Recently, Frank, Gottwald, and Reich (2002) and Frank and Reich (2003, 2004)
introduced a Hamiltonian Particle Mesh (HPM) numerical method which conserves
mass, energy, circulation, and phase space structure when a symplectic time integra-
tion scheme is used. The HPM method is a parcel Eulerian–Lagrangian method: the
fluid particles and velocities are discretized in a Lagrangian way, while the effective
density is Eulerian and is discretized and smoothed on a fixed mesh. Smoothing of
this density appears be required to ensure stability for time steps on the advection
time scale.

The conservation of mass and circulation in the HPM numerical model is shown
by interpreting the dynamics of particles as a non-autonomous Hamiltonian system
with particle position and particle velocity as variables; parcels interact via the
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transport of mass or vorticity (Frank and Reich, 2003). Generally, the Hamiltonian
associated with a particle representation consists of a type of Bernoulli function,
that is, the sum of the Lagrangian kinetic energy plus an Eulerian potential func-
tion depending on space, evaluated at the position of the particle, and time. It
turns out that in continuum fluid dynamics a single fluid parcel satisfies the same
non-autonomous Hamiltonian formulation, which is finite dimensional for the one
distinguished fluid parcel. The Eulerian potential is now transported by the flow
generated by the parcel velocities, thereby coupling the parcels to a continuum. We
call this the parcel Eulerian–Lagrangian formulation.

The question we will answer is how such parcel Eulerian–Lagrangian formu-
lations relate to the well-known Lagrangian or Eulerian continuum Hamiltonian
mechanics. Three flow systems are considered in turn: generalized two-dimensional
incompressible flow expressed in terms of stream function and (potential) vorticity,
two-dimensional rotating shallow-water equations, and three-dimensional rotating
compressible Euler equations for the motion of air. Besides the preservation of
the Hamiltonian structure in the numerical HPM approach, the parcel formula-
tion is often simpler than the more commonly used partial differential formula-
tion in asymptotics (Bokhove, 2005), fluid parcel explanations of flow instabilities
(Bokhove, 2005), and the proof of the Jacobi identity (this paper). In particular,
the continuum Poisson bracket inherits the Jacobi identity by construction from the
parcel formulation, where it is more easily verified. The link between the Hamilto-
nian formulation and its parcel Eulerian–Lagrangian form for an ensemble of point
vortices was already noted by Morrison (1981); we believe that the general case and
the derivation through Lagrangian symmetries are new.

The outline of the paper is as follows. In §2, we introduce definitions and re-
lations between Lagrangian and Eulerian flows. An overview of the three parcel
Eulerian–Lagrangian flows is given in §3. The relation between parcel and contin-
uum dynamics is given in §4 to §6 in turn for the vortical flows, the shallow water
equations, and the compressible equations for air.

2. Preliminaries

The fundamental object in the continuum description of a fluid in a container D
is the flow map χ : D × R → D which maps a fluid “parcel” labeled by its initial
location a to its later Eulerian position x = χ(a, t). Depending on the application
considered later, D may be two- or three-dimensional. We view χ(·, t) as a curve
in the group of diffeomorphisms (or, if the system is incompressible, the subgroup
of volume preserving diffeomorphisms) of D parameterized by t.

The Lagrangian velocity χ̇(a, t) is the velocity of the fluid parcel labeled a,
while the Eulerian velocity u(x, t) is the velocity of the parcel passing location x
at time t, so that, following the conventions of, for example, Marsden and Ratiu
(1994; see also Oliver, 2006, for the shallow water case),

χ̇(a, t) ≡ ∂tχ(a, t) = u(χ(a, t), t) or χ̇ = u ◦ χ . (2.1)

The effective density ρ(x, t), which may be the physical fluid density or, as in
the case of the shallow water equations, the height function, is a density form on
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which the flow map acts by pullback, i.e.

χ∗ρ ≡ (det∇χ) ρ ◦ χ = ρ0 , (2.2)

where ρ0 = ρ0(a) is the initial effective density, which we often take equal to
one for simplicity, and ∇χ = ∇aχ denotes the gradient with respect to the label
coordinates; we will not explicitly denote the variables of differentiation when no
confusion is possible. In the following, we will treat ρ as a scalar, so that ρ◦χ/ρ0 is
the Jacobian determinant of the transformation; relation (2.2) can then be written
in the equivalent integral form

ρ(x, t) =
∫

D

ρ(x′, t) δ(x− x′) dx′ =
∫

D

ρ0(a) δ
(
x− χ(a, t)

)
da , (2.3)

where δ(·) denotes the Dirac measure. A further formally equivalent relation is the
Eulerian continuity equation

∂tρ+ ∇ · (ρu) = 0 , (2.4)

which follows from differentiating (2.2) in time and using (2.1). When the flow is
incompressible, ∇ · u = 0; for simplicity, we will also assume ρ constant.

