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Abstract State-of-the-art global ocean circulation models used in climate studies are
only passing the edge of becoming “eddy permitting” or barely eddy resolving. Such
models commonly suffer from over-dissipation of mesoscale eddies by routinely
used subgrid dissipation (viscosity) operators and a resulting depletion of energy in
the large-scale structures which are crucial for draining available potential energy
into kinetic energy. More broadly, subgrid momentum closures may lead to both
overdissipation or pile up of eddy kinetic energy and enstrophy of the smallest
resolvable scales.

The aim of this chapter is two-fold. First, it reviews the theory of two-dimensional
and geostrophic turbulence. To a large part, this is textbook material with particular
emphasis, however, on issues relevant to modeling the global ocean in the eddy
permitting regime. Second, we discuss several recent parameterizations of subgrid
dynamics, including simplified backscatter schemes by Jansen and Held, stochastic
superparameterizations by Grooms and Majda, and an empirical backscatter scheme
by Mana and Zanna.

1 Introduction

Climate studies require model simulations over periods from centuries to millenia,
which are only affordable if ocean models are kept relatively coarse. Many of them
stay at a resolution of about one degree and need to parameterize the effect of
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unresolved mesoscale eddies and smaller-scale motions. The issue of mesoscale
eddy parameterization attracts continuing interest as exemplified by recent studies
on eddy potential vorticity fluxes (Marshall and Adcroft, 2010; Eden, 2010; Ringler
and Gent, 2011; Marshall et al., 2012). With increasing computational power, eddy-
permitting (barely resolving the first baroclinic Rossby radius) or eddy-resolving
models are becoming feasible for climate studies, too, so that mesoscale dynamics
will gradually be resolved. Nonetheless, as the first baroclinic Rossby radius varies
widely (with values below 10 km in high latitudes), even eddy-resolving models
will not necessarily represent eddy dynamics with the same skill everywhere unless
their resolution is on the scale of a few kilometers. Combining resolved mesoscale
dynamics in some parts of the ocean with parameterized dynamics in the other part
is an interesting possibility, but cautionary results by Hallberg (2013) indicate that
the transition from parameterized eddies to resolved eddies can introduce problems
of its own.

Even though state-of-the-art eddy-permitting or eddy-resolving models simulate
the mesoscale dynamics with certain skill, they still use some form of explicit and/or
implicit viscosity, thought to represent the effect of unresolved small-scale subgrid
dynamics. The motivation is based on the picture of quasi-geostrophic turbulence
(Charney, 1971), which indicates that the direct cascade of enstrophy has to be
removed at the grid scale to prevent the enstrophy from piling up, causing code
instability. Fox-Kemper andMenemenlis (2008) discuss common approaches used in
oceanographic practice, in particular the Smagorinsky or Leith parameterizations in
either harmonic or biharmonic implementation. While these ideas appear plausible,
there are no solid theoretical arguments, especially outside the limits of applicability
of quasi-geostrophic theory which is questionable at grid scale.

The detailed form of the subgrid operators (e.g. Laplacian vs. biharmonic vis-
cosity), however, is known to impact the large-scale dynamics such as the path and
separation of the Gulf Stream (Hecht et al., 2008b). Moreover, removal of enstro-
phy at the grid scale is accompanied by energy dissipation. E.g., Danilov (2005)
has shown that a direct enstrophy cascade in two-dimensional turbulence is always
associated with a noticeable direct energy cascade, resulting in dissipation at finite
resolution. Jansen and Held (2014) point out that the popular biharmonic viscosity
operator suppresses resolved eddy motion in models where the separation between
the mesoscale and grid scale is insufficient. This reduces the ability of the flow to
drain eddy kinetic energy from the available potential energy (APE), thereby dis-
torting the entire energy cycle. The effect is most pronounced for eddy permitting
models where the grid scale and scale of APE release are not well separated. It is also
important for eddy-resolving models as the first baroclinic Rossby radius may locally
drop below grid scale. The remedies are less immediate and open for investigation;
searching for them is the main aim of ongoing studies. There is growing interest in
this topic in the community as eddy-permitting models are now beginning to be used
in climate research, so that the question of how to make themmore realistic becomes
pressing; see, e.g., Jansen et al. (2015), Berloff (2015), Cooper and Zanna (2015),
and Cooper (2017).
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Analyzing the effects of spectral pile-up and backscatter of eddy energy in re-
sponse to common subgrid parameterizations is rather straightforward for simple
two-dimensional flows with a prescribed kinetic energy production rate (Graham
and Ringler, 2013), but the question remains open in the context of more realistic
dynamics which includes the effects of baroclinicity, and where the geometry of
boundaries and topography makes spectral analysis only locally applicable. More-
over, in real flows the balance between energy production and dissipation ceases
to be local, which further complicates the situation. It is not clear how the sub-
grid operators affect the energy exchange between balanced (quasi-geostrophic) and
non-balanced motions as the resolution is increasing. More broadly, the mathemat-
ical side of subgrid parameterization as used in oceanographic tasks needs a more
firm basis which would dictate a scale- and frame-invariant structure for admissible
parameterizations.

