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Abstract. We study a semilinear wave equation whose linear part corre-

sponds to the linear Klein–Gordon equation in the non-relativistic limit, aug-
mented with a nonlinearity that is Fréchet-differentiable over the complex num-

bers. We show that this equation possesses an almost invariant manifold in

phase space that generalizes the slow manifold which is known to exist for
finite-dimensional Galerkin truncations of the system. This manifold is shown

to be almost invariant to any algebraic order and can be constructed in the

Hs−1 ×Hs phase space of the equation uniformly in the order of the approx-
imation. In particular, we prove that the dynamics on this “slow manifold”

shadows orbits of the full system over a finite interval of time.

1. Introduction

We study the semilinear wave equation

ε ∂2t u− i ∂tu−∆u = g(u) (1)

in the limit of small ε, where u : [0, T ]× T→ C, ∆u = ∂2xu denotes the Laplacian,
and g is a Fréchet-differentiable function on Hs(T) for some s ∈ R. Written as a
first order system of evolution equations

∂tu = v , (2a)

ε ∂tv = i v + ∆u+ g(u) , (2b)

the problem has a formal resemblance to the finite-dimensional two-scale fast-slow
system

q̇ = p , (3a)

ε ṗ = Jp−∇V (q) , (3b)

where q : [0, T ] → R2d is the vector of positions, p is the vector of corresponding
momenta, J is a symplectic matrix, and V is a smooth potential. In finite dimen-
sions, there is an asymptotic separation of time scales: the linearized dynamics has
d “slow” eigenvalues of magnitude O(1) and d “fast” eigenvalues of O(ε−1). It is
straightforward to construct an almost invariant slow manifold to O(εN ) and it is
well known how to achieve invariance up to exponentially small terms [4, 12, 16].
Similar results are possible with an infinite number of fast degrees of freedom [9].
In our context, however, Nekhoroshev theory is not applicable due to the lack of as-
ymptotic separation of scales. Nonetheless, we are able to show that some remnant
of typical conclusions of Nekhoroshev theory continues to hold true: We construct,
to an arbitrary order N , a manifold in phase space that is invariant over O(1)-times.
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To do so, we revisit the explicit construction of an O(εN+1) slow manifold p =
FNslow(q) in the finite dimensional case. It is based on the ansatz

FNslow(q) =

N∑
k=0

fk(q) εk , (4)

where the coefficient vector fields fk are determined by the condition that the
evolution equation for the fast residual component w = p − FNslow(q) is of order
O(εN+1). This will directly lead to a shadowing result of the form

sup
t≤T
‖q(t)−Q(t)‖ ≤ c εN+1 , (5)

where q solves (3) with prepared initial data p0 = Fslow(q0) and Q solves the slow
equation

Q̇ = FNslow(Q) (6)

with Q(0) = q0.
The situation for (1) is different, even in the linear case. Since the Laplacian is

unbounded, there is no spectral gap between the families, parameterized by ε, of
eigenvalues that remain bounded and those that diverge as ε → 0. On the level
of the asymptotic construction, we observe that an iterative construction of the
slow vector field as, for example, described in [7] will involve composition with the
Laplacian, i.e., lead to a loss of two derivatives in Sobolev space per iteration. This
loss of derivatives is observed in related perturbation problems, e.g. [14, 18].

In this paper, we show, focusing on the equation (1), that it is possible to con-
struct an infinite-dimensional analog of the approximate slow manifold in the ex-
ample above. It is the graph of a nonlinear mapping which is the sum of a linear
operator from Hs(T) into Hs−1(T) and an iteratively constructed nonlinear map
from Hs(T) into itself. This “slow manifold”(i) is invariant up to terms of O(εN+1)
in the Hs(T) topology and (ii) can be seen as a regular perturbation of a nonlinear
Schrödinger equation which is the leading order non-relativistic limit of equation
(1). (For a justification of the leading order asymptotics of the semilinear Klein–
Gordon equation, see [11, 17].)

