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Abstract

The construction of modified equations is an important step in the backward
error analysis of symplectic integrator for Hamiltonian systems. In the context of
partial differential equations, the standard construction leads to modified equations
with increasingly high frequencies which increase the regularity requirements on
the analysis. In this paper, we consider the next order modified equations for the
implicit midpoint rule applied to the semilinear wave equation to give a proof-of-
concept of a new construction which works directly with the variational principle.
We show that a carefully chosen change of coordinates yields a modified system
which inherits its analytical properties from the original wave equation. Our method
systematically exploits additional degrees of freedom by modifying the symplectic
structure and the Hamiltonian together.

1 Introduction

Over the last decades, backward error analysis has emerged as a useful tool for proving
conservation properties of numerical time integrators for differential equations. In a
nutshell, one constructs a modified differential equation which is approximated by the
numerical method to some higher order than the original equation and which possesses
analogous conservation laws. Thus, the numerical scheme is nearly conservative on time
scales over which it approximates the solution of the modified equation. Some of the
strongest and most general results for ordinary differential equations were obtained by
Benettin and Giorgilli [2] and Hairer and Lubich [15], using ideas which go back to
Neishtadt [25], who optimally truncate an asymptotic series for the modified vector field to
prove that a class of symplectic schemes when applied to Hamiltonian ordinary differential
equations preserve the energy exponentially well over exponentially long times in the step
size. Similar ideas appear in [16, 19, 32].
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While this construction formally extends to Hamiltonian partial differential equations,
in this case the asymptotic series for the modified equation will generally contain arbitrary
powers of unbounded operators, thereby breaking the natural ordering of the terms in the
asymptotic series. In particular, the standard construction in the context of hyperbolic
equations such as the semilinear wave equation, fails in the practically relevant regime
when the scaling of time vs. space step is close to the CFL limit. This problem has been
partially addressed in a number of ways. Cano [5] proves an exponential backward error
analysis result conditional on a number of conjectures. Moore and Reich [24] and Islas and
Schober [18] provide a formal backward error analysis in a multisymplectic setting. Under
strong regularity assumptions on the true solution, [29, 30, 37] show that the occurrence
of unbounded operators in the modified vector field only leads to loss of order in the
exponents of the backward error estimates. Sometimes, non-standard modified equations
can be helpful, such as in the result of [28] on the approximate numerical preservation of
the momentum invariant. Cohen, Hairer, and Lubich [6] obtained results on polynomially
long times for full time-spectral discretization of weakly nonlinear wave equations using
the method of modulated Fourier expansions. Finally, there is a large body of work on
the backward error analysis of splitting methods applied to partial differential equations
[9, 8, 10, 11, 12]. However, the question whether strong results for generic solutions, i.e.
solutions which are neither small nor analytic, can be obtained remains open.

Modified equations are clearly not unique. Various expressions appearing beyond the
leading order of the asymptotic series can be consistently replaced by using the modified
equation itself. In principle, one can use such substitutions to remove the occurrence of
high frequencies at high orders of the modified system. Unfortunately, this process will
generally break the Hamiltonian structure.

This paper is motivated by the observation that a large class of symplectic integra-
tors can be derived via a discrete variational principle. Elementary examples appear in
Wendlandt and Marsden [36] and Marsden and West [22] who, in particular, show that
the implicit midpoint rule arises via a simple finite difference approximation of the ac-
tion integral. More generally, a large number of symplectic schemes arises as variational
integrators [20, 22]; in particular, Leok and Zhang [21] show that it is also possible to
obtain variational integrators on the Hamiltonian side, which extends the concept to
systems with degenerate Hamiltonians. Vermeeren [33, 34] modified equations on the
Lagrangian side, albeit only for finite dimensional systems and in the sense of so-called
meshed Lagrangians. Recently, McLachlan and Offen [23] consider variational backward
error analysis for symmetry solutions of wave equations. This reduction again specializes
the problem to finite-dimensional modified equations. A variational treatment of the
general case is, so far, open.

In this paper, we demonstrate that it is possible to construct modified equations
via a classical variational principle. A naive variational construction has the drawback
that the order of time derivatives in the modified equations increases with the order
to which the modified equations are constructed, i.e., the phase space gets increasingly
larger. Since the higher time derivatives appear at higher orders of the expansion (see
e.g. [24, 23]), such constructions lead to singular perturbation problems with multiple
fast time scales. Still, the original slow dynamics lives on a submanifold in this larger
phase space. Our main point is that we can approximately restrict to this submanifold
by the use of a near-identity change of variables which moves all fast degrees of freedom

2



beyond the truncation order of the asymptotic expansion. We call this approach the
method of degenerate variational asymptotics ; it is motivated by earlier work on model
reduction for rapidly rotating fluid flow [26, 27].

The current work is the first proof-of-concept for this approach. In the first part of the
paper, we consider a simple, yet nontrivial special case: the next-order modified equations
for the implicit midpoint scheme applied to the semilinear wave equation. We find that
the new modified equations do not admit frequencies beyond the scale already present
in the original partial differential equation. In particular, unlike the modified equations
which arise from the conventional construction, they have a dispersion relation for linear
waves which has a finite limit as the wave number k tends to infinity. This behavior
coincides qualitatively with that of the implicit midpoint rule itself, which also possesses
a finite highest numerical frequency in a time-semidiscrete analysis [4]. Moreover, we
can show that the full nonlinear modified equations are well-posed—locally in time but
for a time interval which is independent of the time step parameter—precisely in the
energy space which arises naturally from the modified Hamiltonian. In the second part
of the paper, we show how to extend the approach to arbitrary high order. This part of
the paper is formal, but we make sure that all spatial operators appearing in the final
modified equations are bounded, and all such operators, except those that must limit to
the second space derivative as h → 0, are bounded uniformly as a function of h. We
start with looking at the linear wave equation only, where an all-order modified equation
can be found via a generating function approach. From there, we move to the nonlinear
case where, up to an arbitrary but fixed order, we use a bilevel iterative concatenation of
transformations to remove all higher-order time derivatives from the Lagrangian.

The paper is structured as follows. After the introduction of the semilinear wave
equation in Section 2, Section 3 gives a brief derivation of the implicit midpoint scheme
as a variational integrator. In Section 4, we recall the standard Hamiltonian construction
of the modified vector field and show that the result is only useful under restrictive
time-step assumptions. Section 5 explains the naive variational construction; Section 6
introduces the method of degenerate variational asymptotics, which constrains the phase
space of the modified equations to the slow degrees of freedom. After addressing the
question of consistent initialization of the modified system in Section 7, in Section 8 we
give a numerical evidence that the new modified equations indeed perform as claimed.
In Section 9, we present an analytic framework in which the nonlinear elliptic operator
which arises in the formulation of the new modified equations is invertible, and we recast
them in the form of a semilinear evolution equation, thereby obtaining a proof of local
well-posedness in the natural energy space. Section 10 discusses the all-order modified
equations for the linear wave equations, and Section 11 the subsequent extension to the
nonlinear case. Finally, Section 12 concludes with a brief discussion of the results.

2 The semilinear wave equation

We consider the semilinear wave equation on the circle S1,

ü = ∂xxu+ f(u) , (1)
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where u = u(x, t) and we write u̇ ≡ ∂tu. It arises as the Euler–Lagrange equation with
Lagrangian L : Q×Q→ R given by

L(u, u̇) =

∫
S1

1
2
u̇2 − 1

2
(∂xu)

2 + V (u) dx (2)

with f = V ′ and Q being a space of sufficiently smooth functions on S1; we also assume
that V is smooth.