If χε denotes a curve of flow maps parameterized by ε with χ0 = χ, the varia-
tional derivative is defined as

δχ =
∂χε

∂ε

∣∣∣∣
ε=0

. (2.5)

It is useful to introduce a corresponding Eulerian variation w via

δχ = w ◦ χ , (2.6)

which can be seen as an analogy to χ̇ = u ◦ χ, so that u and w must satisfy the
same boundary conditions. Moreover, just as (2.4) emerges from (2.1), we derive

δρ+ ∇ · (ρw) = 0 (2.7)

from (2.6). For incompressible flows, this implies that ∇ · w = 0 so that, for any
materially conserved quantity θ ◦ χ = θ0 ≡ Θ,

δθ + w · ∇θ = 0 . (2.8)

In the following, we localize various quantities to a single, distinguished fluid
parcel, which we label A. Quantities relating to this distinguished parcel are also
written in capital letters so that, in particular, X(t) = χ(A, t) and U(t) = χ̇(A, t).
We localize variations of the flow map by introducing the special variations

δχ(a, t) = δ(a−A) δX (2.9)

and
δχ̇(a, t) = δ(a−A) δU . (2.10)

Finally, for vector fields u = (u1, u2)T in two dimensions we write u⊥ =
(−u2, u1)T and identify the curl with a scalar field, so that the curl operator in
two dimensions is conveniently written as ∇⊥ · u = ∂1u2 − ∂2u1.
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3. Parcel Eulerian–Lagrangian fluid dynamics

(a) Two-dimensional generalized vorticity dynamics

The generalized two-dimensional vorticity dynamics considered in Bernsen et
al. (2006) take the parcel formulation

dX

dt
= −B∇⊥Hv = B∇⊥ψ , (3.1a)

∇ · (B∇ψ)− C ψ +D = ζ/B , (3.1b)

ζ(X, t) =
∫

D

ζ0(a, t) δ
(
X − χ(a, t)

)
B

(
χ(a, t)

)
da , (3.1c)

where ζ = ζ(X, t) denotes the (potential) vorticity, ψ = ψ(X, t) the stream func-
tion, u = B∇⊥ψ denotes the parcel velocity which satisfies the weighted divergence
condition ∇ · (B−1u) = 0, and χ denotes the flow generated by u. Equation (3.1c)
expresses the material conservation of (potential) vorticity. The single parcel dy-
namics is Hamiltonian with

Hv(X, t) = −ψ(X, t) . (3.2)

We assume that 0 < Bmin ≤ B(X) < ∞, C(X) ≥ 0 and D = D(X). For B = 1
and C = D = 0, the system reduces to the Euler equations for ideal incompressible
flow. For other choices, the system reduces to the quasi-geostrophic or to the rigid
lid equations with B−1 representing the bottom topography of the basin; for details
see Bernsen et al. (2006).

Boundary conditions depend on the setting, where the possible choices include
doubly periodic, sufficient decay at infinity, and ψ = 0 with possibly circulation
conditions if the domain is not simply connected.

In the simplified case that the Hamiltonian Hv(X, t) is prescribed, as is com-
monly done in studies of chaotic advection, the Hamilton equations (3.1a) form a
kinematic description. In contrast, a dynamic formulation arises if we solve (3.1a)
for every parcel A to obtain X = χ(A, t) using (3.1b) with ζ defined in (3.1c) to
determine ψ(x, t) as function of space and time. Note that (3.1c) equals (2.3) if we
identify ρ with vorticity ζ.

The associated Poisson formulation is

dF
dt

= {F,Hv} , (3.3a)

{F,G} = B(X) ∇⊥F · ∇G (3.3b)

for arbitrary functions F and G of X and t. The Poisson bracket is skew-symmetric,
i.e. {F,G} = −{G,F}, and satisfies the Jacobi identity

{K, {F,G}}+ {F, {G,K}}+ {G, {K,F}} = 0 . (3.4)

The Jacobi identity holds for general smooth B = B(X) bounded away from zero
and can be verified by direct computation. For a discussion of the general role of
the Jacobi identity, see, for example, Olver (1986).
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(b) Two-dimensional rotating shallow water dynamics

The parcel form of the rotating shallow water equations has been used exten-
sively as a basis for a numerical particle method by Frank, Gottwald, and Reich
(2002) and Frank and Reich (2003, 2004). It reads

dX

dt
= ∇UHs = U , (3.5a)

dU

dt
= −f ∇⊥

UHs −∇XHs = −f U⊥ − g∇(h+ b) , (3.5b)

h(X, t) =
∫

D

h0(a) δ
(
X − χ(a, t)

)
da , (3.5c)

where X and U denote horizontal position and velocity, respectively, f denotes the
constant Coriolis parameter, g the gravitational acceleration, b = b(X) the depth
of the fluid basin relative to some horizontal stratum z = 0, and h = h(X, t) the
Eulerian depth of the shallow layer of fluid. The single parcel Hamiltonian reads

Hs(X,U , t) =
1
2
|U |2 + g

(
h(X, t) + b(X)

)
. (3.6)

When the two dimensional domainD has a boundary, zero flux boundary conditions
n · U = 0, with n denoting the outward normal, will be used.