To be concrete, we note that (2) with g = 0 is easily block-diagonalized. Its
eigenoperators must satisfy the characteristic equation

εL2
± − iL± −∆ = 0 , (7)

so that

L± = i
1±
√

1− 4ε∆

2ε
. (8)

Clearly, there is no spectral gap between the two eigenoperators. However,

lim
ε→0

L−(ε)→ i ∆ (9)

in the strong operator topology of Hs whereas the sequence L+(ε)u diverges for
any nonzero u ∈ Hs. In this sense, we shall speak of the subspace of phase space
associated with L− as the slow subspace and the subspace associated with L+ as
the fast subspace.

In the general case, i.e., when g 6= 0, we seek an almost invariant submanifold
in the phase space on which the dynamics is given by an evolution equation of the
form

∂tU = L−U + FNslow(U) , (10)
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the infinite dimensional analog of the slow equation (6). The vector field FNslow is
again sought in the form (4), where the coefficient vector fields are constructed
iteratively in Section 2 below. The novelty of our construction is that each of the
coefficient vector fields fk, under suitable assumptions, maps Hs into itself. We
note that, even in finite dimensions, we cannot expect the existence of a truly
invariant slow manifold [12]. Classical Nekhoroshev theory [16] provides “almost
stability” of the manifold over exponentially long times. Here, the result is much
weaker, namely valid for times of order one for the slow limit system.

Our result can be paraphrased as follows. Suppose g is sufficiently smooth and
complex Fréchet-differentiable. Let u0 ∈ Hs(T) for s sufficiently large but otherwise
fixed. Then for every N there exists a slow vector field FNslow such that when U solves
the slow equation (10) and u solves the full system (2) consistently initialized with
v(0) = L−u0+FNslow(u0), then there is a time T > 0 which only depends on the time
of existence of the slow equation such that the full solution u exists on the same
interval of time and there is a constant C > 0 such that, as ε→ 0,

sup
0≤t≤T

‖u(t)− U(t)‖s ≤ C εN+1 . (11)

A precise statement of the result is formulated as Theorem 7 in Section 5. We
emphasize that the time interval of validity is physically meaningful (i.e., says
something about the solution of the original PDE) in the sense that every fixed,
finite interval of time can be used so long as the limit dynamics remains bounded,
then ε can be chosen as to make the shadowing error as small as one likes. Thus, the
slow solution is visible as a finite-time model for suitably initialized full dynamics.

Equation (1) is related to the semilinear Klein–Gordon equation

~2

2mc2
∂2t ψ −

~2

2m
∆ψ +

mc2

2
ψ = f(|ψ|2)ψ , (12)

where ~ is the Planck constant, c is the speed of light, m and is the mass of the
particle. As in [17], we choose units in which m and ~ take the value 1 and set
ε = 1/(2c2), so that ε → 0 corresponds to the non-relativistic limit where c → ∞.
Then, inserting the modulated rotating wave ansatz

ψ = u exp(imc2t/~) (13)

and rescaling space such that, for convenience, the prefactor in front of the Laplace
operator takes the value 1, we obtain

ε ∂2t u− i ∂tu−∆u = f(|u|2)u . (14)

Note, however, that u 7→ |u|2 is not Fréchet-differentiable in vector spaces over C so
that, in general, u 7→ f(|u|2)u is not Fréchet-differentiable over C. Thus, the class
of nonlinearities g we consider for equation (1) generally does not correspond to a
classical Klein–Gordon nonlinearity as in (14). It is open whether our result extends
in some form to nonlinearities that are only differentiable over R. Our construction,
however, depends crucially on Fréchet-differentiability over the complex numbers.

Let us mention some related results. Masmoudi and Nakanishi [13] studied the
non-relativistic limit of the Klein–Gordon equation in the form (12). They make a
solution ansatz in the form of a pair of left and right rotating waves,

ψ = u− eic
2t + u+ e−ic

2t + o(1) , (15)
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and prove that this decomposition holds true for general initial data in the energy
space H1, where u− and u+ satisfy a pair of coupled nonlinear Schrödinger equa-
tions with a certain averaged potential. Lu and Zhang [10] recently obtained a
next-order correction in the same setting; a number of recent papers also use this
ansatz as a starting point for developing asymptotics-preserving numerical schemes
[1, 2, 3, 5, 6]. Thus, our result differs from these references in that we seek asymp-
totics to any order in a uniform functional setting at the expense that we are
required to work with prepared initial data.