Writing p = u̇, the semilinear wave equation is Hamiltonian with conserved energy

H(p, u) =

∫
S1

1
2
p2 + 1

2
(∂xu)

2 − V (u) dx . (3)

In addition, the Lagrangian is invariant under space translations. Hence, Noether’s the-
orem implies conservation of momentum

J(u, p) =

∫
S1

p ∂xu dx . (4)

It is often convenient to write the semilinear wave equation as a first order system:
setting

U =

(
u
p

)
, A =

(
0 1
∂xx 0

)
, and B(U) =

(
0

f(u)

)
, (5)

equation (1) takes the form
U̇ = AU +B(U) . (6)

3 Variational integrators

Consider uniform grid on time interval [0, T ] with mesh size h = T/n. Following [35, 36],
we consider the discrete variational principle associated with the temporal semidiscretiza-
tion, namely, find u0, . . . , un which are a stationary point of the discrete action

S =
n−1∑
k=0

L(uk, uk+1;h) , (7)

subject to variations which leave the temporal endpoints u0 and un fixed. The discrete
variational principle δS(u1, . . . , un−1) = 0 yields the discrete Euler–Lagrange equation

D1L(uk, uk+1;h) +D2L(uk−1, uk;h) = 0 (8)

for k = 1, . . . , n− 1.
A symplectic scheme of second order for the semilinear wave equation is obtained by

taking the discrete Lagrangian

L(uk, uk+1;h) = hL
(uk + uk+1

2
,
uk+1 − uk

h

)
. (9)

4



Introducing the discrete Legendre transform [16, p. 194],

pk ≡ −D1L(uk, uk+1;h)

=
δL

δu̇

(
uk + uk+1

2
,
uk+1 − uk

h

)
− h

2

δL

δu

(
uk + uk+1

2
,
uk+1 − uk

h

)
, (10)

and using the discrete Euler–Lagrange equation (8), we obtain

pk+1 = D2L(uk, uk+1;h)

=
δL

δu̇

(
uk + uk+1

2
,
uk+1 − uk

h

)
+
h

2

δL

δu

(
uk + uk+1

2
,
uk+1 − uk

h

)
. (11)

The variations on the right of (10) and (11) read

δL

δu̇
(u, u̇) = u̇ and

δL

δu
(u, u̇) = ∂xxu+ f(u) , (12)

where we identify Q with a subspace of Q∗ via the L2 inner product. We now introduce
an intermediate integration stage via

uk+1/2 =
uk + uk+1

2
and pk+1/2 =

pk + pk+1

2
. (13)

Then, taking the sum and difference of (10) and (11), respectively, we obtain

uk+1 = uk + h pk+1/2 , (14a)

pk+1 = pk + h
(
∂xxuk+1/2 + f(uk+1/2)

)
. (14b)

Written in this form, the scheme is clearly recognized as the implicit midpoint rule, which
is, in fact, a second order Gauss–Legendre Runge–Kutta method. To obtain a practical
numerical scheme, it is better to replace the definition of the intermediate integration
stage by the equivalent expressions [3]

uk+1/2 = uk +
h
2
pk+1/2 , (15a)

pk+1/2 = pk +
h
2

(
∂xxuk+1/2 + f(uk+1/2)

)
. (15b)

In terms of the vector notation introduced at the end of Section 2, (15) reads

Uk+1/2 = Uk +
h
2

(
AUk+1/2 +B(Uk+1/2)

)
, (16)

or

Uk+1/2 = (1− h
2
A)−1

(
Uk +

h
2
B(Uk+1/2)

)
. (17)

For sufficiently small h and a suitable choice of function space, the operator on the right
side of (17) is a contraction, so that the intermediate stage vector Uk+1/2 can be found
iteratively.

Similarly, noting that 1 + hA (1− h
2
A)−1 = (1 + h

2
A)(1− h

2
A)−1, we can write (14) in

the form

Uk+1 = S(hA)Uk + h (1− h
2
A)−1B(Uk+1/2) , (18)
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where

S(z) = (1 + z/2)(1− z/2)−1 (19)

is known as the stability function of the method. Again, equation (18) considered, for
instance, in a Sobolev space Hs(S1)×Hs−1(S1) with s ≥ 1 has only bounded operators
on its right hand side, so the time-h map of the scheme does not lose derivatives. For
this reason, the system (17) and (18) is the preferred form for numerical implementation
of the implicit midpoint scheme.

4 Backward error analysis on the Hamiltonian side

In this section, we give an elementary derivation of the standard Hamiltonian modified
equation which corresponds to the implicit midpoint rule up to terms of O(h4). The
procedure is that of Hairer, Lubich, and Wanner [16, Chapter IX]; our presentation
reduces the procedure to the special case at hand.

We use the following notation. Let U : [0, T ] → Q × Q∗ be a curve satisfying an
autonomous equation of the form

U̇ = F (U) (20)

with U(kh) = Uk for kh ∈ [0, T ]. Let us fix k and Taylor expand about t0 = kh. On the
one hand,

Uk+1 = U(t0 + h) = Uk + U̇k h+ 1
2
Ük h

2 + 1
6
U

(3)
k h3 +O(h4) , (21)

where U̇k ≡ U(kh), Ük ≡ Ü(kh), and U
(3)
k ≡ U (3)(kh). On the other hand, Uk+1 is

determined by the implicit midpoint rule

Uk+1 = Uk + hF (Uk+1/2)

= Uk + F (Uk)h+ 1
2
F ′(Uk) U̇k h

2 + 1
8
F ′′(Uk)(U̇k, U̇k)h

3 + 1
4
F ′(Uk) Ük h

3 +O(h4) .
(22)

Since the implicit midpoint rule is a symmetric method, only terms at even powers of
h appear in the modified equation [16]. Therefore, to determine the modified equation
including terms of O(h2), we seek a vector field F2 such that

U̇k = F (Uk) + F2(Uk)h
2 +O(h3) . (23)

We note that (23) implies the approximate identities

Ük = F ′(Uk) U̇k +O(h2) , (24a)

U
(3)
k = F ′′(Uk)(U̇k, U̇k) + F ′(Uk) Ük +O(h2) . (24b)

Then, equating (21) and (22), using (23) and (24) to eliminate all derivatives, we obtain

F2(Uk) =
1
12
F ′(Uk)F

′(Uk)F (Uk)− 1
24
F ′′(Uk)(F (Uk), F (Uk)) . (25)
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In the particular case of the semilinear wave equation, where

F (U) = AU +B(U) , (26)

we obtain by direct calculation that

F2(U) =
1

12

(
∂xxp+ f ′(u)p

(∂xx + f ′(u))(∂xxu+ f(u))

)
− 1

24

(
0

f ′′(u) p2

)
. (27)

Hence, the modified equation up to terms of order O(h4) reads

u̇ =
[
1 + 1

12
h2 (∂xx + f ′(u))

]
p , (28a)

ṗ =
[
1 + 1

12
h2 (∂xx + f ′(u))

]
(∂xxu+ f(u))− 1

24
h2 f ′′(u) p2 . (28b)

It is straightforward to verify that modified equations (28) define a Hamiltonian system
with Hamiltonian

Hmod(p, u) = H(p, u) + 1
24
h2
∫
S1

f ′(u) p2 − (∂xp)
2 − (∂xxu+ f(u))2 dx . (29)

It is generally true that symplectic Runge–Kutta schemes applied to Hamiltonian systems
yield a Hamiltonian modified equation at any order [16, Section IX.3].