The parcel Poisson formulation is

dF
dt

= {F,Hs} , (3.7a)

{F,G} = f ∇⊥
UF · ∇UG+ ∇XF · ∇UG−∇XG · ∇UF (3.7b)

for arbitrary functions F andG of X,U and t. The bracket (3.7b) is skew-symmetric
and canonical when f = 0. It satisfies the Jacobi identity (3.4), as can be verified
directly.

(c) Three-dimensional rotating compressible dynamics for air

The equations for compressible ideal gas in three dimensions have been cast
into parcel form in Bokhove (2005), a formulation that underlies Dixon and Reich’s
(2004) particle method. The parcel equations read

dX

dt
= ∇uHc = U , (3.8a)

dU

dt
= −2Ω×∇uHc −∇Hc = −2Ω×U −Θ∇Π

(
p(X, t)

)
−∇Φ(X) , (3.8b)

dΘ
dt

= 0 , (3.8c)

ρ(X, t) =
∫

D

ρ0(a) δ
(
X − χ(a, t)

)
da , (3.8d)

θ(X, t) ρ(X, t) =
∫

D

θ0(a) ρ0(a) δ
(
X − χ(a, t)

)
da , (3.8e)

where Φ = φ(X) is an external potential, θ = T (p/pr)−κ denotes the Eulerian, and
Θ(t) = θ(X(t), t) the corresponding parcel potential temperature with temperature
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T , pressure p, and reference pressure pr. We assume the thermodynamics of an ideal
gas where p = ρRT with gas constant R, specific heat at constant pressure cp, and
κ = R/cp. The system is then closed via the Exner function

Π(p) = cp
(
p/pr

)κ (3.8f)

and the ideal gas law, which implies

p(X, t) =
(
Rθ(X, t) ρ(X, t)

pκ
r

) 1
1−κ

. (3.8g)

Note that both the single parcel potential temperature Θ and the Eulerian potential
temperature field θ appear in the system—in (3.8b) and (3.8g), respectively. The
parcel potential temperature acts as a (trivial) variable in the Hamiltonian struc-
ture, while the Eulerian potential temperature is a materially advected quantity. To
make this point, the system contains the two computationally redundant potential
temperature equations (3.8c) and (3.8e).

The boundary conditions are taken to be doubly-periodic in the horizontal with
a solid bottom at z = b(x, y) and flow at rest for z →∞. Note that θ∇Π = (1/ρ)∇p,
so that (3.8b) attains its usual form. The parcel Hamiltonian reads

Hc(X,U ,Θ, t) =
1
2
|U |2 + ΘΠ

(
p(X, t)

)
+ Φ(X) . (3.9)

Finally, system (3.8) has the parcel Poisson formulation

dF
dt

= {F,Hc} , (3.10a)

{F,G} = 2Ω · ∇UF ×∇UG+ ∇XF · ∇UG−∇XG · ∇UF (3.10b)

for arbitrary functions F and G of X, U , Θ, and t. The bracket (3.10b) is skew-
symmetric, canonical when Ω = 0, and can be shown to satisfy the Jacobi identity
(3.4) by direct verification.

4. Generalized vorticity-stream-function dynamics

(a) Equations of motion

The Eulerian description of the generalized vorticity dynamics (3.1) reads

∂tζ + u · ∇ζ = 0 , (4.1a)
∇ · (B∇ψ)− C ψ +D = ζ/B , (4.1b)

u = B∇⊥ψ (4.1c)

with appropriate, here doubly periodic, boundary conditions for (4.1b). Note that
if B is spatially varying, u satisfies a weighted incompressibility constraint, so that
the Jacobian determinant

det ∇χ = B (4.2)

must be used when changing from Lagrangian to Eulerian coordinates.
System (4.1) arises from a continuum variational principle which we will first

restrict to single, distinguished parcels to derive the parcel Hamiltonian form. Sub-
sequently, we show how a full continuum Hamiltonian formulation can be recovered
from the parcel one.
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(b) From continuum to parcel variational principle

To expose the subtleties of this derivation more clearly, we restrict ourselves to
the case of ideal incompressible flow, where B = 1 and C = D = 0. It is well known
that (4.1) arises via the Hamilton principle with extended Lagrangian

L =
∫

V · χ̇ da−H(V ) , (4.3a)