It is important to note that the dynamics on scales close to the grid scale is
not only affected by explicit subgrid parameterizations, but also by details of the
discretization of momentum advection (see Fig. 1). For example, high-order upwind
transport algorithms based on the flux form of the advection operator have implicit
numerical dissipation of the same order of magnitude as typical explicit dissipation
(see, e.g., Mohammadi-Aragh et al., 2015). Further, there is evidence for a numerical
(Hollingsworth) instability associated with the vector-invariant form of momentum
advection which creates noise in the vertical velocity field and thus influences the
APE to kinetic energy conversion; see the discussion in Gassmann (2013) and
Danilov and Wang (2015). Understanding the effects induced by these or other
numerical details on the energy balance and accounting for their interplay with
subgrid parameterizations is a necessary element on the road to rigorous analysis.

The need to explore the interplay between resolution, parameterized subgrid, and
spurious numerical dissipation is particularly important for future earth systemmod-
els employing multi-resolution technology, for example models based on FESOM
(Wang et al., 2014) or ICON (Korn, 2017). Recent results point to the retardation of
eddy saturation when the upstream resolution is coarse (Danilov and Wang, 2015).
In multi-resolution models on unstructured meshes, subgrid momentum closures are
also needed to stabilize against spurious numerical modes appearing on staggered
triangular meshes (Danilov, 2013), which adds numerical complexity.

For all the reasonsmentioned, the question of how to return the over-dissipated en-
ergy to the resolved scales is of central importance when working at eddy-permitting
resolutions. This is known as the energy backscatter problem. On coarser meshes one
needs to additionally parameterize the contribution from mesoscale eddies. In both
cases, there is growing interest in stochastic parameterizations. Stochastic parame-
terizations have been successfully used to maintain sufficient variance in ensemble
forecasts (Palmer et al., 2009). However, energy and momentum consistency espe-
cially over long simulation timescales has not received as much attention (cf. the
discussion in Franzke et al., 2015).

For the momentum closure problem in the ocean, stochastic parameterizations
hold promise far beyond the idea of pure dissipation pursued by traditional determin-
istic subgrid parameterizations, and also beyond downgradient parameterizations for
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Fig. 1 Effect of momentum advection discretization on the relative vorticity field in a baroclinically
unstable channel flow (top: vector-invariant form, bottom: flux form; near-surface snapshots are
shown). Mesh resolution varies (1/36 degree in the central part and coarser elsewhere). Observed
scales and amplitude of small eddies in the central part differ substantially between the two schemes
due to the difference in implicit dissipation and discretization residual. The variance of vertical
velocity (not shown) is substantially lower for the flux form, modifying the APE to eddy KE
conversion rate. The figure is based on simulations reported in Danilov and Wang (2015).

unresolved mesoscale eddies. In the ocean context, systematic work on stochastic
parameterizations is rather recent: Duan andNadiga (2007),Mana and Zanna (2014),
Jansen and Held (2014), Grooms et al. (2015b), Cooper and Zanna (2015), Cooper
(2017), and Berloff (2015) all implement backscatter as stochastic forcing acting on
the resolved flow, showing the potential of the approach, but also raising questions
about the structure of this forcing and the choice of parameters. Stochastic backscat-
ter can be implemented in a purely statistical way; more sophisticated approaches
seek to include dynamical information, for example by shaping the backscatter forc-
ing according to the nonlinear self-interaction derived from elementary solutions to
the tangent linear equation (Berloff, 2015, 2016).

Further open questions pertain to finding a more general mathematical framework
and generalizations away from a quasi-geostrophic setting toward the full primitive
equations; work in this direction is at the very beginning. Related work on stochas-
tic LES closures for the Navier–Stokes equations was done by San (2014) for the
two-dimensional problem in vorticity form and by Xun and Wang (2014) for chan-
nel flow in three dimensions. Jansen and Held (2014) show that backscatter for the
two-layer quasi-geostrophic equations can be parameterized both stochastically and
deterministically, with very similar results. Their approach is generalized to a sim-
plified primitive-equation isopycnal model in the presence of topography in Jansen
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et al. (2015). This is a very valuable step, providing a promising starting point and
base-line benchmark.

Concerning subgrid dynamics, in most of the approaches cited, the model is either
entirely local or is based on global energy constraints and thus couples the energy
budget over the entire domain. There are, however, early attempts at “second order
closures” by Daly and Harlow (1970) and Deardorff (1973), where the Reynolds-
tensor is treated as a prognostic variable and closure conditions have to be supplied
for the higher order moments. Schumann (1975) suggested a model with a single
scalar transport equation for the subgrid energy. However, the algebraic closure
relations for the diagnostic subgrid contributions are complicated and subject to
solvability constraints, see Schmidt and Schumann (1989) and Schumann (1991).
These ideas have been revisited subsequently by Schiestel and Dejoan (2005) and
Chaouat (2012), but the problem remains open.