We have shown in an earlier paper [15] that when g is a linear operator, the
corresponding slow vector field can be constructed via the solution of an operator
Sylvester equation. The construction here provides a different integral representa-
tion for the solution of the required order conditions, but leads to an equivalent
statement in the linear case. Neither of the two expressions give rise to a straight-
forward numerical scheme. However, they enable estimates which we believe are an
essential ingredient for proving a shadowing theorem for solutions of slow equations
that arise from variational asymptotics, analogous to what is known in finite dimen-
sions [7]. These variational slow equations are indeed computable with standard
methods.

The remainder of the paper is structured as follows. In the next Section 2, we
describe the iterative construction of the slow vector field and prove a result on
the solvability of the order condition. The resulting estimates on the slow vector
field are derived in Section 3. Section 4 discusses the Cauchy problems for the full
system (1) and the slow equation (10). In the final Section 5, we prove the main
result on the shadowing of orbits to the full equation by the slow dynamics.

2. The iterative construction

Our construction modifies the naive approach in two respects: we are using the
exact splitting (8) into fast and slow invariant subspaces in the linear part of the
equation, and we move certain next order terms into the order condition of the
previous order.

To begin, we introduce a “fast” variable

w = ∂tu− L−u− FN+1
slow (u) , (16)

where u solves (1) and FN+1
slow (u) is sought as an expansion in powers of ε in the

form (4). Differentiating (16) and noting that

i

ε
− L− = L+ , (17)

we obtain equation (1) in u-w-variables:

∂tu = L−u+ FNslow(u) + εN+1 fN+1(u) + w , (18a)

∂tw = L+w −DFN+1
slow (u)w + L+F

N+1
slow (u) +

1

ε
g(u)

−DFN+1
slow (u)L−u−DFN+1

slow (u)FN+1
slow (u) . (18b)

We now seek coefficient vector fields fk(u) such that all but the first two terms on
the right hand side of (18b) are eliminated up to an O(εN+1)−remainder. However,
as we shall see, a naive approach will lead to loss of derivatives. Indeed, noting



A SLOW MANIFOLD FOR THE SEMILINEAR KLEIN–GORDON EQUATION 5

that L+ is an operator of formal order O(ε−1), we would seek order conditions

εL+f0(u) + g(u) = 0 , (19a)

εL+fk+1(u)−Dfk(u)L−u+
∑
j+l=k

Dfj(u)fl(u) = 0 . (19b)

Setting K = (εL+)−1, we obtain the recursion

f0(u) = −Kg(u) , (20a)

fk+1(u) = K(Dfk(u)L−u)−K
∑
j+l=k

Dfj(u)fl(u) . (20b)

We note that K is a positive, self-adjoint, compact operator. However, it is not
uniformly compact in ε. In fact, it is easy to verify that, for v ∈ Hs,

‖L−v‖s−1 ≤
1√
ε
‖v‖s , (21a)

‖L−v‖s−2 ≤ ‖v‖s , (21b)

‖Kv‖s ≤ ‖v‖s , (21c)

‖Kv‖s+1 ≤
1√
ε
‖v‖s . (21d)

Thus, the estimation of the first term on the right hand side of (20b) will lead to
either loss of derivatives or loss of order. In particular, when estimating u and w
in the same space, order is lost completely and (20) ceases to define a well-ordered
asymptotic series.

To remedy this problem, we seek to include the “bad” term Dfk(u)L−u into the
computation of the coefficient vector field at the same order k. This leads to the
alternative order conditions

εL+f0(u)− εDf0(u)L−u+ g(u) = 0 , (22a)

εL+fk+1(u)− εDfk+1(u)L−u+
∑
j+l=k

Dfj(u)fl(u) = 0 . (22b)

Thus, finding the fk requires us to solve a differential equation of the form

Df(u)Au+Bf(u) + g(u) = 0 , (23)

where A and B are two generally unbounded linear operators.