H =
1
2

∫
|V |2 da . (4.3b)

We recall this argument briefly. We seek stationary points of the action under
independent variations of V and χ which vanish at the temporal end points. Thus,

0 = δS = δ

∫ t2

t1

Ldt =
∫ t2

t1

∫ (
(χ̇− V ) · δV − V̇ · δχ

)
da dt , (4.4)

where we have integrated by parts in time. The first term under the integral states
that χ̇ = V , whence the second term yields, after using (2.6) and integration by
parts, that

0 =
∫

V̇ · δχ da =
∫

χ̈ · w ◦ χ da =
∫

(u̇ + u · ∇u) · w dx , (4.5)

so that u̇ + u · ∇u is orthogonal to divergence free vector fields, or

∂tu + u · ∇u = −∇p , (4.6)

where p is identified with the physical pressure. The transport of vorticity (4.1a) is
then obtained by taking the curl of (4.6).

Vorticity advection can also be derived by taking particle relabeling variations
of the action S. With particle relabeling transformation we mean area preserv-
ing rearrangements of the initial fluid labels. A variation of a flow map under a
differentiable one-parameter family of label changes then takes the form

χε(a, t) = χ(Φε(a), t) (4.7)

with Φε=0 = Id. Differentiating in ε and setting ε = 0 yields

δχ = ∇χ δΦ , (4.8)

where incompressibility implies that W ≡ δΦ is divergence free.
The crucial observation is that the particle relabeling symmetry implies a ma-

terial conservation law—which we may call conservation of potential vorticity but
which is not yet in any way related to the physical vorticity—even without the the
identification χ̇ = V . We thus proceed without assuming the computation leading
up to (4.6). In this situation, it is crucial to distinguish between three Lagrangian
vector fields, namely V , U ≡ χ̇, and the Lagrangian variation W . Since W is
divergence free, we write W = ∇⊥φ. For the other two vector fields, we associate
Eulerian vector fields via v ◦ χ = V and u ◦ χ = U , and define corresponding
Eulerian stream functions

v = ∇⊥θ and u = ∇⊥ψ , (4.9)
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as well as vorticities

ζ = ∇⊥ · v = ∆θ and ω = ∇⊥ · u = ∆ψ . (4.10)

Since particle relabeling variations act only on χ, the resulting conservation law
is independent of the Hamiltonian, and we find

0 = δS =
∫ t2

t1

∫
V · δχ̇ da dt =

∫
V · δχ da

∣∣∣∣t2
t1

−
∫ t2

t1

∫
V̇ · δχ da dt . (4.11)

If we assume that V and χ solve the equations of motion which, at this point, are
not yet explicitly known, the last integral in (4.11) must vanish. Moreover, using
(4.8), we find that∫

V · δχ da =
∫

v ◦ χ · ∇χ ∇⊥φda = −
∫
ζ ◦ χφda . (4.12)

The last equality is due to integration by parts and the incompressibility condition
det ∇χ = 1. The computation can easily be checked by component-wise compu-
tation, but also has a direct interpretation as the commutation of pullback and
exterior derivative in the calculus of differential forms.

Combining (4.11) and (4.12), we find that ζ is materially conserved, i.e.

ζ ◦ χ = ζ0. (4.13)

We now use this conservation law as a constraint when taking regular variations in
χ, vanishing at the temporal end points, of the extended Lagrangian (4.3). First,
we compute the variation of H in two different ways. On the one hand,

δH =
1
2
δ

∫
|v|2 dx = −1

2
δ

∫
ζ θ dx = −

∫
ζ δθ dx = −

∫
ζ0 δθ ◦ χ da , (4.14)

and on the other hand,

δH = −1
2
δ

∫
ζ0 θ ◦ χ da = −1

2

∫
ζ0

(
δθ ◦ χ + ∇θ ◦ χ · δχ

)
da . (4.15)

Combining (4.14) and (4.15), we obtain

δH = −
∫
ζ0 ∇θ ◦ χ · δχ da . (4.16)

In order to take variations of the first term in the Lagrangian (4.3a), we note
that the conservation law for ζ, equation (4.13), implies

∂tζ + u · ∇ζ = 0 and δζ + w · ∇ζ = 0 , (4.17)

so that

v̇ = −∇⊥∆−1(u · ∇ζ) and δv = −∇⊥∆−1(w · ∇ζ) . (4.18)

Further,

V̇ = v̇ ◦ χ + ∇v ◦ χ χ̇ and δV = δv ◦ χ + ∇v ◦ χ δχ , (4.19)
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so that

V̇ ◦ χ−1 = −∇⊥∆−1(u · ∇ζ) + ∇v u and (4.20a)

δV ◦ χ−1 = −∇⊥∆−1(w · ∇ζ) + ∇v w . (4.20b)