The difficulty with using the modified system (28) for the purpose of backward error
analysis can be seen as follows. We consider, for simplicity, the linear case when f ≡ 0.
Writing λ to denote the spatial wave number, equation (6) in the space-frequency domain
reads

∂tÛλ = (1− 1
12
h2 λ2)

(
0 1

−λ2 0

)
Ûλ . (30)

We observe that the additional factor h2 λ2 will introduce fast frequencies into the mod-
ified dynamics unless we restrict the admissible wave numbers and time steps. More
generally, it can be shown that the modified vector field will be an asymptotic series in
hλ, so that the series will be properly ordered only if we restrict to a finite dimensional
subspace of wave numbers—a discretization in space—and if h = o(λ−1

max). This excludes
the practically relevant regime of time steps as large as permitted by the CFL condition
where h ∼ λ−1

max; see, for example, the discussion in [6].

5 Backward error analysis on the Lagrangian side

We now turn to the question of how we can derive modified equations using the variational
principle which underlies the semilinear wave equation.

The notation here is analogous to the notation used in the previous section: let
u : [0, T ] 7→ Q be a curve in Q such that u(kh) = uk for kh ∈ [0, T ]. Again, we fix k and
Taylor expand u and u̇ about t0 = kh. Then, for |t| ≤ h,

u(kh+ t) = uk + u̇k t+
1
2
ük t

2 + 1
6
u
(3)
k t3 +O(h4) , (31a)

u̇(kh+ t) = u̇k + ük t+
1
2
u
(3)
k t2 +O(h3) , (31b)
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where u̇k ≡ u̇(kh), ük ≡ ü(kh), and u
(3)
k ≡ u(3)(kh). In particular, setting t = h, we have

uk+1 = uk + u̇k h+ 1
2
ük h

2 + 1
6
u
(3)
k h3 +O(h4) . (32)

Substituting (32) into the discrete Lagrangian, we obtain

L(uk, uk+1;h) = hL
(
uk +

1
2
h u̇k +

1
4
h2 ük +O(h3), u̇k +

1
2
h ük +

1
6
h2 u

(3)
k +O(h3)

)
= h

∫
S1

1
2

(
u̇k +

1
2
h ük +

1
6
h2 u

(3)
k

)2 − 1
2

(
∂xuk +

1
2
h ∂xu̇k +

1
4
h2 ∂xük

)2
dx

+ h

∫
S1

V (uk) + f(uk)
(
1
2
h u̇k +

1
4
h2 ük

)
+ 1

8
h2 f ′(uk) u̇

2
k dx+O(h4)

= hL(uk, u̇k) +
1
2
h2
∫
S1

ük u̇k − ∂xuk ∂xu̇k + f(uk) u̇k dx

+ h3
∫
S1

[
1
8
ü2k +

1
6
u̇k u

(3)
k − 1

8
(∂xu̇k)

2 − 1
4
∂xuk ∂xük

+ 1
4
f(uk) ük +

1
8
f ′(uk) u̇

2
k

]
dx+O(h4) . (33)

On the other hand, we may substitute the expansions (31) into the continuum action
functional and collect terms containing identical powers of h. We find that

S =

∫ T

0

L(u, u̇) dt

=
n−1∑
k=0

∫ h

0

∫
S1

[
1
2
(u̇k + ük t+

1
2
u
(3)
k t2)2 − 1

2
(∂xuk + ∂xu̇k t+

1
2
∂xük t

2)2

+ V (uk) + f(uk) u̇k t+
1
2
f ′(uk) u̇

2
k t

2 + 1
2
f(uk) ük t

2

]
dx dt+O(h3)

=
n−1∑
k=0

[
hL(uk, u̇k) +

h2

2

∫
S1

u̇k ük − ∂xuk ∂xu̇k + f(uk) u̇k dx

+
h3

6

∫
S1

ü2k + u̇k u
(3)
k − (∂xu̇k)

2 − ∂xuk ∂xük + f ′(uk) u̇
2
k + f(uk) ük dx

]
+O(h3) .

(34)

Inserting the expanded discrete Lagrangian (33) into the discrete action (7) and compar-
ing with (34), we find that

S = S − h3

24

n−1∑
k=0

∫
S1

ü2k − (∂xu̇k)
2 + 2 ∂xuk ∂xük + f ′(uk) u̇

2
k − 2 f(uk) ük dx+O(h3)

= S − h2

24

∫ T

0

∫
S1

ü2 − (∂xu̇)
2 + 2 ∂xu ∂xü+ f ′(u) u̇2 − 2 f(u) ü dx dt+O(h3) . (35)

Integrating by parts with respect to time, we obtain—up to boundary terms which do
not contribute to the variational principle because u and u̇ are held fixed at the temporal
endpoints—that

S =

∫ T

0

[
L(u, u̇)− h2

∫
S1

1
24
ü2 − 1

8
(∂xu̇)

2 + 1
8
f ′(u) u̇2 dx

]
dt+O(h3) . (36)
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Thus, the discrete variational principle with Lagrangian L is equivalent—up to terms of
O(h3)—to the continuous variational principle for the modified Lagrangian

Lmod(u, u̇, ü;h) = L(u, u̇)− h2
∫
S1

1
24
ü2 − 1

8
(∂xu̇)

2 + 1
8
f ′(u) u̇2 dx . (37)

We now seek stationary points of the modified action with respect to variation where
u and u̇ are held fixed at t = 0 and t = T . The resulting Euler–Lagrange equations read,
abstractly,

d2

dt2
δLmod

δü
− d

dt

δLmod

δu̇
+
δLmod

δu
= 0 . (38)

This expression evaluates to

ü− ∂xxu− f(u) + h2
[

1
12
u(4) − 1

4
∂xxü− 1

8
f ′′(u) u̇2 − 1

4
f ′(u) ü

]
= 0 . (39)

We note that this equation is of higher order with respect to time compared to the original
semilinear wave equation, i.e., it has the form of a singular perturbation problem in a
bigger phase space. As this is undesirable, we seek to restrict the modified dynamics to
the phase space of the original equation.

In this simple example, this could be done ad hoc by using the second time derivative
of the semilinear wave equation to eliminate the fourth time derivative from the modified
equation—an approximation which gives a formally correct result. In this case, the
resulting equation would only contain frequencies on the order of those already present in
the original problem and, although non-variational, approximately preserve energy over
long times. In the next section, we show that this can also be addressed by a systematic
variational construction.

