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Abstract. We present an algorithm for the efficient numerical evaluation of

integrals of the form

I(ω) =

∫ 1

0
F (x, eiωx;ω) dx

for sufficiently smooth but otherwise arbitrary F and ω � 1. The method is

entirely “black-box”, i.e., does not require the explicit computation of moment
integrals or other pre-computations involving F . Its performance is uniform

in the frequency ω. We prove that the method converges exponentially with

respect to its order when F is analytic and give a numerical demonstration of
its error characteristics.

1. Introduction

We consider the problem of numerical approximation of integrals of the form

I(ω) =

∫ 1

0

F (x, eiωx;ω) dx , (1)

where F : [0, 1]×U→ C, U denotes the unit circle in the complex plane, and ω > 0.
F may, in addition, depend parametrically on ω. In most of the following, we will
not write out this parametric dependence explicitly except where it matters for a
precise statement of the quadrature error estimate. Classical quadrature formulas
require that the number of integration nodes grows linearly in the frequency ω, so
that the problem becomes increasingly intractable when the frequency is large.

One of the earliest integration methods for integrals of this type is due to Filon
[7], who studied the special case

F (x, eiωx;ω) = F (x, eiωx) = f(x) eiωx . (2)

Filon replaced the function f by a polynomial approximation so that the resulting
moment integrals could be computed analytically. The method has been refined and
extended by many authors [8, 21, 23]. Other methods use interpolatory formulas
and formulas which are based on the integration between the zeros of cos(ωx) and
sin(ωx) [14, 15, 20].

Most subsequent work went into oscillatory integrals of the form

I(ω) =

∫ 1

0

f(x) eiωg(x) dx (3)
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which is a more subtle problem when the phase function g has stationary points.
Levin [13] suggested to convert the integrand into a perfect derivative. He seeks a
function p satisfying

d

dx

(
p(x) eiωg(x)

)
= f(x) eiωg(x) , (4)

a differential equation which can be solved by collocation. The value for the integral
is then recovered via

I(ω) =

∫ 1

0

f(x) eiωg(x) dx = p(1) eiωg(1) − p(0) eiωg(0) . (5)

Olver [18] suggest a choice of approximation basis for f which is compatible with
integration against eiωg(x) so that Filon-type ideas can be extended to problem (3).

A third approach is based on asymptotic expansion in inverse powers of the
frequency. It can be shown that

I(ω) =

p−1∑
k=0

1

(−iω)k+1

(
eiωg(1)

g′(1)
fm(1)− eiωg(0)

g′(0)
fm(0)

)
+O(ω−p−1) (6)

with

f0(x) = f(x) and fm+1(x) =
d

dx

fm(x)

g′(x)
, (7)

so that the sum on the right of (6) provides an accurate approximation when ω is
large. Iserles and Nørsett [11, 12] modify (6) as to not require the computation of
derivatives at the endpoint while producing errors comparable to other asymptotic
and Filon-type methods. For reviews of available methods and further references,
see [6, 10].

None of the methods mentioned so far, however, extends to (1) in the general
case, i.e., without exploiting a particular form of the function F . We encountered
integrals of this form when extending uniformly accurate exponential integrators for
the Klein–Gordon equation in the non-relativistic limit, first suggested by Baum-
stark et al. [4], to problems with more general nonlinearities [16].

In this paper, we derive a uniformly accurate quadrature scheme that is com-
pletely “black-box”, i.e., can be applied to any function F without F -specific pre-
computations. It is based on Gauss quadrature for sums detailed in Section 2 below.
We show that the quadrature error is exponentially small in n when F is analytic.