Hence, using (4.20), we derive

δ

∫ t2

t1

∫
V · χ̇ da dt =

∫ t2

t1

∫ (
δV · χ̇− V̇ · δχ

)
da dt

=
∫ t2

t1

∫ (
−∇⊥∆−1(w · ∇ζ) + ∇v w

)
· u dx dt

+
∫ t2

t1

∫ (
∇⊥∆−1(u · ∇ζ)−∇v u

)
· w dx dt

=
∫ t2

t1

∫ (
∇⊥φ · ∇ζ ψ −∇⊥ψ · ∇ζ φ+ ζ∇ψ · ∇⊥φ

)
dx dt

= −
∫ t2

t1

∫
ζ∇ψ · ∇⊥φdx dt

=
∫ t2

t1

∫
ζ0 χ̇⊥ · δχ da dt , (4.21)

where, in the third equality, we have used that

∇v w · u−∇v u · w = (∇vT −∇v) u · w = ζ u · w⊥ . (4.22)

Altogether, combining (4.16) and (4.21), we obtain

δS = δ

∫ t2

t1

(∫
V · χ̇ da−H

)
dt =

∫ t2

t1

∫
ζ0

(
χ̇⊥+∇θ ◦χ

)
· δχ da dt ≡ 0 . (4.23)

We localize this expression by choosing variations of the type (2.9), so that∫ t2

t1

ζ0(A)
(
Ẋ

⊥
+ ∇θ

)
· δX dt = 0. (4.24)

Dividing through by ζ0(A), we obtain the parcel variational principle

δS = δ

∫ t2

t1

Ldt ≡ 0 , (4.25a)

where

L = 1
2 Ẋ

⊥ · X −Hv with Hv = −θ . (4.25b)

Since the parcel Poisson structure (3.3b) is nearly canonical, it follows by inspection
from the equations of motion implied by (4.25).

We observe that this parcel variational principle encodes only the dynamic part
of the parcel system (3.1),

Ẋ = ∇⊥θ . (4.26)
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The full continuum variational principle encodes, in addition, the material conser-
vation law ζ ◦ χ = ζ0 which has been externalized by the localization and is not
present in (4.25).

Considering that all particular fluid labels A satisfy (4.26), we conclude that
u = ∇⊥θ. Since we defined u = ∇⊥ψ earlier on, we identify a posteriori that θ = ψ
(up to a constant) and ζ = ω.

We finally remark that the underlying principle of our construction is inde-
pendent of the two-dimensionality of the flow and of the corresponding vorticity-
streamfunction formulation. The details of the construction for three-dimensional
flow are very different, however, and will be considered in a forthcoming paper.

(c) From parcel to continuum Eulerian Hamiltonian dynamics

We now demonstrate that the above procedure can be reversed for the case of
generalized vorticity-stream-function dynamics with functions B,C, and D. Given
the parcel Hamiltonian structure (3.3b), we derive the corresponding continuum
vorticity bracket. Generally speaking, we recover continuum quantities from parcel
quantities by integrating over label space. For any function F (X) of single-parcel
variables, we define the functional

F [ζ] =
∫
ζ0(a)F (χ(a, t), t

)
da =

∫
F (x, t)

ζ(x, t)
B(x)

dx . (4.27)

To establish the relation between the partial derivatives of F and partial variations
of F , we compare the definition of δF with the variation of (4.27),

δF =
∫
δF
δζ

δζ dx and δF =
∫
F

B
δζ dx , (4.28)

respectively. Hence,
δF
δζ

=
F

B
. (4.29)

The Hamiltonian dynamics follows by taking the time derivative of (4.27) and using
the parcel Hamiltonian dynamics (3.3b)

dF
dt

=
∫
ζ0(a)

∂

∂t
F

(
χ(a, t), t

)
da

=
∫
ζ(x, t)
B(x)

dF
dt

dx =
∫
ζ(x, t)
B(x)

{F,H}dx . (4.30)

Substitution of (4.29) into the last line of (4.30) with use of (3.3b) gives the well-
known vorticity bracket (see, e.g., Shepherd, 1990)

{F ,G} =
∫
ζ∇⊥

(
B
δF
δζ

)
· ∇

(
B
δG
δζ

)
dx . (4.31)

Since the parcel Hamiltonian implicitly depends on ζ, it cannot be recovered via
(4.27). Note, however, that the crucial identity which lead us to the continuum
bracket is (4.29) which, as we will show in §4d, can also be derived on independent
grounds.
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We thus need to find a functional H which satisfies (4.29) with F = H = −ψ
and F = H. Noting that (3.1b) implies ∇ · (B∇δψ)− C δψ = δζ/B, we see that

H =
1
2

∫ (
B |∇ψ|2 + C ψ2

)
dx . (4.32)