6 Method of degenerate variational asymptotics

We introduce a near-identity configuration space transformation of the general form

uh = u+ h2w , (40)

where uh denotes the solution curve in old physical configuration space coordinates and
u denotes the solution in a new coordinate system in which the modified equation will be
computed. The field w can be seen as the leading order generator of the transformation.
It will be chosen a posteriori in such a way that the transformed modified Lagrangian
(37), when truncated to O(h2), will not depend on time derivatives of order two and
higher. We compute

Lmod(u, u̇, ü;h) =

∫
S1

1
2
(u̇+ h2 ẇ)2 − 1

2
(∂xu+ h2 ∂xw)

2 + V (u+ h2w) dx

− h2
∫
S1

1
24
ü2 − 1

8
(∂xu̇)

2 + 1
8
f ′(u) u̇2 dx+O(h3)

= L(u, u̇)− h2
∫
S1

ü w + ∂xu ∂xw − f(u)w dx+ h2
d

dt

∫
S1

u̇ w dx

− h2
∫
S1

1
24
ü2 − 1

8
(∂xu̇)

2 + 1
8
f ′(u) u̇2 dx+O(h3) . (41)
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We now observe that choosing w = − 1
24
ü+G(u), where G is some functional acting on

u( · , t) for t fixed, we formally eliminate the excess time derivatives from the O(h2) terms
in (41). The choice of G is, in principle, entirely free. It appears sensible, though, to
consider only choices that are dimensionally consistent. Specializing further, two cases
stand out. The apparently simplest choice is G = 0, so that

w = − 1
24
ü . (42)

Alternatively, we might take

w = − 1
24
ü+ 1

24
∂xxu+

1
24
f(u) , (43)

in which case w vanishes formally up to terms of O(h2).
Inserting (42) into (41), integrating by parts, discarding all perfect time derivatives,

and truncating to O(h2), we obtain the modified Lagrangian

Lmod(u, u̇;h) = L(u, u̇) + h2
∫
S1

[
1
12
(∂xu̇)

2 − 1
12
f ′(u) u̇2

]
dx . (44)

We compute

δLmod

δu̇
=
(
1− h2

6
f ′(u)− h2

6
∂xx
)
u̇ (45a)

and

δLmod

δu
= ∂xxu+ f(u)− h2

12
f ′′(u) u̇2 . (45b)

Hence, the transformed modified Euler–Lagrange equations read(
1− h2

6
f ′(u)− h2

6
∂xx
)
ü− ∂xxu− f(u)− h2

12
f ′′(u) u̇2 = 0 . (46)

The equations of motion conserve the energy

Hmod =

〈
δLmod

δu̇
, u̇

〉
− Lmod

= H +
h2

12

∫
S1

[
(∂xu̇)

2 − f ′(u) u̇2
]
dx , (47)

where ⟨· , ·⟩ denotes the L2-pairing between Q and Q∗.
We remark that the transformation we use as well as the resulting Hamiltonian are

different from classic Hamiltonian normal form theory (see, e.g., [1] for a general exposi-
tion and [7] for an application of normal form theory to a fast-slow system with gyroscopic
forcing for which the method of degenerate variational asymptotics was originally devel-
oped). To see this, one can write the modified Hamiltonian (47) in canonical variables u
and p = δL/δu̇, expand in powers of h so that Hmod = H0+h

2H2+O(h
4) and verify that

the Poisson bracket {H0, H2} does not vanish. The construction principles behind the
two approaches are also markedly different: the solution of the modified system explicitly
determines our transformation via (40) and (42), whereas normal form transformation is
obtained from modified Hamiltonian by solving the homological equation.
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7 Initialization

A variational derivation of the modified equation will naturally yield a second order
system which may be cast into a system of first order equations in several equivalent
ways. Hence, care must be taken in matching of the initial and final time data of the
Lagrangian modified equation with that of the implicit midpoint numerical scheme. In
other words, a momentum variable p of the first order system equivalent to the modified
equation can be chosen in many different ways and the initialization procedure should be
consistent with the chosen definition of p.

A straightforward Taylor expansion of the discrete Legendre transform (10) shows
that

pk = u̇k +
h
2

(
ük − ∂xxuk − f(uk)

)
+ h2

(
1
6
u
(3)
k − 1

4
∂xxu̇k − 1

4
f ′(uk) u̇k

)
+O(h3)

= u̇k − h2

12

(
∂xxu̇k + f ′(uk) u̇k

)
+O(h3) . (48)

This relation directly implies that

u̇k = pk +
h2

12

(
∂xxpk + f ′(uk) pk

)
+O(h3) . (49)

Note that this expression coincides with the first equation (28a) of the Hamiltonian
modified system. It implies that the initial data for p cannot be identified with the initial
data for u̇ to the order that the modified equation is valid. Rather, if p denotes the initial
data for the implicit midpoint rule, then the initialization of u̇ for the modified equation
needs to receive data which is related to p via (49). Vice versa, the final time data for
u̇ of the modified equation needs to be expressed in terms of the implicit midpoint p via
(48) before the two can be consistently compared.

We remark that this relation must be used when consistently comparing any modified
equation which is second order in time, variational or not, to the implicit midpoint
rule. The change of coordinates which appears in our method of degenerate variational
asymptotics appears additionally when investigating the variational modified equations
numerically, as explained next.

8 Numerical Experiments

The modified equations derived in Section 6 takes form

K(u)ü− ∂xxu− f(u)− h2

12
f ′′(u) u̇2 = 0 (50)

with
K(u)v =

(
1− h2

6
f ′(u)− h2

6
∂xx
)
v . (51)

We choose p = u̇ as for the original semilinear wave equation. (We could equally well
choose p = δLmod/δu̇ = K(u)u̇ in which case the initialization described in Section 7 has
to be consistently adapted.) Then the corresponding first order system reads

U̇ ≡
(
u̇
ṗ

)
=

(
p

K−1
(
∂xxu+ f(u) + h2

12
f ′′(u) p2

)) , (52)

11
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Figure 1: Scaling of the error at final time T = 0.5.

where the solution of operator equation K(u)v = z is computed as the fixed point of the
contraction mapping

v = (1− h2

6
∂xx)

−1(z + h2

6
f ′(u) v) . (53)

We note that the linear modified dynamics has Fourier representation

∂tÛλ =

(
0 1

−λ2

1+ 1
6
h2 λ2 0

)
Ûλk . (54)

Clearly, the highest frequencies are O(h−1) without restrictions on the spatial wave num-
bers, which is markedly different from the classic linear modified equations (30).

When initializing the modified equation, we must invert the transformation (42),
which now takes the form

Uh = U − 1
24
h2 Ü . (55)

This relation can also be cast into fixed point form as follows. Differentiating (50) in
time, we find

Ku(3) − ∂xxu̇− f ′(u) u̇− h2

12
f ′′′(u) u̇3 − h2

3
f ′′(u) u̇ ü = 0 . (56)

Then, for a given vector Uh, (55) can be solved for U via the contraction mapping

U = Uh +
1
24
h2 Ü , (57a)

Ü = (1− h2

6
∂xx)

−1G(U, Ü) , (57b)

with

G(U, Ü) =

(
h2

6
f ′(u) ü+ ∂xxu+ f(u) + h2

12
f ′′(u) p2

h2

6
f ′(u) p̈+ ∂xxp+ f ′(u) p+ h2

12
f ′′′(u) p3 + h2

3
f ′′(u) p ü

)
. (58)

In our numerical example, we take the nonlinearity V (u) = − 1
10
u4. Figure 1 shows

that both the Hamiltonian and the variational modified system show the expected O(h4)

12
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fied equations. The Hamiltonian modified equation has a numerical blowup due to a
CFL violation while the variational modified equations is stably solved under identi-
cal conditions using a fourth order explicit Runge–Kutta scheme with a fixed step size
∆t = 0.025 < h = 0.037.

scaling when compared to the solution of the implicit midpoint rule. (Due to the symme-
try of the method only even powers of h appear in the modified equations at any order.)
The modified equations were solved with a highly resolved standard forth order explicit
Runge–Kutta method.