Definition 1. Let X and Y be Banach spaces. We write Cnb (X ,Y) to denote the
space of functions from X to Y that are n times continuously differentiable and
such that the n-th derivative maps bounded subsets of X into bounded subsets
of Ln(X ,Y), the space of bounded n-linear forms from Xn to Y. We abbreviate
Cnb (X ) ≡ Cnb (X ,X ).

Note that when f ∈ C1b(X ,Y), we have

f(u)− f(v) =

∫ 1

0

Df(u+ t(v − u))(v − u) dt . (24)

Thus, f ∈ C0b(X ,Y) and, moreover, f is Lipshitz with a constant that is uniform
on bounded subsets of X .

Solutions to (23) are provided by the following theorem.
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Theorem 2. Let H be a complex Hilbert space, g : H → H a Fréchet-differentiable
function, and A and B two closed, densely defined normal operators having the
same domain D = D(A) = D(B) ⊂ H. Assume the following.

(i) g(D) ⊂ D, g ∈ C0b((D, ‖ · ‖B)), and Dg ∈ C0b(H,L(H)), where ‖ · ‖B =
‖ · ‖+ ‖B · ‖ denotes the graph norm on D.

(ii) The spectrum of A is contained in the closed left complex half-plane.
(iii) The spectrum of B is contained in the left complex half-plane with δ =

dist(σ(B), iR) > 0.
(iv) eτB and eτA map D into itself and etAB = BetA on D for all t > 0.

Then the function f : D → D defined by

f(u) =

∫ ∞
0

eτB g(eτAu) dτ (25)

solves the differential equation

Df(u)Au+Bf(u) + g(u) = 0 (26)

for u ∈ D.

Proof. Note first that the integral defining f is well defined on (D, ‖ · ‖B). Indeed,
due to (iv), ‖etAv‖B = ‖etAv‖+‖etABv‖ ≤ ‖etA‖L(H)‖v‖B so that eτA is uniformly

bounded for τ ≥ 0 on (D, ‖ · ‖B). Then, as g ∈ C0b(D), for every u ∈ D there exists
M = M(u) > 0 such that

‖g(eτAu)‖B ≤M (27)

and therefore

‖eτBg(eτAu)‖B ≤ ‖eτB‖L(D) ‖g(eτAu)‖B ≤M exp(−τδ) . (28)

This implies that (25) is well-defined as a Bochner integral and f(D) ⊂ D. Since
B : D(B)→ H is closed, we can write

Bf(u) =

∫ ∞
0

BeτBg(eτAu) dτ . (29)

For τ > 0, write

F (τ) = eτBg(eτAu) . (30)

Hence,

Df(u)Au+Bf(u) =

∫ ∞
0

(
eτBDg(eτAu)eτAAu+BeτBg(eτAu)

)
dτ

=

∫ ∞
0

d

dτ
F (τ) dτ

= lim
t→∞

F (t)− F (0) = −g(u) . (31)

Differentiation under the integral can be justified by noting that the Fréchet-
derivative D can be cast as a closed operator which can be moved inside of a
Bochner integral by a lemma of Hille [8]. �

We apply Theorem 2 recursively with A = −εiL−, B = εiL+, and g ≡ g0 initially
to obtain the sequence of vector fields

fk = i

∫ ∞
0

eτBgk(eτAu) dτ (32a)
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and

gk+1 =
∑

j+m=k

Dfjfm (32b)

which solve the order conditions (22).

3. Functional properties of the iterative construction

Lemma 3. Let N ∈ N, s ∈ R, and g ∈ CNb (Hs). Then fk is well-defined by (32a)
on Hs. Further, for all k ∈ {0, . . . , N},

gk, fk ∈ CN−kb (Hs) . (33)

If, moreover, g ∈ CN+1
b (Hs−1), the functions fk, solve the order equations (22) for

k = 0, . . . , N .