To summarize, the main open questions are:

• Find a suitable mathematical framework for subgrid momentum parameteriza-
tion with minimized spurious energy dissipation;

• Implement practical backscatter algorithms in primitive-equation ocean circu-
lation models.

Any progress will have substantial impact on the energetic consistency of existing
and future climate models.

This chapter aims at an elementary introduction to the circle of questions outlined
above. Our intent is not to give ready and complete answers, but to highlight the
issues and survey some of the emerging approaches.

We begin with a brief summary of the concept of subgrid momentum closures in
Section 2. In Section 3, we review theoretical ideas on quasigeostrophic turbulence,
with a brief summary on ocean mesoscale and submesoscale turbulence. Our main
goal is to emphasize that the notion of “subgrid” scale, as related to ocean modeling,
depends on the resolution, which complicates the question on subgrid closures.

In Sections 4 and 5, we review several proposed parameterizations. The first
is the approach by Jansen and Held (2014) which is based on a local subgrid
energy budget and an essentially empirical backscatter term which may be either
deterministic or stochastic. The second, more sophisticated, but also more expensive
and less easily generalized approach is due to Grooms and Majda (2013, 2014)
who replace the Reynolds stress term with a stochastic process and explicitly evolve
the local subgrid statistics in a local micro-cell attached to each grid box. The
last emerging closure scheme is due to Mana and Zanna (2014); it was initially
introduced semi-empirically, but later justified under precise assumptions byGrooms
and Zanna (2017). The section closes with a brief review on α-models which provide
a framework for regularizing fluid equations without adding dissipation which may
possibly be interpreted as a nonlinear remapping of wave numbers.

Section 6 offers concluding remarks and some very brief pointers to the literature
for further directions beyond those covered so far.



6 Sergey Danilov, Stephan Juricke, Anton Kutsenko, and Marcel Oliver

2 Subgrid momentum closures

To fix concepts, let us focus on the momentum equations for a homogeneous incom-
pressible or Boussinesq rotating ideal fluid,

∂tu + ∇ · (u ⊗ u) + 2Ω × u + ρ−1 ∇p = F + Du , (1a)
∇ · u = 0 , (1b)

where u is the three-dimensional velocity field,Ω the rotation vector, ρ the constant
density, and p the pressure. All force terms are subsumed into F. In particular, the
system can represent the Boussinesq equations when augmented by thermodynamic
equation(s) andwithF representing all other forces including buoyancy. The operator
D represents dissipation through physical processes or prior modeling. This equation
may be read either as a partial differential equation (PDE) or as a fine-scale numerical
approximation thereof.

In analogywith classical large-eddy simulation, we introduce a coarsened velocity
field u. We assume very little about the coarsening process other than that it is linear
and commutes with time-differentiation. In the classical PDE setting, u may be
obtained from u by convolution with a filter kernel. However, the more interesting
point of view is that u represents the solution of a modified numerical model at
lower resolution. Then u satisfies the equation

∂tu + ∇ · (u ⊗ u) + 2Ω × u + ρ−1 ∇ p = R(u) + F + Du , (2a)

∇ · u = 0 , (2b)

with eddy source term

R(u) = ∇ · (u ⊗ u) − ∇ · (u ⊗ u) + Du − Du (3)

where ∇ and D denote the coarsened gradient or divergence operator and coarsened
dissipation operator, respectively. Thinking of coarsening as a change of numerical
resolution, we do not assume that coarsening commutes with the fine-scale operators
even though this is often true for convolution coarsening on the continuum. However,
we have made two minor simplifying assumptions: first, we have commuted the
coarsening operation into the Coriolis term, which is exactly true on the f -plane
and approximately true for a slowly varying Coriolis parameter, and second, we are
assuming that the flow is incompressible at the coarse level with p denoting the
implied coarsened pressure. (So p is not obtained by convolution of p with the filter,
but is chosen to enforce incompressibility of the coarse velocities.)

When considering the full Boussinesq system, the transport equations for potential
temperature and other thermodynamic quantities need to be coarsened similarly
(Aluie and Kurien, 2011). For fully compressible flows, it is more natural to coarse-
grain the product ρu, thus modifying the expression for R(u) above; see, e.g., Aluie
(2013). Additional complications arise with nonlinear equations of state; see, e.g.,
Eden (2016).
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The modeling task is now the following: Find a closure or subscale model R(u)
which correlates highly with the true R(u). The closure may be deterministic or
include stochastic terms to reduce bias; it may also include infinitesimal or finite
memory. If the momentum equation is coupled to thermodynamics, the same con-
siderations apply to each of the prognostic equations.