Figure 2 shows the approximate preservation of energy of the implicit midpoint rule
and of the two modified systems. The occurrence of high frequencies in the Hamiltonian
construction leads to numerical blowup, unless the stepsize used in the explicit Runge–
Kutta scheme is adjusted to fit a stricter CFL bound. The graphs display the semilinear
wave energy; the respective modified energies would be exactly preserved by the true
solutions to the modified equations.

9 Well-posedness of the new modified system

In the following we provide a functional framework which shows that, in the limit of
vanishing stepsize h, the variational modified system with the choice of parameters as
in Section 8 behaves analytically like the original semilinear wave equation. We begin
by proving a statement on the operator K defined in (51). For convenience, we write
K(u) = L+M(u) with

Lv =
(
1− h2

6
∂xx
)
v (59)

and
M(u)v = −h2

6
f ′(u) v . (60)

Let L2(S1) denote the Lebesgue space of square integrable functions on the circle,
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which we endow with norm
∥v∥L2 =

∑
k∈Z

|vk|2 , (61)

L∞(S1) the space of essentially bounded functions endowed with the usual essential sup-
norm, and Hs(S1) the Sobolev space of functions whose generalized derivative of order s
belongs to L2(S1), endowed with norm

∥v∥Hs =
∑
λ∈Z

(1 + |λ|2s) |vλ|2 . (62)

Lemma 1. For every C > 0 there exists h∗ > 0 such that for every h ∈ (0, h∗], u ∈
H1(S1) with ∥u∥H1 ≤ C, and z ∈ L2(S1), the equation K(u)v = z has a unique solution
v ∈ H2(S1) and there exists a constant c = c(C) > 0 such that

∥v∥L2 ≤
1

1− c h2
∥z∥L2 , (63)

and

∥v∥H2 ≤ 6

(
1

h2
+

c

1− c h2

)
∥z∥L2 . (64)

Moreover, for fixed z ∈ L2(S1) and under the above bounds on u and h, the mapping
u 7→ K(u)−1z is uniformly Lipschitz continuous as a map from H1 to H2.

Proof. As in (53), we write Kv = z in fixed point form as

v = F (v) ≡ L−1(z −M(u)v) . (65)

Since L−1, the inverse Helmholtz operator, has norm 1 as an operator from Hs to Hs,
there exists a constant c > 0 such that

∥F (v1)− F (v2)∥L2 ≤ c h2

6
∥f ′(u)∥H1 ∥v1 − v2∥L2 . (66)

Hence, there exists h∗ > 0 such that for all h ∈ [0, h∗] the map F is a contraction, hence
has a unique fixed point v by the contraction mapping theorem.

Taking the L2-norm of (65), we obtain

∥v∥2L2 ≤ ∥z∥L2 + h2

6
∥f ′(u)∥L∞ ∥v∥L2 , (67)

which implies (63). Taking the H2-norm of (65) and noting that L−1 has norm 6/h2 as
an operator from L2 into H2, we find

∥v∥2H2 ≤ 6
h2 ∥z∥L2 + ∥f ′(u)∥L∞ ∥v∥L2 (68)

which together with (63) implies (64).
Now suppose that K(u1)v1 = z and K(u2)v2 = z. Then

v1 − v2 = −L−1
(
M(u1) (v1 − v2) + (M(u1)−M(u2)) v2

)
. (69)

Taking the L2-norm on both sides, we find that

∥v1 − v2∥L2 ≤ h2

6
∥f ′(u1)∥L∞ ∥v1 − v2∥L2 + h2

6
∥f ′(u1)− f ′(u2)∥L∞ ∥v2∥L2 , (70)
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so that, for some c̃ = c̃(C),

∥v1 − v2∥L2 ≤
c̃ h2

1− c h2
∥v2∥L2 ∥u1 − u2∥H1 . (71)

Due to (63), this estimate implies uniform Lipschitz continuity of u 7→ K(u)−1z as a map
from H1 into L2. Then, taking the H2-norm of (69) and using the operator norm of L−1

as a map from L2 to H2 implies uniform Lipschitz continuity into H2 as well.

To proceed, we writeH1
h(S

1) to denote the spaceH1(S1) endowed with the nonuniform
norm

∥v∥2H1
h
=
∑
k∈Z

(1 + h2

6
|k|2) |vk|2 . (72)

Note that the space H1 × H1
h is the “energy space” which corresponds to the modified

Hamiltonian (47) with a = b = 0. We therefore seek local well-posedness in this space.

Theorem 2. For every C > 0 there exists T = T (C) > 0 and h∗ = h∗(C) > 0 such that
for every U0 ∈ H1(S1) ×H1

h(S
1) with ∥U0∥H1×H1

h
≤ C and every h ∈ (0, h∗] there exists

a unique mild solution U ∈ C([0, T ];H1(S1) ×H1
h(S

1) to the new modified equation (6)
with bounds which remain uniform in h.

Proof. We first observe, as can be checked by direct computation, that

K−1 − L−1 = −K−1ML−1 , (73)

so that the new modified system (52) can be written as a semilinear evolution equation
of the form (6) with

A =

(
0 1

L−1∂xx 0

)
(74)

and

B(U) ≡
(

0
b(U)

)
=

(
0

K−1
(
−ML−1∂xxu+ f(u) + h2

12
f ′′(u) p2

)) . (75)

Let H1×H1
h/R2 denotes the space of H1×H1

h functions with vanishing mean endowed
with the norm

∥U∥2H1×H1
h/R2 = ∥∂xu∥2L2 + ∥p∥2H1

h
. (76)

The crucial observation is that A generates a unitary group exp(tA) on H1 ×H1
h/R2.

Moreover,

b(U1)− b(U2) =
(
K(u1)

−1 −K(u2)
−1
) (

−M(u1)L
−1∂xxu1 + f(u1) +

h2

12
f ′′(u1) p

2
1

)
−K(u2)

−1
(
M(u1)−M(u2)

)
L−1∂xxu1

+K(u2)
−1
[
−M(u2)L

−1∂xx(u1 − u2) + f(u1)− f(u2)

+ h2

12

(
(f ′′(u1)− f ′′(u2)) p

2
1 + f ′′(u2) (p1 + p2) (p1 − p2)

)]
. (77)
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Taking the L2-norm of this expression, using the uniform Lipschitz continuity of K−1 and
estimate (63) as asserted by Lemma 1, and supposing that U has an H1 ×H1

h bound of
2C, say, we find that there exists h∗ > 0 such that for all h ∈ (0, h∗],

∥b(U1)− b(U2)∥L2 ≤ c1 ∥u1 − u2∥H1

·
(
∥M(u1)L

−1∂xxu1∥L2 + ∥f(u1)∥L2 + h2 ∥f ′′(u1) p
2
1∥L2

)
+ c2 h

2 ∥f ′(u1)− f ′(u2)∥L∞ ∥L−1∂xxu1∥L2

+ c3
[
∥M(u2)L

−1∂xx(u1 − u2)∥L2 + ∥f(u1)− f(u2)∥L2 + h2
(
∥p1∥L∞ + ∥p2∥L∞

)
·
(
∥f ′′(u1)− f ′′(u2))∥L∞ ∥p1∥L2 + ∥f ′′(u2)∥L∞ ∥p1 − p2∥L2

)]
(78)

Noting that
h2 ∥L−1∂xxv∥L2 ≤ c3 ∥v∥L2 (79)

and
∥p∥L∞ ≤ c4 h

−2 ∥p∥H1
h

(80)

uniformly under the assumed bounds on h and U , we find that

∥b(U1)− b(U2)∥L2 ≤ c5 ∥U1 − U2∥H1×H1
h
. (81)

A similar argument, now taking the H1-norm of (77) and using (64) rather than (63)
shows that

∥b(U1)− b(U2)∥H1 ≤ c6 h
−2 ∥U1 − U2∥H1×H1

h
. (82)

This proves uniform Lipschitz continuity of B in H1 ×H1
h.