To motivate our approach, let T = 2π/ω denote the period of x 7→ eiωx. Then
there exist N ∈ N and α ∈ [0, 1) such that

(N + α)T = 1 . (8)

Let now xj be the N + 1 equidistant points

xj = −1 +
2j

N − 1
, 0 ≤ j ≤ N . (9)
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We can write

I(ω) =

N−1∑
j=0

∫ (j+1)T

jT

F (x, eiωx) dx+

∫ (N+α)T

NT

F (x, eiωx) dx

= T

N−1∑
j=0

∫ 1

0

F (T (t+ j), e2πit) dt+ T

∫ α

0

F (T (t+N), e2πit) dt

= T

N−1∑
j=0

I1(xj) + T Iα(xN ) (10)

with

Ib(y) =

∫ b

0

F
(
Tt+ 1

2 T (N − 1)(y + 1), e2πit
)

dt . (11)

When F depends parametrically on ω, Ib inherits this parametric dependence.
Importantly, (11) shows that Ib(y) is otherwise independent of ω so that, for fixed
y, each Ib(y) can be evaluated easily via any traditional quadrature rule; errors are
uniform in ω as all derivatives of the integrand are uniform in ω. Moreover, I1(y)
varies slowly as a function of y. Thus, the sum on the right hand side of (10) could
be seen as a Riemann sum,

2T

N−1∑
j=0

I1(xj) =

∫ 1

−1
I1(y) dy +O(ω−1) , (12)

where the right hand integral could, again, be approximated by any traditional
quadrature rule. Since NT < 2π, the integrand in the definition of I1(y), see
(11), has uniformly bounded derivatives with respect to both t and y as N → ∞,
equivalently ω →∞, so that the error behavior of any traditional quadrature rule
remains uniform in this limit.

The resulting method would be efficient and has an error that is asymptotically
small for large ω. However, it turns out that we can do even better, by-passing
the Riemann sum approximation (12) with its O(ω−1)-error entirely: Sums with
a slowly varying summand can be evaluated effectively via Gauss quadrature for
sums with a small number of evaluations, just like Gauss quadrature for integrals.
Gauss quadrature for sums has been described by Area et al. [2, 3] but, to the best
of our knowledge, has never been applied in the context of oscillatory integrals.

The remainder of the paper is structured as follows. Gauss quadrature for sums
is detailed in Section 2, leading to a complete statement of the algorithm. Sec-
tion 3 gives a simple estimate for the quadrature error. Finally, in Section 4, we
demonstrate that the method is easy to implement and performs well.

2. Gauss quadrature for sums

Let N be a positive integer, arbitrary but fixed; for ease of notation, we shall
omit any implicit dependence on N in the following. Then there exists a unique
quadrature formula

S(G) ≡ 2

N

N−1∑
j=0

G(xj) ≈
n∑
k=1

wkG(sk) ≡ Sn(G) , (13)
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which is exact for all polynomials of degree ≤ 2n − 1. In our context, N = O(ω)
is typically very large. If G is sufficiently smooth—see Section 3 below for precise
statements—the number of terms n on the right-hand side can still be very small.
In practice, n = 4 already gives very accurate results and improvements above
n = 8 are mostly limited by floating point error, see Section 4. Crucially, the error
depends only on the properties of G, not on the number of terms in the left-hand
sum N . Thus, it is uniform as N →∞.

The construction uses so-called Gram polynomials pm, m = 0, . . . , N − 1, which
are defined, up to choice of sign, by their orthonormality with respect to a discrete
equidistant sum, namely

N−1∑
j=0

pl(xj) pm(xj) = δlm . (14)

Here, we follow the terminology of [5]. The Gram polynomials are also known as
discrete Chebyshev polynomials and appear as special cases in the more general
family of Hahn polynomials; see, e.g., [1] for a discussion.

For fixed n < N , the quadrature nodes {sk} are the zeros of the Gram polynomial
of degree n. Then

qk(x) =
pn(x)

x− sk
− an
an−1

pn−1(x) (15)

is a polynomial of degree n− 2, where am denotes the leading coefficient of pm.
For any polynomial p of degree ≤ 2n− 1 that vanishes at all the nodes sl except

for sk, (13) implies that

wk =
2

Np(sk)

N−1∑
j=0

p(xj) . (16)

Taking

p(x) =
pn(x) pn−1(x)

x− sk
, (17)

in particular, we obtain

wk =
2

N p′n(sk) pn−1(sk)

N−1∑
j=0

pn(xj) pn−1(xj)

xj − sk
. (18)

Since qk is of degree n− 2, it is orthogonal to pn−1. We conclude that

wk =
an
an−1

2

N p′n(sk) pn−1(sk)
. (19)