One of the most elementary concerns is the distribution and flux of energy across
scales, as the statistical behavior of the solution depends on it. In the next section,
we illustrate the issues relevant for stratified turbulence in the ocean, concentrating
mainly on the quasigeostrophic equations. They allow us to explore the main features
of large-scale rotating stratified flow and are also used inmost of the recent theoretical
studies in the field.

3 Quasigeostrophic turbulence and ocean eddies

In this section, we review the energetics of large-scale quasigeostrophic (QG) turbu-
lence. In contrast to three-dimensional turbulence where energy cascades to small
scales, QG turbulence is distinguished by an inverse cascade of barotropic kinetic
energy to large scales and a cascade of enstrophy to small scales. Thus, it is often
said that numerical schemes are required to provide a sink for QG enstrophy at grid
scale without dissipating energy. In the following, we explain how and under which
conditions this picture arises, but also point out its limitations when used in the
context of ocean circulation models.

We emphasize that the classical picture of QG turbulence is strictly valid only
under the assumption that QG enstrophy is dissipated at scales much smaller than the
forcing scale and that turbulence remains geostrophic across all scales. In stratified
flow, the main source of barotropic kinetic energy is the conversion of available
potential energy via baroclinic instability. The most unstable baroclinic modes occur
close to the first internal Rossby radius of deformation Ld. As we move to even
smaller scales in a full model, the ageostrophic or non-balanced component of the
flow increases and the quasigeostrophic approximation becomes inaccurate. Thus,
there is only a finite small range of scales between Ld and the scale where ageostrophy
starts to be important; at smaller scales, the energy cascade is direct. Moreover, since
this direct cascade acts as an energy sink, there must also be some downscale flux
of energy across the geostrophic range to feed it.

All of the quasigeostrophic models are able to capture only the part of the dy-
namics that stays close to geostrophic balance, often referred to asmesoscale eddies.
In the real ocean, the scales at which ageostrophic effects are becoming important
are rather close to Ld (see, e.g., Callies and Ferrari 2013) so that the presence of
ageostrophic motions, often accompanying smaller-size submesoscale eddies, may
have significant impact on the direction of the energy transfer across scales. An addi-
tional complication arises from the fact that there is also a direct cascade of available
potential energy which implies that the forcing of the barotropic cascade does not
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only take place near the most baroclinically unstable mode, but is distributed across
a wider range of scales.

In the following, we begin with the simplest concepts in a purely two-dimensional
setting, thenmove to a two-layermodel, and finally discuss the continuously stratified
quasi-geostrophic equations.

3.1 Two-dimensional turbulence

The very basic notions of rotating turbulence and ocean mesoscale eddies can be
introduced in the framework of two-dimensional quasi-geostrophic dynamics.

The barotropic quasi-geostrophic equations are reviewed, e.g., in Franzke et al.
(2019). In the beta-plane approximation and written in terms of the relative vorticity
ζ , they read

∂t ζ + [ψ, ζ] + β ∂xψ = F + Dζ , (4a)
ζ = ∆ψ , (4b)

where brackets denote the Jacobian operator [ψ, ζ] = ∇⊥ψ ·∇ζ with∇⊥ = (−∂y, ∂x),
ψ denotes the stream function, β is the beta-parameter, D a dissipation operator to
be specified below, and F the forcing. The forcing F is maintained by baroclinic or
barotropic instabilities evolving at some intermediate scales.1

To begin, we set β = 0. Further, to simplify the discussion, we non-dimensionalize
the horizontal length scale and consider (4) on the doubly-periodic domain T2 =
[0, 2π]2, so that we can pass to the Fourier representation2 where

ζk =
1

2π

∫
T2

e−ik ·x ζ(x) dx (5)

for k ∈ Z2. It is useful to separate the dissipation operator D into ‘infrared’ and ‘ul-
traviolet’ parts that effectively act on large (Di) and small (Du) scales. For simplicity,
we assume that these operators are diagonal in Fourier space, so that the transformed
vorticity equation (4a) takes the form

∂t ζk + Jk = Di(k) ζk + Du(k) ζk + Fk (6)

1 For simplicity, our definition of vorticity (4b) does not include a barotropic stretching term
modeling the effect of free surface elevation. In a geophysical context, this means that (4) is
restricted to scales smaller than the external Rossby radius of deformation Le = c/ f , where c is
the speed of surface gravity waves and f the Coriolis parameter. This is a reasonable assumption
for the ocean where Le ≈ 2000 km with c = 200 m/s and f = 0.0001 s−1, but is more questionable
for the atmosphere.
2 For the purpose of this exposition, we are using the symmetric definition of the Fourier transform
so that the Parseval identity holds with constant one.
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where, writing p = |p | and likewise for the other wavenumber vectors, the Jacobian
term is described by

Jk =
1

2π

∑
k=p+q

p⊥ · q

p2 ζp ζq . (7)