Altogether, we find that the above formulation of the new modified equation fits into
the standard framework for mild solutions of semilinear evolution equations [17, 31], from
which the conclusion ensues.

This theorem shows that the new modified equation is well posed in a space which
limits to the standard setting H1×L2 for the original semilinear wave equation as h→ 0.
We note that the theorem and proof easily translates up the scale of standard Sobolev
spaces.

10 All-order modified equations: the linear case

Let us now consider how the procedure set up in Sections 5 and 6 generalizes to higher
orders. We first consider the linear case, which can be treated for all orders at once
via a generating function approach. In Section 11 below, we extend this approach to
the nonlinear case using an iterative construction that terminates at fixed, but arbitrary
order.

We say that modified Lagrangians L1 and L2 are equivalent at order m and write

L1(uh, u̇h, . . . ) ∼ L2(uh, u̇h, . . . ) (83)

whenever the difference between solutions of Euler-Lagrange equations for L1 and L2 with
their respective arguments held fixed at the temporal endpoints is o(hm). Two formal
power series are equivalent whenever they are equivalent at every finite order m.
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First, by performing all steps laid out in Section 5 consistently at any order, we find
that the general modified Lagrangian for the implicit midpoint rule applied to the linear
wave equation reads

Llin
mod(uh, u̇h, . . . ) ∼

∞∑
i=0

(−1)i h2i
∫
S1

ai (u
(i+1)
h )2 − bi (∂xu

(i)
h )2 dx (84)

where a0 = b0 = 1/2 and, for i ≥ 1,

ai =
1

(2i+ 2)!
and bi =

1

4 (2i)!
. (85)

Proceeding formally, we integrate by parts, recognize the resulting power series as
cosine series, and finally apply standard trigonometric identities to obtain

Llin
mod ∼ 1

h2

∫
S1

uh

[
uh −

∞∑
i=0

h2i

(2i)!
u(2i) +

h2

4
∂2xuh +

h2

4

∞∑
i=0

h2i

(2i)!
∂2xu

(2i)

]
dx

=
1

h2

∫
S1

uh
(
1− cos 2T − (1 + cos 2T )X2

)
uh dx

=
2

h2

∫
S1

uh cos2 T (tan2 T −X2)uh dx (86)

where the linear operators T and X are given by

T =
−ih∂t
2

and X =
−ih∂x

2
. (87)

and i stands for the imaginary unit. Let us now make the transformation ansatz

uh = ϕ(T 2, X2)u . (88)

Plugging this ansatz into (86) and noting that T 2 and X2 are commuting self-adjoint
operators, we have

Llin
mod ∼ 2

h2

∫
S1

u cos2 T (tan2 T −X2)ϕ2(T 2, X2)u dx . (89)

Thus, a sufficient condition for removing time derivatives of order larger than 2 from the
modified Lagrangian is

cos2 T (tan2 T −X2)ϕ2(T 2, X2) = ψ2(X) (T 2 − θ2(X)) , (90)

where θ and ψ are analytic functions. Solving for ϕ, we obtain

ϕ(T 2, X2) =
ψ(X)

cosT

√
T 2 − θ2(X)

tan2 T −X2
. (91)

Now the task is to (i) find a function θ(x), analytic in a neighborhood of the origin, such
that ϕ(t, x) is analytic in a neighborhood of the origin and (ii) find a function ψ(x) such
that ϕ is a small perturbation of the identity in the sense that ϕ(0, x) = 1. We show that
the unique choice

θ(x) = arctan x and ψ(x) =
x

arctanx
(92)

fulfills these conditions. The proof is based on the following fact.
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Lemma 3. Let f(x) =
∑∞

k=0 fk x
k be analytic in a neighborhood of origin. Then the

function

F (s, x) = x
f(s)− f(x)

s− x
(93)

is analytic near the origin. Moreover, if f is bounded on [0,∞), the coefficients of the
Maclaurin expansion of F with respect to s are bounded functions of x.

Proof. We compute, changing the order of summation in the last step,

F (s, x) = x
∞∑
k=0

fk
sk − xk

s− x
= x

∞∑
k=0

fk+1

k∑
j=0

sk−j xj =
∞∑
k=0

Fk(x) s
k , (94)

where the Maclaurin coefficients Fk(x) are given by

Fk(x) =
∞∑
j=1

fk+j x
j =

1

xk

∞∑
j=1

fk+j x
k+j =

1

xk

(
f(x)−

k∑
j=0

fj x
j

)
. (95)

Hence, F is analytic. Moreover, if f is bounded on [0,∞),

lim
x→0

Fk(x) = 0 , lim
x→∞

Fk(x) = fk , (96)

so Fk is also bounded on [0,∞).

Corollary 4. Suppose that, in addition, f(0) = 0, f ′(0) ̸= 0, f has an analytic inverse
near the origin, and f is nonzero on (0,∞). Then

G(t, x) =

√
t− f(x)

f−1(t)− x

x

f(x)
(97)

is analytic near the origin, G(0, x) = 1, and the coefficients of the Maclaurin expansion
of G with respect to t are bounded functions of x on [0,∞).

Proof. Analyticity is obvious. To show boundedness of the Maclaurin coefficients of G,
note that the Maclaurin coefficients of

t− f(x)

f−1(t)− x
x (98)

are finite linear combinations of the Maclaurin coefficients Fk from Lemma 3, hence are
bounded. Dividing by f(x) and taking the root does not change this conclusion.

Returning back to (92), we see that the stated choice of θ is necessary to ensure
analyticity of ϕ in a neighborhood of the origin, as

θ2(X)− arctan2(X)

tan2 T −X2
(99)

has a non-removable singularity on the lines X = ± arctanT unless its numerator van-
ishes. By Corollary 4, it is also sufficient. The choice of ψ stated in (92) is then necessary
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to ensure that ϕ(0, x) = 1, i.e., that the transformation is near-identity. By Corollary 4,
this choice is also sufficient. Moreover, it guarantees that the coefficients of the Maclaurin
expansion of ϕ with respect to t are bounded functions of x.

Inserting the expression for θ into (91) and using standard trigonometric identities,
we conclude that the transformation operator has the generating function

ϕ(T 2, X2) =
X

arctanX

√
(1 + tan2 T )(T 2 − arctan2X)

tan2 T −X2
, (100)

which, when expanded and truncated at any finite order in T , has coefficients which are
bounded operators in space.

Substituting this choice back into (90) and then into Llin
mod in transformed variables,

equation (89), we obtain

Llin
mod =

2

h2

∫
S1

uψ2(X) (T 2 − arctan2X)u dx , (101)

so that the linear modified Euler–Lagrange equation, computed to all orders, reads

T 2u− arctan2X u = 0 (102)

or, more explicitly,
ü+ A2u = 0 , (103)

where A = 2/h arctanX is the pseudodifferential operator with symbol

a(k) =
2

h
arctan

hk

2
. (104)

The operator A is bounded on L2 with operator norm O(h−1). Note that this expression
reproduces the dispersion relation for the implicit midpoint rule applied to the linear
wave equation [4, Section 4.2] exactly.