The Gram polynomials pn can be expressed in closed form in terms of the hy-
pergeometric function 3F2 by

pn(x) = (−1)n

√
(2n+ 1) (N − n)n

(N)n+1
3F2

(
−n, n+ 1, (1−N)(1 + x)/2

1, 1−N

∣∣∣∣ 1) ,
(20)

[9, Equations 7.13.7 and 7.13.15], with Pochhammer symbol defined by

(A)0 = 1 , (A)n = A(A+ 1)(A+ 2) · · · (A+ n− 1) for n ∈ N∗ . (21)
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By expanding the finite series representation of 3F2, we find that the leading order
coefficient is given by

an =

√
(2n+ 1)(N − n− 1)!

(N + n)!

(2n)! (N − 1)n

2n (n!)2
(22)

so that
an
an−1

=
N − 1

n

√
4n2 − 1

N2 − n2
. (23)

For details, see [9, p. 348] and [17, p. 170]. We note that the expressions in [2, 3]
differ from the ones given here due to the different choice of nodes in the definition
of the discrete inner product in (14).

Applying the Gauss summation formula (13) to (10), we obtain the final quad-
rature approximation

Icomp(ω;n) =
NT

2

n∑
k=1

wk I1(sk) + T Iα(xN ) . (24)

3. Convergence analysis

In the following, we use the Chebyshev approximation to quantify the error of
the Gauss quadrature formula for sums. To fix notation, let G be a continuous
function on [−1, 1]. We write

Gn(x) =

n∑
j=0

aj Tj(x) (25)

to denote its polynomial approximation of degree n obtained by truncating the
Chebyshev series at order n. Here, Tj(x) = cos(j arccos(x)) is the Chebyshev
polynomial of degree j and the coefficients are given by

a0 =
1

π

∫ 1

−1

G(x)√
1− x2

dx , (26a)

aj =
2

π

∫ 1

−1

G(x)Tj(x)√
1− x2

dx for j ≥ 1 . (26b)

We write ‖ · ‖ to denote the supremum norm on [−1, 1] and define

dn = ‖G−Gn‖ . (27)

Proposition 1. Let G ∈ C([−1, 1]) and S and Sn be defined as in (13). Then

|S(G)− Sn(G)| ≤ 4 d2n−1 . (28)

Proof. As (13) is exact for polynomials of degree ≤ 2n− 1, we have (S −Sn)(G) =
(S − Sn)(G−G2n−1). Hence,

|S(G)− Sn(G)| ≤ |S(G−G2n−1)|+ |Sn(G−G2n−1)|

≤ 2 d2n−1 +

n∑
k=1

|wk| d2n−1 . (29)

Since the weights are non-negative [17] and formula (13) is interpolatory,
n∑
k=1

|wk| = 2 (30)
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which implies (28). �

When G is smooth, the error of the Chebyshev approximation satisfies the fol-
lowing strong bounds.

Theorem 2 ([22, Theorem 4.3]). Let G ∈ C([−1, 1]) be such that G,G′, . . . , G(m−1)

are absolutely continuous and ∥∥∥∥ G(m)

√
1− x2

∥∥∥∥
1

≡ V <∞ (31)

for some m ≥ 1. Then, for every n ≥ m+ 1,

dn ≤
2V

πm (n−m)m
. (32)

Moreover, if G is analytic with |G(z)| ≤M in the region bounded by the ellipse with
foci ±1 and major and minor semiaxis lengths summing to ρ > 1, then for every
n ≥ 0,

dn ≤
2M

(ρ− 1) ρn
. (33)

Applying Proposition 1 and Theorem 2 to the function G(y) = I1(y;ω) directly
yields the following error estimate for the outer quadrature.