In conclusion, the Hamiltonian dynamics is governed by dF/dt = {F ,H}, bracket
(4.31) and Hamiltonian (4.32). The bracket is observed to be skew-symmetric,
{F ,G} = −{G,F}, and satisfies the Jacobi identity

{K, {F ,G}}+ {F , {G,K}}+ {G, {K,F}} = 0 , (4.33)

as can be seen as follows. From (4.29) and (4.30), we immediately see that

δK
δζ

=
K

B
and

δ{F ,G}
δζ

=
{F,G}
B

. (4.34)

Substitution of (4.34) into {K, {F ,G}} then yields

{K, {F ,G}} =
∫
ζ(x, t)
B(x)

{K, {F,G}}dx . (4.35)

Thus, the Jacobi identity for single parcel variables implies the full continuum
Jacobi identity (4.33).

We finally remark that the vorticity dynamics (4.1) can be recovered from
dF/dt = {F ,H} by choosing

F =
ζ(x, t)
B(x)

=
∫
δ(x− x′)

ζ(x′, t)
B(x′)

dx′ . (4.36)

(d) General vorticity functionals

In the following, we prove (4.29) for general vorticity functionals F [ζ]. This
computation provides a different viewpoint on the reconstruction of the continuum
Poisson formulation. In particular, it shows that (4.29) is not simply postulated,
but is a direct inverse of the restriction-to-parcels process. The disadvantage of this
approach is that the interpretation of (4.29) as an integration over labels is lost, and
that the argument works backward, i.e. following the restriction-to-parcels route.

Using (4.17), integrating by parts, and changing variables, we find

δF [ζ] =
∫
δF
δζ

δζ dx = −
∫
δF
δζ

B∇ · ζw
B

dx

=
∫

w · ∇
(
δF
δζ

B

)
ζ

B
dx

=
∫
δχ · ∇

(
δF
δζ

B

)
◦ χ ζ0 da . (4.37)

As before, we localize this expression by choosing variations of the type (2.9), so
that, comparing with (4.24), we obtain

ζ0 ∇
(
δF
δζ

B

)
◦ χ = ζ0 ∇F . (4.38)
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12 Bokhove, Oliver

Dividing by ζ0 and integration in space yields (4.29). A computation similar to
the above holds for the time derivative of F in place of the variational derivative,
providing yet another, more general route to the Poisson bracket for functionals.

5. Rotating shallow-water equations

(a) Equations of motion

The Eulerian form of the rotating shallow water equations (3.5) is

∂tu + u · ∇u + f u⊥ + g∇(h+ b) = 0 , (5.1a)
∂th+ ∇ · (hu) = 0 . (5.1b)

In the following, we will again start out with the full continuum variational principle
for this system, derive its parcel form, and then use the parcel Poisson structure to
reconstruct the full continuum Poisson structure.

(b) From continuum to parcel variational principle

It is well known (see, e.g., Salmon, 1998) that the rotating shallow water equa-
tions arise as the critical point of the action

Ss =
∫ t1

t0

Ls dt =
∫ t1

t0

∫ [
R ◦ χ · χ̇ + 1

2 |χ̇|
2 − g ( 1

2 h+ b) ◦ χ
]
da dt , (5.2)

where ∇⊥ · R = f , with respect to variations δχ that vanish at the temporal end
points and are tangential to solid boundaries, i.e. which satisfy n · w = 0 = n · u.
The shallow water Lagrangian written in Eulerian coordinates reads

Ls =
∫
h

[
R · u + 1

2 |u|
2 − g ( 1

2 h+ b)
]
dx . (5.3)

The crucial observation is that, due to (2.7) for ρ = h and integration by parts,

δ

∫ (
1
2 h

2 + b h
)
dx =

∫
(h+ b) δh dx = −

∫
(h+ b) ∇ · (hw) dx

=
∫

∇(h+ b) · w h dx =
∫

(∇(h+ b)) ◦ χ · δχ da . (5.4)

We restrict the entire variational principle down to the single fluid parcel labeled
A by using the special variations (2.9) and (2.10) in the variation of (5.2). The first
two terms in the variation of (5.2) then give

δ

∫ [
R ◦ χ · χ̇ + 1

2 |χ̇|
2
]
da =

∫ [
(R ◦ χ + χ̇) · δχ̇ + (∇R) ◦ χ δχ · χ̇

]
da

= (R + u) · δẊ + ∇R δX · Ẋ = δ
(
R(X) · Ẋ + 1

2 |Ẋ|2
)
, (5.5)

where X and U are the position and velocity of the distinguished fluid parcel
labeled A.
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Parcel Eulerian–Lagrangian fluid dynamics 13

If we now consider h as a given density field, the last term in (5.2) and (5.4)
can be seen as a perfect variation with respect to the parcel coordinates,∫