In the absence of dissipation and forcing, equation (6) conserves energy

E =
∑
k∈Z2

Ek = −
1
2

∑
k∈Z2

ψ∗k ζk (8)

and enstrophy
Z =

∑
k∈Z2

Zk =
1
2

∑
k∈Z2

ζ∗k ζk , (9)

with star denoting the complex conjugate.
The presence of two integrals imposes constraints on how energy and enstrophy

are transferred in spectral space. The energy balance in each mode k is obtained by
multiplying (6) by ψ∗

k
and taking the real part, so that

∂tEk = Tk + 2 Di(k) Ek + 2 Du(k) Ek + Pk , (10)

where Pk = −Re[ψ∗
k

F
k
] is the rate of energy pumping and Tk = Re[ψ∗

k
J
k
] is the

rate of nonlinear energy transfer into mode k.3 Using (7), we can write

Tk =
∑

{p,q } : k+p+q=0
T(k |pq) , (11)

where
T(k |pq) =

1
2π

p⊥ · q (q2 − p2) Re[ψk ψp ψq] (12)

denotes the rate of energy transfer into mode k from modes {p, q} and the sum in
(11) is taken over un-ordered sets {p, q}.

Summing up all the Tk , we obtain the overall rate of nonlinear energy transfer
T . Clearly, T = 0 as the rates of sending and receiving energy must balance across
all modes. Following Fjørtoft (1953), we sort the terms in this sum according to
membership in resonant triads of modes

S = {{k, p, q} : k + p + q = 0} , (13)

so that
T =

∑
{k,p,q }∈S

(T(k |pq) + T(p |kq) + T(q |k p)) . (14)

3 Expression (11) shows that the instantaneous rate of energy transfer into mode k can only be
nonzero provided ψk is nonzero. This, however, does not imply that a mode which is initially zero
remains zero for t > 0 as (6) allows a tendency for ζk . See, e.g., the discussion in Moffatt (2014).
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Within each triad, k⊥ · q = −p⊥ · q. This directly implies4 that

T(p |kq) = −
q2 − k2

q2 − p2 T(k |pq) (15a)

and

T(q |k p) = −
k2 − p2

q2 − p2 T(k |pq) . (15b)

These identities constrain the transfer of energy within the triad: If p < k < q and
mode k loses energy by interacting with modes p and q, the two other modes gain
energy; vice versa, if mode k gains energy in this triad interaction, then modes p
and q lose energy. The same holds true for enstrophy. In other words, nonlinear
interactions between three modes always transfer energy and enstrophy either from
or to the central component.

The total transfer Tk involves all triads this mode participates in and cannot be
predicted without additional arguments. Consider first the case without forcing and
dissipation, and define the energy wavenumber ke as the centroid of the spectral
energy density E(k):

ke =
1
E

∑
k

k E(k) , (16)

where we assume that the distribution of energy is isotropic in wavenumber space
with E(k) denoting the energy in the shell k = |k |. The second moment

I =
∑
k

(k − ke)
2 E(k) = Z − k2

e E (17)

is expected to increase with time if energy spreads over wavenumbers. This is natural
to expect for any energy spectrum that is initially spectrally localized. Conservation
of energy and enstrophy implies that

dI
dt
= −E

dk2
e

dt
, (18)

so when energy spreads over wavenumbers, ke decreases, i.e. energy moves to larger
scales. Similarly, it can be shown that the enstrophy centroid moves downscale if
and only if the second moment of enstrophy indicates a spread of the enstrophy
distribution, see Vallis (2006) for details. This consideration indicates that if two-

4 An independent, conceptual proof goes as follows. Consider a flow in the absence of dissipation
and forcing where the Fourier coefficients of only a single resonant triad are nonzero. Such a flow
preserves energy and enstrophy, so that ∂t (Ek +Ep +Eq ) = 0 and ∂t (k2 Ek +p

2 Ep +q
2 Eq ) = 0.

But with only a single active triad, we can factor out Re[ψk ψp ψq ] from the expressions for the
rate of energy and enstrophy transfer. Thus, the algebraic prefactors must already cancel, implying
triad-wise conservation of energy and enstrophy also for general flows; (15) is a direct consequence
of these conservation laws.
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dimensional freely-evolving turbulence develops cascades, we should expect an
inverse energy cascade and a direct enstrophy cascade. It does not mean that there is
no energy transfer to small scales or enstrophy transfer to large scales, it only means
that on average energy tends to go upscale and enstrophy tends to go downscale.

In practice, turbulent flows are forced dissipative systems.5 They can reach a sta-
tistically steady state if dissipation is present at both spectral ends, as is envisioned
in (6). Although the cause of infrared dissipation is not immediately apparent, in
many cases its role can be efficiently played by bottom friction.6 We thus return to
the forced-dissipative case and consider the idealized situation when the forcing F
is spectrally localized to a small interval around a forcing wavenumber kf , infrared
dissipation is localized to wavenumbers k < ki, and ultraviolet dissipation is local-
ized to k > ku, with ki < kf < ku.7 Assuming statistical stationarity, the mean rate of
energy injection ε is balanced by the mean rate of energy dissipation in the infrared
εi and the mean rate of energy dissipation in the ultraviolet εu, i.e.