Theorem 3. Fix ω0 ≥ 4π and m ∈ N. Let F : [0, 1]×U→ C be continuous. Assume
further that the m − 1 first derivatives of I1(y;ω) defined in (11) are absolutely
continuous on [−1, 1] and that there exists a constant V such that∥∥∥∥∥I(m)

1 ( · ;ω)√
1− y2

∥∥∥∥∥
1

≤ V (34)

uniformly with respect to ω ≥ ω0. Then, for every n ≥ m/2 + 1,∣∣∣∣I(ω)− NT

2

n∑
k=1

wkI1(sk)− Iα(xN )

∣∣∣∣ ≤ 4V

m (2n− 1−m)m
. (35)

Moreover, if I1(y) is analytic with |I1(y)| ≤M in the region bounded by the ellipse
with foci ±1 and major and minor semiaxis lengths summing to ρ > 1, uniformly
in ω ≥ ω0, then for every n ≥ 1,∣∣∣∣I(ω)− NT

2

n∑
k=1

wkI1(sk)− Iα(xN )

∣∣∣∣ ≤ 4M

(ρ− 1) ρ2n−1
. (36)

Remark 4. The assumption ω0 ≥ 4π ensures that N ≥ 2 so that the Gram poly-
nomials are well defined. When ω < 4π, x 7→ F (x, eiωx) is not highly oscillatory so
that classical methods are applicable.

Remark 5. It is possible to formulate sufficient conditions which directly refer to
F . Since∥∥∥∥∥ I

(m)
1√

1− y2

∥∥∥∥∥
1

≤ 1

2m+1π

∫ 1

−1

∫ 2π

0

|∂mx F
(
ω−1s+ 1

2 T (N − 1)(y + 1), eis;ω
)
|√

1− y2
dsdy

≤ π

2m
sup
x,z
|∂mx F (x, z;ω)| , (37)
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estimate (35) holds whenever the first m x-derivatives of F are uniformly bounded
with respect to x, z, and ω. Likewise, estimate (36) holds whenever F is analytic
in its first argument with a radius of analyticity that is uniform with respect to
x, z, and ω. However, Theorem 3 as stated is stronger because I1(y;ω) may be
uniformly analytic even if F is not uniformly analytic in its first argument, as
the example given in the next section shows. Moreover, estimate (37) for V and
analogous estimates for M will generally over-estimate the constants.

In the discussion above, we have not specified a quadrature rule for the “inner
integrals” (11). The choice of scheme and resulting inner quadrature error depends
on the smoothness of F in both arguments (in fact, more strongly on the second).
Since the inner quadrature is always over a full period of sine and cosine functions,
the required number of quadrature points is typically larger, but not excessively
larger, than the number of quadrature nodes for the outer sum. In the following, we
illustrate the error behavior with concrete numerical examples. In particular, we
show that the outer quadrature can be well-behaved even if the inner quadrature is
nearly singular. Even then, our outer scheme combined with an off-the-shelf library
routine for the inner scheme performs uniformly well as ω grows large.

4. Implementation and numerical test

We consider the example

F (x, eiωx;ω, a) =
2x− ω sin(ωx)

2
√
a+ x2 + cos(ωx)

(38)

with a ≥ 1. Here, standard quadrature libraries fail or perform increasingly poorly
when ω becomes large. On the other hand, the exact value of the integral can be
computed directly, it is

Iexact(ω; a) =
√
a+ 1 + cos(ω)−

√
a+ 1 . (39)

Moreover, the inner integral (11) can also be computed explicitly:

I1(y;ω, a) =
1

4π

∫ 2π

0

2π(N − 1)(y + 1) + 2s− ω2 sin(s)√
aω2 + (π(N − 1)(y + 1) + s)2 + ω2 cos(s)

ds

=
2π ((N − 1) y +N)√

(a+ 1)ω2 + π2(N − 1)2(y + 1)2 +
√

(a+ 1)ω2 + π2((N − 1)y +N + 1)2
.