Proof. We proceed inductively. Since g ∈ CNb (Hs) and the operator D(N) is closed,
we conclude that (33) holds for k = 0. Let us now assume that (33) holds for some
k ≥ 0. Set l = N − k − 1 and write V = (v1, . . . , vl)

T ∈ (Hs)l, so that

D(l)fk+1(u)V = i

∫ ∞
0

eτB D(l)gk+1(eτAu)[eτAV ] dτ . (34)

Further, using the Leibniz rule,

D(l)(Dfjfm)V =
∑

π∈P(Nl)

D(l+1−|π|)fj
[
D(|π|)fmVπ, VNl\π

]
, (35)

where P(Nl) denotes the power set of Nl ≡ {1, . . . , l}, |π| is the cardinality of
π, S ∈ P(Nl), and VS is any vector (vs1 , . . . , vsm) such that {s1, . . . , sm} = S

and |S| = m. The characterizations defining membership in CN−k−1b (Hs) follow
by using the induction hypothesis for fj and fm. It follows, by differentiating
gk =

∑
j+m=k−1Dfjfm and using (35), that

gk ∈ CN−kb (Hs) ⊂ C0b(Hs) (36)

for k = 0, . . . , N . This proves (33).

We now assume further that g ∈ CN+1
b (Hs−1). Then the previous assertion of

the lemma implies that

gk ∈ CN+1−k
b (Hs−1) (37)

for k = 0, . . . , N , which in turn implies

Dgk ∈ CN−kb (Hs−1) ⊂ C0b(Hs−1) (38)

for k = 0, . . . , N . Note that (36) together with (38) make the functions gk fulfill
the first assumption of Theorem 2. Hence, applying this theorem successively with
the recursively known functions gk and operators A = −εiL− and B = εiL+, where
H = Hs−1 and D = Hs, we conclude that the fk solve the order conditions as
claimed. �



8 HAIDAR MOHAMAD AND MARCEL OLIVER

4. The Cauchy problems for the full and for the slow equation

In this section, we study the Cauchy problem for (1) and for the slow equation
(10) on C([0, T ], Hs(T)). We begin by noting that (1), written as a first order
system in (2), takes the abstract form

∂tΨ = AΨ + F (Ψ) (39)

with

Ψ =

(
u
∂tu

)
, A =

(
0 1

∆/ε i/ε

)
, and F (Ψ) =

(
0

ε−1 g(u)

)
. (40)

We cast (39) in its mild formulation

Ψ(t) = etAΨ(0) +

∫ t

0

e(t−s)A F (Ψ(s)) ds , (41)

where

etA = eαt
(

cos(tM)− αM−1 sin(tM) M−1 sin(tM)
ε−1∆M−1 sin(tM) cos(tM) + αM−1 sin(tM)

)
(42)

with

M =

√
1− 4ε∆

2ε
and α =

i

2ε
. (43)

We first study the action of the operator group eAt on the space Xs = Hs ×Hs−1

endowed with the norm ‖ · ‖Xs
defined via

‖Ψ‖2Xs
= ‖Mψ1‖2s−1 + ‖ψ2‖2s−1 (44)

for Ψ = (ψ1, ψ2)T ∈ Xs.

Lemma 4. For t ∈ R fixed, etA maps Xs into itself. Moreover,

‖etAΨ‖Xs ≤ 2 ‖Ψ‖Xs (45)

and

lim
t→0
‖etAΨ−Ψ‖Xs

= 0 (46)

for all Ψ ∈ Xs.

Proof. Let Ψ = (ψ1, ψ2)T ∈ Xs. Then we have

etAΨ = eαt
(

cos(tM)ψ1 − αM−1 sin(tM)ψ1 +M−1 sin(tM)ψ2

ε−1∆M−1 sin(tM)ψ1 + cos(tM)ψ2 + αM−1 sin(tM)ψ2

)
. (47)

It is clear that M−1ψ2 ∈ Hs(T) and ∆M−1ψ1 ∈ Hs−1(T), so that etAΨ ∈ Xs.
Take the Xs-norm of (47) and note that ‖Ψ‖Xs

appears as a common factor on the
right; this implies (45). Statement (46) follows from the dominated convergence
theorem. �

Proposition 5. Let g ∈ C1b(Hs) for some s ∈ R and Ψ0 ∈ Xs. Then there exists
T ∗ = T ∗(ε) > 0 such that (39) has a unique solution Ψ ∈ C([0, T ∗), Xs) with
Ψ(0) = Ψ0. Moreover,

lim
t↗T∗

‖Ψ(t)‖Xs =∞ (48)

if T ∗ <∞.
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Proof. The proof is a standard contraction mapping argument on the mild formu-
lation (41). Fix R ≥ 2 ‖Ψ0‖Xs and define

ET =
{

Φ ∈ C([0, T ], Xs) : sup
t≤T
‖Φ(t)‖Xs ≤ 2R

}
. (49)

Then, since g ∈ C1b(Hs), there exists C1 = C1(ε,R) > 0 such that

‖F (Ψ)− F (Φ)‖Xs ≤ C1 ‖Ψ− Φ‖Xs (50)

for Ψ,Φ ∈ ET . We write Γ(Ψ) to denote the right hand side of (41). For Ψ ∈ ET ,
using (45) together with (50), we estimate

‖Γ(Ψ)‖Xs
≤ 2 ‖Ψ0‖Xs

+ T C1 sup
t≤T
‖Ψ(t)‖Xs ≤ R+ T RC1 . (51)

Thus, there exists T0 = T0(R, ε) > 0 such that supt≤T0
‖Γ(Ψ(t))‖Xs ≤ 2R; in other

words, ET0 ⊂ Γ(ET0). Further, for Ψ,Φ ∈ ET0 ,

sup
t≤T0

‖Γ(Ψ(t))− Γ(Φ(t))‖Xs
≤ T0 C1 sup

t≤T0

‖Ψ(t)− Φ(t)‖Xs . (52)

Hence, there exists T1 = T1(R, ε) ≤ T0 such that Γ is a strict contraction on ET1
.

Thus, Γ has a unique fixed point Ψ ∈ ET1
which is the unique mild solution of (39).

As (39) is invariant with respect to time translation, the fixed point argument can
be restarted at initial time t = T1, i.e., the time interval of existence is an open
interval [0, T ∗), where T ∗ is either infinite or Ψ(t) blows up as t↗ T ∗. �

We now turn to the slow equation (10). Its mild formulation reads

U(t) = etL−U0 +

∫ t

0

e(t−s)L− FNslow(U(s)) ds . (53)

Since etL− is a unitary group, the situation here is easier than for (41), so that
we can obtain an interval of existence which is independent of ε. The result is the
following.

Proposition 6. Let ε0 > 0 and g ∈ CN+1
b (Hs) for some s ∈ R and U0 ∈ Hs(T).

Then there exist T ∗slow > 0 and R > 0 independent of ε ∈ [0, ε0] such that (10) has a
unique solution U ∈ C([0, T ∗slow], Hs(T)) with U(0) = U0 and supt∈[0,T∗

slow]‖U(t)‖s ≤
R.

Proof. As in the proof of Proposition 5, we use a fixed point argument on the mild
formulation (53). We only detail the differences to the previous argument. We
write Λ(U) to denote the right hand side of (53) and, for R ≥ ‖U0‖s fixed, define

ET =
{
V ∈ C([0, T ], Hs) : sup

t≤T
‖V (t)‖s ≤ 2R

}
. (54)

Noting that etL− ∈ L(Hs(T)) is an isometry and using (33), we find that there
exist Ck = Ck(R) > 0 such that

‖Λ(U)(t)‖s ≤ ‖U0‖s + T sup
t≤T

N∑
k=0

εk ‖fk(U(t))‖s

≤ ‖U0‖s + T

N∑
k=0

εk Ck (55)

for all U ∈ ET . Note that for ε ∈ [0, ε0], the term in the right-hand side of (55)
does not depend on ε. Hence, there exists T > 0 independently of ε such that
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Λ(ET ) ⊂ ET . Similarly, we can verify that there exists T1 ∈ (0, T ] independent of
ε such that Λ is a strict contraction on ET1 . �

5. Main theorem

We are now able to prove the main theorem on the shadowing of consistently
initialized solutions of the full system by solutions of the slow systems over an O(1)-
interval of time, determined by the time interval of existence of the slow system.