11 High-order modified equations: the nonlinear case

To construct the modified Lagrangian for the nonlinear system, we follow the procedure in
Section 5 to a fixed order 2m. We do not write out the higher-order terms explicitly, but
note that they potentially contain multiples of all higher-order terms that appear on the
right hand side of a Faà di Bruno expansion of V (u(h)) with respect to h, i.e., may contain
time derivatives up to order 2m. To eliminate time derivatives of second and higher order
from the modified Lagrangian, we proceed in two steps. In the first step, we perform
the transformation to all orders exactly as outlined in Section 10. In the second step,
we remove these higher-order time derivatives from the variational principle iteratively,
applying an additional near-identity transformation at each step. The procedure for
doing so is motivated by the approach in [14], but is more involved due to the presence
of spatial derivatives.
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To see how the modified nonlinear term Vmod(uh) changes under the transformation
(100), we expand ϕ with respect to t and truncate at order 2m. This truncated expansion
takes the form

uh = u+
m∑
i=1

h2iBi u
(2i) (105)

where the Bi are self-adjoint spatial operators that implicitly depend on h, but are uni-
formly bounded on L2 as h → 0. In this sense, this series is well-ordered. Insert-
ing the full ϕ into the quadratic terms and the expanded ϕ into Vmod, we obtain that
Lmod ∼ Llin

mod + Lnl
mod with

Llin
mod =

1

2

∫
S1

u

(
∂xxu−

X2

arctan2X
ü

)
dx (106)

as in (101) and, due to the Faà di Bruno formula and up to terms of o(h2m),

Lnl
mod = V (u) +

∑
2≤i≤2m
i even

hi
∑

1·α1+···+iαi=i

Vα(u)
[
(∂1t u)

⊗α1 , . . . , (∂itu)
⊗αi
]
, (107)

where ⊗β denotes a β-fold repetition of the argument and the Vα(u) are |α|-linear forms
which smoothly depend on u and h and which are uniformly bounded on L2 as h→ 0. Due
to the uniform boundedness of the Vα, we obtain what is effectively a variational principle
for an ODE, albeit with higher-order time derivatives in the nonlinear contributions.

We now proceed to iteratively eliminate the higher time derivatives from (107). To
structure the discussion, let

Vi = span{Vα(u)
[
(∂1t u)

⊗α1 , . . . , (∂itu)
⊗αi
]
: 1 · α1 + · · ·+ iαi = i} , (108)

with multilinear forms Vα as described above, denote the vector spaces of functions ap-
pearing in the inner sum of (107). On Vi, we have a natural equivalence of elements
via integration by parts in time or space under the action integral. We write v1 ∼ v2
if the functions r1, r2 ∈ Vi give the same contribution to the resulting Euler–Lagrange
equations. Note that any vi ∈ Vi is equivalent to

vi ∼ F (u)[u̇⊗i] + ü vi−2 (109)

where vi−2 ∈ Vi−2 and F (u)[u̇⊗i] ∈ Vi depends on u and u̇ only. Indeed, if any monomial
of vi contains only first or second time derivatives, it is already of the required form. If
not, there must be a higher-order time derivatives and we can “peel off” time derivatives
by repeated integration by parts until exactly two are left. When i = 2, by the same
argument, the second term on the right of (109) can always taken to be zero.

Further, let

Wk,ℓ = span{hj vi : i ≤ 2m− k, j − i ≥ ℓ, 2 ≤ j ≤ 2m, vi ∈ Vi} . (110)

The first index limits the maximal number of time derivatives contained in each of the
monomials of elements of Wk,ℓ and the second index gives the excess order in h at which
time derivatives occur. Clearly, Wk,ℓ = Wℓ,ℓ if k ≤ ℓ and Wk,ℓ ⊃ Wk′,ℓ′ if k

′ ≥ k and
ℓ′ ≥ ℓ.
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We say that two elements from Wk,ℓ are equivalent if they are agree in the sense of
equivalence of the Vi, up to terms of o(h2m). Note that the entire sum on the right of
(107) is contained in W0,0. We are now going to apply a sequence of transformations to
the effect that, up to equivalences, the resulting Lagrangian density depends only on time
derivatives of order one. We will do so by using (109) at each step to split off higher powers
of first derivatives from a remainder, remove second time derivative contributions via a
suitably chosen transformation, and iterate this process until this remainder is either of
class W2m−2,0 or of class W0,2m−2. In both of these terminal cases, the monomials making
up the remainder contribution contain at most two time derivatives, which can always
be integrated by parts such that only first time derivatives remain.

To simplify language and notation, we will use the same symbols for quantities in
old and new variables. Thus, the transformations will be referred to as “replacements,”
which is algebraically equivalent. As we implement these replacements, a corresponding
concatenation of transformations could be constructed. However, we will not write them
down explicitly and only note that these transformation only contain uniformly bounded
spatial operators. To begin we note that, up to equivalences, the following relations hold.

(i) If w ∈ Wk,ℓ, then ẅ ∈ Wk−2,ℓ−2.

(ii) If w ∈ Wk,ℓ, then ψ
−2(X)w ∈ Wk,ℓ.

(iii) If w ∈ Wk,ℓ, then ψ
−2(X)∂xxw ∈ Wk,ℓ−2.

(iv) If v ∈ Wk,ℓ and w ∈ Wk′,ℓ′ , then vw ∈ W0,ℓ+ℓ′ .

(v) If v ∈ Wk,ℓ, then the replacement u 7→ u+ v in the expression for V corresponds to
the replacement V 7→ V + w for some w ∈ W0,ℓ.

(vi) If F ∈ Wk,ℓ and v ∈ Wk′,ℓ′ with ℓ ≤ ℓ′, then the replacement u 7→ u + v in the
expression for F corresponds to the replacement F 7→ F +w for some w ∈ W0,ℓ+ℓ′ .

With these provisions, the modified Lagrangian density, after applying the all-order
linear transformation and (109), can be written

L0,0 =
1
2
uuxx − 1

2
uψ2(X)ü+ V (u) +R0,0

∼ 1
2
uuxx − 1

2
uψ2(X)ü+ V (u) + V0,0 + ü v2,2 (111)

where R0,0 ∈ W0,0 and, by (109), V0,0 ∈ W0,0 can be chosen to depend only on u and u̇
with v2,2 ∈ W2,2. Now consider the replacement

u 7→ u+ ψ−2(X)v2,2 . (112)

Then

1
2
uuxx 7→ 1

2
uuxx + uψ−2(X)∂xxv2,2 +

1
2
ψ−2(X)v2,2 ψ

−2(X)∂xxv2,2

= 1
2
uuxx + w2,0 + w0,2 (113)

for some w2,0 ∈ W2,0 and w0,2 ∈ W0,2. Next,

−1
2
uψ2(X)ü+ ü v2,2 7→ −1

2
uψ2(X)ü+ w̃0,2 (114)
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with w̃0,2 ∈ W0,2. Finally, when transforming V and higher-order Lagrangian densities
that contain no more than first derivatives of u, then by (v) and (vi), the additional
remainder term is also of class W0,2. Thus, altogether, the first elimination step results
in the replacement

L0,0 7→ L2,2 ≡ 1
2
uuxx − 1

2
uψ2(X)ü+ V2,2 +R2,0 +R2

0,2 (115)

with V2,2 ≡ V + V0,0, and where R2
2,0 ∈ W2,0 and R0,2 ∈ W0,2.