(40)

Since ω ∼ 2πN ,

lim
ω→∞

I1(y;ω, a) =
y + 1√

4(a+ 1) + (y + 1)2
, (41)

so that I1 is uniformly analytic. Thus, estimate (36) of Theorem 3 provides an error
bound for the outer quadrature that is uniform in ω. Via the limiting expression,
we can even get a quantitative lower bound on the scaling exponent: the right hand
side of (41) has poles at z = −1 ± 2i

√
a+ 1 and we need to find the radius ρ of

the circle in the complex plane such that its image under z 7→ (z + z−1)/2, the
Bernstein ellipse, touches the poles. A routing application of a root finding scheme
yields ρtheor = 7.33 when a = 2. For the actual quadrature error of our method, we
obtain a best fit scaling exponent ρnum ≈ 8.96 (Figure 1, dotted line). Thus, the
actual scheme scales slightly better, but (36) is not far off and provides a consistent
upper bound.
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Figure 1. Scaling of the error with the number of the outer Gauss
quadrature notes n. We compare different schemes for the inner
quadrature for the case when F is uniformly analytic (a = 2, filled
marker symbols) with the case when uniform analyticity fails and
non-adaptive inner Gauss–Legendre quadrature struggles (a = 1,
empty marker symbols). In this example, ω = 104 is fixed.

The error behavior of the inner quadrature depends on the choice of a. When
a = 1, the right hand side of (38) has four poles

x = ±π
ω
± i
√

2π

ω2
+O(ω−3) (42)

that approach the interval of integration on the real axis as ω → ∞. As shown
above, these poles do not affect the outer quadrature (except that the simplified
sufficient conditions of Remark 5 are not applicable in this case). However, they
do affect the behavior of the inner quadrature: In a small region near s = π, cor-
responding to t = 1/2, the inner integrand develops steep gradients as ω becomes
large; correspondingly, error estimates for Gauss–Legendre quadrature based, e.g.,
on Chebyshev approximation as in Theorem 2, break down in this limit. This be-
havior is seen clearly in the numerical test where Gauss–Legendre quadrature of
fixed order performs poorly on the inner integral (Figure 1, open circles). Nonethe-
less, standard adaptive quadrature implementations have no difficulty dealing with
this case and perform well. In our example implementation, we use a binding to
the well known Fortran library quadpack [19] (Figure 1, open squares).

For any a > 1, the poles of the expression on the right of (38) remain a uniform
distance away from the interval of integration. We show results for a = 2 where the
inner integral can be calculated effectively by a moderate order classical Gauss–
Legendre quadrature: ninner ≥ 35 gives errors comparable to errors achievable with
quadpack (Figure 1, filled markers).

Figure 2 illustrates the uniformity of the error as a function of ω.
We note that the Gauss summation nodes sk and weights wk depend on ω, so they

must be re-computed whenever ω, hence N , is changed. The Gram polynomials
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Figure 2. Demonstration of the uniformity of the Gauss sum-
mation scheme with respect to the fast frequency ω. For very
large values of ω, accuracy is necessarily lost due to the loss of
significant digits in the evaluation of the trigonometric functions
in double-precision floating point. In this example, the number of
outer Gauss quadrature nodes is fixed at n = 4.

themselves are polynomials of degree n with coefficients which, up to normalization,
are polynomials in N of degree n. Thus, the polynomial data can be pre-computed
and stored in an integer array of size n2 and evaluated in O(n2) operations. The
roots are found with the Weierstrass–Dochev–Durand–Kerner algorithm which is
known to converge rapidly for Gram polynomials [3]. Since the classical Gauss–
Legendre quadrature points—the continuum limit of Gauss summation—provide
a good initial guess, this algorithm reaches excellent accuracy in a small number
of iterations which is uniform in N . Moreover, all N -dependent terms need to be
evaluated only once, so that the overall complexity of the root finding step remains
at O(n2). In our example implementation, provided as supplementary material to
the manuscript, we use a symbolic mathematics package for all polynomial manip-
ulations. This adds some run-time overhead but leads to a transparent and still
reasonably fast implementation.

The complexity of the overall quadrature formula is the complexity of the eval-
uation of the weights, which can be done at O(n2) as all N -dependent terms need
to be evaluated only once, times ninner, the complexity of the inner quadrature,
which is problem-dependent as discussed above. If several integrals with the same
frequency ω are performed, the quadrature weights can be precomputed and the
complexity per evaluation drops to O(n ·ninner). Also, the required number of func-
tion evaluations is always n · ninner. Since, in many cases, order n = 6 is already
very accurate and order n = 10 is mainly limited by floating point error, and pro-
vided the inner integration is sufficiently well-behaved, the method is very effective
in practice.
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