ε = εi + εu . (19)

Likewise, writing η to denote the mean rate of enstrophy injection near wavenumber
kf , we balance with the mean enstrophy dissipation rates ηi and ηu in the respective
dissipation ranges, so that

η = k2
f ε = ηi + ηu . (20)

Noting that ηi ≤ k2
i εi, we estimate

η ≥ ηu = k2
f ε − ηi ≥ k2

f ε − k2
i εi ≥ (k2

f − k2
i ) ε = (1 − k2

i /k
2
f ) η . (21)

Thus, ηu → η in the limit ki/kf → 0. Similarly, noting that ηu ≥ k2
u εu, we can show

that εi → ε when kf/ku → 0.

5 The real ocean is close to this idealization, but not fully, as some eddies leave their regime
of creation and evolve freely before being dissipated. Thus, temporal averages of forcing and
dissipation may not balance locally in space.
6 Physically, bottom or surface drag is due to small-scale turbulence, yet modeled in the equations
without horizontal differential operators. Thus, the bulk of energy dissipation will happen at the
scales where energy is residing, i.e., it will be infrared.
7 In practice, this assumption is well satisfied at the infrared end because we commonly get
energy spectra that are sufficiently red (with theoretical slopes of −5/3 or −3), so that most energy
is residing at small wavenumbers. Thus, linear (Rayleigh) friction modeling bottom drag with
Di = −λ is concentrated where the kinetic energy is concentrated—at small wavenumbers. The
same holds true for quadratic friction proportional to u |u |. The situation is more subtle at the
ultraviolet end. Laplacian viscosity has Du(k) = −νk

2, i.e., it is concentrated where the enstrophy
is concentrated. Here we have a formal problem, for if the spectral slope is−3,Du(k)E(k)will have
a maximum in the forcing range. The slope is frequently even steeper (when coherent vortices are
formed), so Laplacian viscosity will affect the forcing range. Thus, for true ultraviolet dissipation
one needs hyperviscosity (a biharmonic operator at least, but even that is insufficient if the spectra
are steeper than −4 which sometimes occurs).
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Thus, in the asymptotic limit ki � kf � ku, there is only upscale energy transfer
for k < kf and only downscale enstrophy transfer for k > kf . As a result, these
regimes are called (inverse) energy range and (direct) enstrophy range, respectively.
The mean energy spectral density 〈E(k)〉 should be such that a constant spectral
energy flux is carried across each range.8 Assuming that the mean energy transfer
is spectrally local, as well as spatially homogeneous and isotropic, one expects that,
in the energy range, 〈E(k)〉 depends only on the infrared energy dissipation rate
εi = ε and on k. This lead Kraichnan (1967), Leith (1968), and Batchelor (1969),
hereafter KLB (following earlier arguments by Kolmogorov for classical turbulence)
to conclude that the only dimensionally consistent scaling law is

〈E(k)〉 = CE ε
2
3 k−

5
3 . (22)

Likewise, in the enstrophy range, one expects that 〈E(k)〉 will depend only on the
ultraviolet enstrophy dissipation rate ηu = η and on k, leading to the scaling law

〈E(k)〉 = CZ η
2
3 k−3 . (23)

The picture outlined above has two important limitations. The first one relates to
the KLB assumption that only local triad interactions (triads where p, k, and q are
of the same magnitude) contribute to the mean transfer of energy. For an individual
wave number k in the energy or the enstrophy range where forcing and dissipation
are absent, we expect that the mean transfer rate 〈Tk〉 is zero, which only means that
some triads carry energy to k and some from it. How they do this, however, does
not really agree with the KLB picture—in real forced-dissipative two-dimensional
turbulence, the contribution from non-local triads is indispensable. For a mode p in
the energy range, one cannot neglect triads with two long legs k and q in the forcing
or enstrophy range. The local triads with legs being about p dominate locally, but
contrary to expectations, their average effect is not leading to the inverse energy
transfer. Similarly, for mode k in the enstrophy range, one cannot neglect triads
with one short leg p in the forcing or energy range. The first such analysis is due
to Maltrud and Vallis (1993) and was corroborated by Danilov and Gurarie (2001).
This means that vortices near the forcing scale are strong enough to stir small-scale
vortices in the enstrophy range, which is precisely the way these smaller vortices are
formed. The presence of non-locality violates the KLB argument for it is explicitly
assumed that 〈E(k)〉 in the energy range may only depend on the mean energy flux ε
and on k (and not, e.g., on the forcing range), and similarly for the enstrophy range.