Theorem 7. Fix N ∈ N, s ∈ R, and suppose g ∈ CN+2
b (Hs) ∩ CN+2

b (Hs−1). Let

FN+1 =
∑N+1
k=0 ε

k fk, with coefficient vector fields given by (32a). Take u0 ∈ Hs

and let U denote the solution to the slow equation (10) with U(0) = u0. Its uniform
time of existence T ∗slow > 0 and uniform Hs bound R > 0 are given by Proposition 6.
Then there exist ε1 > 0 and C, only depending on T ∗slow and R, such that for
all ε ∈ (0, ε1] the solution u to the full Cauchy problem (1) with u(0) = u0 and
∂tu(0) = L−u0 + FNslow(u0) exists on the same uniform time interval [0, T ∗slow] and

sup
0≤t≤T∗

slow

‖u(t)− U(t)‖s ≤ C εN+1 . (56)

Proof. Since g ∈ CN+1
b (Hs) ∩ CN+2

b (Hs−1), Lemma 3 asserts that the coefficient
functions fk : Hs → Hs satisfy the order conditions (22) so that, continuing the
argument from (18b),

∂tw =

(
i

ε
− L− −DFN+1

slow (u)

)
w + εN+1RN (u) , (57)

where the remainder RN : Hs → Hs is given by

RN = −
2N+2∑
k=N+1

εk−N−1
∑
j+l=k
j,l≤N+1

Dfjfl . (58)

Moreover, g ∈ CN+2
b (Hs) implies, again by Lemma 3, that fj ∈ CN+2−j

b (Hs) and

Dfj ∈ CN+1−j
b (Hs,L(Hs)) for j = 0, . . . , N + 1.

Let ε0 as in Proposition 6. Then, for every ε ≤ ε0, let T (ε) ∈ (0, T ∗slow] be
maximal such that the solution u to (1) with the stated initial conditions exists on
[0, T (ε)] with

sup
0≤t≤T (ε)

‖u(t)‖s ≤ 2R . (59)

Such interval of time exists by Proposition 5. Thus, there exist constants C1 and
C2 which depend only on R such that the Duhamel formula for (57) implies that

‖w(t)‖s ≤ ‖w(0)‖s + C2 ε
N+1 + C1

∫ t

0

‖w(τ)‖s dτ . (60)

Since w(0) = 0 by assumption, the Gronwall inequality implies that there exists a
constant C3 = C3(R, T ∗slow) such that

sup
0≤t≤T (ε)

‖w(t)‖s ≤ C3 ε
N+1 . (61)

Next, taking the difference between (10) and (18a),

∂t(u− U) = L−(u− U) + FNslow(u)− FNslow(U) + w + εN+1 fN+1(u) , (62)
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and noting that the last two terms are O(εN+1) in the sense stated above, we
estimate

‖u− U‖s ≤ ‖u(0)− U(0)‖s + C4

∫ t

0

‖u− U‖s dτ

+

∫ t

0

‖w + εN+1 fN+1(u)‖s dτ (63)

where C4 depends only on R and T ∗slow. Since U(0) = u(0), the Gronwall inequality
implies that there exists C > 0 depending only on R and T ∗slow such that

sup
0≤t≤T (ε)

‖u(t)− U(t)‖s ≤ C εN+1 . (64)

Now choose ε1 ∈ (0, ε0] such that

εN+1
0 <

R

C
. (65)

Then, for ε ∈ (0, ε1],

sup
0≤t≤T (ε)

‖u(t)‖s ≤ sup
0≤t≤T (ε)

(‖u(t)− U(t)‖s + ‖U(t)‖s) ≤ C εN+1 +R < 2R . (66)

This proves that T (ε) = T ∗slow, for otherwise T (ε) could not be maximal, so that
(56) holds as stated. �
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