(∇(h+ b)) ◦χ · δχ da = ∇X

(
h(X, t) + b(X)

)
· δX = δ

(
h(X, t) + b(X)

)
. (5.6)

Altogether, we obtain the parcel variational principle

δSs = δ

∫ t1

t0

Ls dt = δ

∫ t1

t0

[
R(X) · Ẋ + 1

2 |Ẋ|2− g
(
h(X, t) + b(X)

)]
dt = 0 . (5.7)

It is important to note that in the full continuum variational principle, variations
of h are slaved to variations of χ. In the parcel variational principle, however, h is
treated like an externally prescribed potential as it is defined via the (3.5c) which
closes the dynamics, but is not part of the variational structure. This distinction is
crucial when we recover the continuum from the parcel Hamiltonian formulation in
§5c.

Denoting the conjugate momentum by U , we obtain a Hamilton principle

δ

∫ t1

t0

Ls dt ≡ 0 (5.8)

with X and U as independent variables, and

Ls = (R + U) · Ẋ −Hs , (5.9a)

Hs = 1
2 |U |2 + g

(
h(X, t) + b(X)

)
. (5.9b)

The parcel equations of motion follow immediately. Finally, we can easily deduce
the Poisson formulation (3.7) since the bracket is nearly canonical.

(c) From parcel to continuum Eulerian Hamiltonian dynamics

We will recover the continuum quantities from the corresponding parcel quan-
tities by integrating over label space. For any function F (U ,X) of single-parcel
variables, we define the functional

F [u, h] =
∫
F (u(x, t),x)h(x, t) dx =

∫
F (χ̇(a, t),χ(a, t)) da . (5.10)

Hence,

δF =
∫ (

∇uF (u(x, t),x) · δuh(x, t) + F (u(x, t),x) δh
)
dx , (5.11)

where δu and δh are independent, so that

δF
δu

= h∇uF and
δF
δh

= F , (5.12)

and consequently

∇δF
δh

= ∇F (u(x, t),x) = ∇uF · ∇u + ∇xF =
1
h

δF
δu

· ∇u + ∇xF . (5.13)
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Moreover,

dF
dt

=
∫

∂

∂t
F (χ̇,χ) da =

∫
h(x, t)

d
dt
F (u(x, t),x) dx =

∫
h(x, t) {F,Hs}dx .

(5.14)
Direct substitution of (5.12) into (5.14) while using (3.7b) yields the well-known
shallow water bracket (see, e.g., Shepherd, 1990)∫

{F,G}h dx =
∫ (

qs
δF
δu

⊥
· δG
δu

− δF
δu

· ∇δG
δh

+
δG
δu

· ∇δF
δh

)
dx ≡ {F ,G} (5.15)

with potential vorticity qs = (f + ∇⊥ · u)/h.
It remains to find an explicit expression for the Hamiltonian Hs. Since the

parcel Hamiltonian depends on h, it cannot simply be substituted into (5.10). Note,
however, that the crucial identities which lead us to the continuum bracket are
(5.12) which, as we will show in §5d, can also be derived on independent grounds.
We must thus seek an Hs which satisfies (5.12) directly. By inspection, we find

Hs = 1
2

∫ (
h |u|2 + g (h+ b)2

)
dx . (5.16)

Hence, the Hamiltonian dynamics is governed by dF/dt = {F ,Hs}. The shallow
water equations (5.1) are recovered by choosing

F [u, h] = h(x, t) =
∫
δ(x− x′)h(x′, t) dx′ (5.17)

and
F(u, h) = u(x, t)h(x, t) =

∫
u(x′, t) δ(x− x′)h(x′, t) dx′ (5.18)

for the continuity and momentum equations, respectively. Thus, by transforming
the parcel generalized Poisson bracket, we arrive at the continuum Eulerian gen-
eralized Poisson bracket which is skew-symmetric and satisfies the Jacobi identity
by construction. The proof is as follows. Since (5.15) implies that Jacobi brackets
satisfy (5.12), that is

δ{F ,G}
δu

= h∇u{F,G} and
δ{F ,G}
δh

= {F,G} , (5.19)

we also have

{K, {F ,G}} =
∫
h {K, {F,G}}dx . (5.20)

Therefore, the Jacobi identity (3.4) for functions implies the Jacobi identity for
functionals.