8 To be mathematically precise, the averaging operation 〈·〉 must be seen as an ensemble average,
even though we have no a priori knowledge of the probability measure. In practice, the necessary
size of the ensemble is also an issue, so one may want to resort to averaging in time: a configuration
is “practically statistically stationary” if the difference of averages over an interval [t, t + T ] and
[t, t + 2T ] are less than some prescribed tolerance. One needs, however, to recognize that the
required time interval T depends on the quantities we work with. It is relatively small for E(k) and
the mean spectral energy flux Π(k), it is relatively large for Ek orTk , and it is even larger for partial
transfers T (k |pq).
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The second limitation of the classical KLB picture is that in real systems, the
energy and enstrophy ranges are finite. If forcing pumps energy at intermediate scale
kf with finite separation from ki and ku, both energy and enstrophy are transferred to
large and small scales through nonlinear interactions. If the wavenumber intervals
separating forcing from dissipation are sufficiently broad, most of the energy is
transferred upscale and most of the enstrophy downscale. However, these intervals
are never broad enough in the ocean, and the question of the amplitude of the direct
energy cascade relevant to the ocean is open.

However, even on finite ranges, the classical picture is not entirely lost. The
following argument due to Gkioulekas and Tung (2007) provides integral bounds
on energy and enstrophy fluxes which do not depend on infinite scale separation.
To ease notation, we assume a wavenumber continuum (i.e., an unbounded domain
in physical space) and, as before, consider energy densities and energy transfer rate
densities as a function of the wavenumber modulus k. The argument, in essence,
does not depend on this assumption. In a statistically stationary state, the average
〈∂tEk〉 = 0, so that, taking the time or ensemble mean of (10) and averaging over
the shell |k | = k, we obtain

〈T(k)〉 = −D(k) 〈E(k)〉 − 〈P(k)〉 (24)

where we assume that the dissipation operators depend only on k, so that we can
write D(k) = 2Di(k) + 2Du(k). Retaining the assumption that Di is dissipating at
wavenumbers smaller than ki and Du is dissipating at wavenumbers larger than ku,
the mean spectral energy flux

Π(k) =
∫ ∞

k

〈T(κ)〉 dκ = −
∫ k

0
〈T(κ)〉 dκ (25)

is necessarily negative for k < ki and positive for k > ku. The equality between the
two integrals in (25) holds for each realization pointwise in time due to conservation
of energy in the inviscid unforced system. Analogous statements hold true for the
spectral enstrophy flux. Then,∫ k

0
2ξ Π(ξ) dξ =

∫ k

0
(κ2 − k2) 〈T(κ)〉 dκ

= −

∫ ∞

k

(κ2 − k2) 〈T(κ)〉 dκ

=

∫ ∞

k

(κ2 − k2) (D(κ) 〈E(κ)〉 − 〈P(κ)〉) dκ , (26)

where the first identity is obtained by exchanging the order of integration, the second
identity is once again based on the conservation of energy and enstrophy in the
inviscid unforced case, and the last step uses the statistical stationarity relation (24).
When k > ku, the rate of energy pumping P(κ) appearing in the integrand of (26) is
zero while the contribution from dissipation is negative. Thus, for every k > ku and,
trivially, for every k < ki,
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0
ξ Π(ξ) dξ < 0 . (27)

Due to the weight in this integral, we see that the upscale flux of energy for k < ki
must be typically larger than the downscale flux of energy for k > ku. A similar
inequality shows that the enstrophy flux is predominantly downscale (Gkioulekas
and Tung, 2007).

Whether or not inertial ranges can be observed depends on the spectral loci
of dissipation and forcing. In particular, when an inverse cascade is observed, it
only means that some energy dissipation is located at smaller wavenumbers than
energy forcing. As a rule, dissipation and forcing are spread over wavenumbers,
and may even intersect. Moreover, when forcing extends up to the spectral cutoff
kmax of a simulation, the small direct cascade of energy may be partially hidden.
Thus, in most cases, clean inertial ranges are absent. And even when inertial ranges
void of dissipation and forcing exist, the observed spectra may deviate from the
KLB predictions because non-local triad interactions are always present and may be
significant for finite ranges; see the discussion and examples in Danilov (2005). We
conclude that spectral slopes alone tell very little about the nature of the underlying
dynamics, and one must turn to exploring the distribution of forcing and dissipation
over scales.

Let us comment briefly on the case when β , 0. In this situation, energy is
channeled into zonal modes and large-scale features become highly anisotropic: jets
appear near the Rhines scale LRh = E1/4/β1/2 which is several hundred km for
ocean conditions (see Rhines 1975 and the discussion in Danilov and Gurarie 2004).
Smaller scales are largely unaffected.