Now, for the general case, suppose that we are at a stage where the modified La-
grangian has been transformed into

Lk,ℓ =
1
2
uuxx − 1

2
uψ2(X)ü+ Vk,ℓ +Rk,ℓ−2 +Rk

0,ℓ

∼ 1
2
uuxx − 1

2
uψ2(X)ü+ Vk,ℓ + Fk,ℓ−2 + ü vk+2,ℓ +Rk

0,ℓ (116)

where, Rk,ℓ−2 ∈ Wk,ℓ−2 and by (109), Fk,ℓ−2 ∈ Wk,ℓ−2 can be chosen to depend only on u
and u̇ with vk+2,ℓ ∈ Wk+2,ℓ. Now consider the replacement

u 7→ u+ ψ−2(X)vk+2,ℓ (117)

with vk+2,ℓ ∈ Wk+2,ℓ. Then

1
2
uuxx 7→ 1

2
uuxx + uψ−2(X)∂xxvk+2,ℓ +

1
2
ψ−2(X)vk+2,ℓ ψ

−2(X)∂xxvk+2,ℓ

= 1
2
uuxx + wk+2,ℓ−2 + w0,2ℓ−2 (118)

for some wk+2,ℓ−2 ∈ Wk+2,ℓ−2 and w0,2ℓ−2 ∈ W0,2ℓ−2. Next,

ü vk+2,ℓ − 1
2
uψ2(X)ü 7→ −1

2
uψ2(X)ü+ w0,ℓ (119)

with w0,ℓ ∈ W0,ℓ. Finally, when transforming V and higher-order Lagrangian densities
that contain no more than first derivatives of u, then by (v) and (vi), the additional
remainder term is also of class W0,ℓ. Thus, altogether, one elimination step results in the
replacement

Lk,ℓ 7→ Lk+2,ℓ ≡ 1
2
uuxx − 1

2
uψ2(X)ü+ Vk+2,ℓ +Rk+2,ℓ−2 +Rk+2

0,ℓ (120)

with Vk+2,ℓ = Vk,ℓ + Fk,ℓ−2.
We iterate this (inner) replacement until k+2 = 2m− 2, at which point we only two

time derivatives are left so that we can always choose V2m,ℓ ∼ Vk+2,ℓ +Rk+2,ℓ−2 such that
V2m,ℓ depends only on u and u̇, so that

L2m,ℓ ∼ 1
2
uuxx − 1

2
uψ2(X)ü+ V2m,ℓ +R2m−2

0,ℓ

∼ 1
2
uuxx − 1

2
uψ2(X)ü+ V2m,ℓ + F0,ℓ + ü vℓ+2,ℓ+2 (121)

where F0,ℓ ∈ W0,ℓ depends only on u and u̇ and vℓ+2,ℓ+2 ∈ W0,ℓ+2 = Wℓ+2,ℓ+2. Now
consider the (outer) replacement

u 7→ u+ ψ−2(X)vk+2,ℓ+2 (122)
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with vk+2,ℓ+2 ∈ Wk+2,ℓ+2. Then

1
2
uuxx 7→ 1

2
uuxx + uψ−2(X)∂xxvk+2,ℓ+2 +

1
2
ψ−2(X)vk+2,ℓ+2 ψ

−2(X)∂xxvk+2,ℓ+2

= 1
2
uuxx + wk+2,ℓ + w0,2ℓ+2 (123)

for some wk+2,ℓ ∈ Wk+2,ℓ and w0,2ℓ+2 ∈ W0,2ℓ+2. Next,

ü vk+2,ℓ+2 − 1
2
uψ2(X)ü 7→ −1

2
uψ2(X)ü+ w0,ℓ+2 (124)

with w0,ℓ+2 ∈ W0,ℓ+2. Finally, when transforming V and higher-order Lagrangian densi-
ties that contain no more than first derivatives of u, then by (v) and (vi), the additional
remainder term is also of class W0,ℓ+2. Thus, altogether, one elimination step results in
the replacement

L2m,ℓ 7→ Lℓ+2,ℓ+2 ≡ 1
2
uuxx − 1

2
uψ2(X)ü+ Vℓ+2,ℓ+2 +Rℓ+2,ℓ +Rℓ+2

0,ℓ+2 (125)

where Rℓ+2,ℓ ∈ W(ℓ+2, ℓ) and Rℓ+2
0,ℓ+2 ∈ W0,ℓ2 . We can then eliminate Rℓ+2,ℓ by following

the inner replacement loop to its end.
Altogether, we iterate the outer replacement loop until ℓ+2 = 2m−2, at which point

we can remove all second derivatives and obtain a final O(h2m)-modified Lagrangian
density of the form

L2m,2m ∼ 1
2
uuxx − 1

2
uψ2(X)ü+ V2m,2m (126)

where V2m,2m depends only on u and u̇.

12 Conclusions

Modified equations for backward error analysis of variational integrators can be system-
atically constructed using a formal Taylor expansion of the action integral. However, a
straightforward variational construction necessitates the use of an extended phase space.
We have demonstrated for the model case of the implicit midpoint rule applied to the
semilinear wave equation that a carefully chosen configuration space transformation al-
lows us to eliminate the dependence of the modified Lagrangian on higher order time
derivatives, thus reducing the phase space, and refitting the modified equations into the
standard framework of Lagrangian mechanics. Furthermore, such construction yields
modified equations whose dynamics lives on timescales that coincide with the timescales
of the unmodified partial differential equation. This is clearly not the case for the modified
equations derived on the Hamiltonian side using the traditional method as can already
be seen when discretizing the linear wave equation.

Even though we looked only at the next-order correction for the implicit midpoint
scheme in detail, we have shown that our construction generalizes to any order. We
also expect that the computations shown here generalize in a straightforward way to
semilinear Hamiltonian evolution equations with a linear part containing a general self-
adjoint time-independent operator in place of ∂xx, provided there is a regular Legendre
transform.

Our approach was initially developed in the context of Hamiltonian systems with
strong gyroscopic forces [13, 26]; the present work demonstrates that the strategy is more
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widely applicable and might point toward an abstract theory of degenerate variational
asymptotics. We also note that the flexibility of the approach comes from the fact that
the variational construction modifies the symplectic structure and the Hamiltonian simul-
taneously. In contrast, the traditional construction keeps a canonical symplectic structure
and only modifies the Hamiltonian.

Two major questions remain open. First, is it possible to show, using the new varia-
tional modified equation, that the implicit midpoint rule preserves the energy to fourth
order? Note that for the new modified equations, the truncation remainder is O(1) for h
fixed and λ→ ∞, while it is unbounded in the traditional setting. Therefore, we expect
that we still need some assumptions on the regularity of the solution—even though nu-
merical simulations indicate that energy preservation of the implicit midpoint rule is very
good even for non-smooth data—but the regularity conditions are possibly less stringent
than those needed in [37]. Second, is it possible to achieve exponential asymptotics as in
the standard backward error analysis for ODEs? To answer this question, it is necessary
to describe the combinatorics of the new asymptotic series, which should be possible, but
is more complicated than the conventional construction.
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