(d) General velocity-height functionals

As we considered general vorticity functionals in §4d, we will now derive (5.12)
for general velocity-height functionals F [u, h]. In addition to providing an alterna-
tive viewpoint on the reconstruction of the continuum Poisson structure, we find
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Parcel Eulerian–Lagrangian fluid dynamics 15

that the correspondence is only valid if F is of the particular form

F [u, h] ≡
∫
hF (u, h) dx with F (u, h) = f(u) + g(h) (5.21)

for arbitrary functions f and g.
Starting from a general functional F = F [u, h], we use (2.7) with ρ = h, inte-

grate by parts, change to Lagrangian variables, apply (2.6) and its time derivative,
and finally restrict the variations to a distinguished fluid parcel A, thereby obtain-
ing

δF =
∫ [

δF
δh

δh+
δF
δu

· δu
]

dx

=
∫ [

∇δF
δh

· w h+
δF
δu

· δu
]

dx

=
∫ [

∇δF
δh

◦ χ · δχ +
(

1
h

δF
δu

)
◦ χ ·

(
δχ̇−∇u ◦ χ δχ

)]
da

=
(

∇δF
δh

− 1
h

δF
δu

)
· δX +

1
h

δF
δu

· δẊ . (5.22)

Thus, at the distinguished parcel,

1
h

δF
δu

= ∇UF and ∇δF
δh

− 1
h

δF
δu

= ∇XF . (5.23)

The relations (5.12) follow by integration and rearrangement of terms. Writing

F [u, h] =
∫
G(u(x, t), h(x, t)) dx , (5.24)

we find that ∂G/∂h = F and therefore

G(u, h) =
∫ h

0

F (u, h′) dh′ . (5.25)

We conclude that this expression is only compatible with the first condition of
(5.12) provided (5.21) holds. A computation similar to (5.22) holds for the time
derivative of F in place of the variational derivative, providing yet another, more
general route to the Poisson bracket for functionals.

6. Rotating compressible Euler equations

(a) Equations of motion

The Eulerian description of the Euler equations (3.8) for an ideal gas with
velocity u(x, t), density ρ(x, t), and potential temperature θ(x, t) reads

∂tu + u · ∇u + 2Ω× u + θ∇Π = 0 , (6.1a)
∂tρ+ ∇ · (ρu) = 0 , (6.1b)
∂tθ + u · ∇θ = 0 , (6.1c)

Π = cp

(
pr

ρRθ

) κ
κ−1

. (6.1d)
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Note that in (6.1a), using T = θ (p/pr)κ and the ideal gas law p = ρRT , we can
rewrite θ∇Π = (RT/p)∇p = (1/ρ) ∇p in its usual form.

The continuum variational principle and its restriction to single parcels is largely
similar to the case of rotating shallow water, so we omit this computation. However,
we demonstrate how the continuum Poisson structure is derived from the parcel one.

(b) From parcel to continuum Hamiltonian dynamics

For any function F (U ,X,Θ) of single-parcel variables, we define again an as-
sociated functional

F [u, ρ, θ] =
∫
F (u,x, θ) ρ(x, t) dx =

∫
F

(
χ̇(a, t),χ(a, t), θ(χ(x, t), t)

)
da . (6.2)

Since

δF =
∫ (

ρ∇uF · δu + ρ
∂F

∂θ
δθ + F δρ

)
dx (6.3)

and δu, δρ and δΘ are independent, we find

δF
δu

= ρ∇uF ,
δF
δρ

= F , and
δF
δθ

= ρ
∂F

∂θ
, (6.4)

and therefore

∇δF
δρ

= ∇F
(
u(x, t),x, θ

)
= ∇uF · ∇u +

∂F

∂θ
∇θ + ∇xF . (6.5)

We obtain the continuum bracket from

dF
dt

=
∫

∂

∂t
F (χ̇,χ, θ) da

=
∫
ρ(x, t)

d
dt
F

(
u(x, t),x, θ

)
dx =

∫
ρ(x, t) {F,Hc}dx . (6.6)

Substitution of (6.4) into (6.6) while using (3.10b) yields the Eulerian bracket

{F ,G} =
∫

2Ω + ω

ρ
· δF
δu

× δG
δu

+ ∇δF
δρ

· δG
δu

−∇δG
δρ

· δF
δu

+
1
ρ

(
δF
δu

δG
δθ

− δG
δu

δF
δθ

)
· ∇θ dx . (6.7)

This is the well-known compressible Euler bracket (see, e.g., Morrison, 1998) with
the vorticity vector ω = ∇× u. The Hamiltonian

Hc =
∫
ρ

(
1
2
|u|2 + Uint + Φ

)
dx (6.8)

is obtained from (6.4) using the thermodynamic relation TδS = δUint + p δ(1/ρ)
(see, e.g., Stanley, 1971), where Uint denotes the internal energy, and the potential
temperature is defined as in §3c.

In conclusion, the Hamiltonian formulation of the compressible Euler equations
consists of dF/dt = {F ,Hc} with Hamiltonian (6.8) and Poisson bracket (6.7).
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The equations of motion (6.1) are recovered by taking, in turn, F = u(x, t) =∫
u(x′, t) δ(x− x′)dx′, F = ρ(x, t), and F = θ(x, t).
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