As far as subgrid closures are concerned, the framework of two-dimensional
incompressible turbulence implies that the closures should be consistent with the
k−3 power law in the enstrophy range. The extent to which this is possible with
traditional closures is explored by Graham and Ringler (2013). The degree to which
this is relevant to the dynamics of the real ocean remains an open question, for
dynamics at scales smaller than the internal Rossby radius develop an ageostrophic
component.

3.2 Two-layer geostrophic flows

In the presence of stratification, the situation becomes more complex. The general
picture as presented in text-books (see Salmon 1998, Vallis 2006) is as follows.
On scales larger than the first internal Rossby radius Ld, there is a direct cascade
of baroclinic (available potential plus kinetic) energy and an inverse cascade of
barotropic (kinetic) energy. The baroclinic cascade ismaintained through instabilities
that release the available potential energy froman existing pool. It feeds the barotropic
cascade at scales around Ld via the mechanism of baroclinic instability. This energy
is transferred upscale where it is dissipated. On scales smaller than Ld, the layers
interact only weakly and behave similar to two-dimensional turbulence discussed
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above. In this regime, the dynamics are governed by the direct enstrophy cascade,
implying the scaling exponent −3 for the modal or layer kinetic energy spectra. We
note that this implies the presence of a direct energy cascade at these scales.

In this section, we discuss these concepts in the simplest possible setting, the
two-layer quasigeostrophic model. It is essential that the two-layer model allows for
a coupling between the eddy potential energy dynamics and the eddy kinetic energy.
In this sense, it represents a minimum model for the real dynamics in ocean and
atmosphere.

The two-layer QG model introduces important corrections to the single-layer
situation explained in Section 3.1 above. First, it shows that the concept of spectrally
localized forcing does not work, for the energy is supplied to the system over a broad
range of scales, with the maximum spectral density of pumping shifted towards the
scale of the energy spectrum maximum. Second, the notion of cascade has to be
adjusted, for predictions are made for the baroclinic and barotropic energies, not for
the layers.

For simplicity we assume the layer depths be equal. The two-layer system can
then be written as

∂tqi + [ψi, qi] = Fi + δ2i Diψi + Duψi + (−1)i+1 κ (ψ1 − ψ2) , (28a)

qi = f0 + βy + ∆ψi + (−1)i k2
d (ψ1 − ψ2)/2 , (28b)

where i ∈ {1, 2},

kd =
1
Ld
=

√
8 f0

N0H
(29)

is the inverse of the baroclinic Rossby radius, f0 is the Coriolis frequency, N0 the
typical Brunt–Väisälä frequency, and H the total fluid depth; see, e.g., Franzke et al.
(2019) for details.

We remark that when diagnosed using the leading-order per-layer geostrophic
balance relation, the difference in layer streamfunctions, ψ1 − ψ2, is proportional to
the displacement of the interface between the layers. Thus, the last term in (28b) can
be interpreted as the contribution to potential vorticity perturbations from the layer
interface and is referred to as the stretching term.

We think of infrared dissipation Di acting as bottom drag only on the lower
layer. Then Di = −λ∆ with λ the bottom drag coefficient. Ultraviolet dissipation is
typically modeled by hyperviscocity of some order n ≥ 2, so that Du = ν(−∆)

n with
hyperviscocity coefficient ν. The last term in (28a) models thermal relaxation of the
layer interface, with 2κ/k2

d the inverse time scale. It restores interface displacement,
thus enters the layer equations with the opposite sign.

Although the ocean is mainly driven by wind stress applied to the upper layer, a
theoretically simpler situation occurs when the interface between layers is relaxed
toward a position with a uniform slope, i.e., taking Fi = −(−1)i κU y, with y the
meridional coordinate. Equation (28a) in this case has an equilibrium solution ψ1 −
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ψ2 = −Uy, which in the presence of bottom drag implies ψ1 = −Uy and ψ2 = 0.9
The velocity U defines the vertical shear and interfacial slope in the two-layer QG
model. This equilibrium solution corresponds to a pool of available potential energy
(APE) and can be baroclinically unstable.

Splitting the streamfunctions into the equilibrium stream functions and perturba-
tion or “eddy” streamfunctions ψeddy

1 and ψeddy
2 , we write

ψ1 = −yU + ψeddy
1 and ψ2 = ψ

eddy
2 . (30)

Further, it is useful to rewrite the system in terms of the eddy barotropic streamfunc-
tion ψ and the eddy baroclinic streamfunction τ, respectively defined by

ψ =
ψ

eddy
1 + ψ

eddy
2

2
and τ =

ψ
eddy
1 − ψ

eddy
2

2
, (31)

and the corresponding eddy barotropic potential vorticity q and eddy baroclinic
potential vorticity ω defined as

q = ∆ψ and ω = ∆τ − k2
d τ . (32)

We note that the stretching term from (28b) appears as the second term in the
definition of ω.

Substituting (30) into (28), writing out the sum and the difference of the layer
equations, and rewriting all expressions in terms of the modal streamfunctions (31)
and their associated potential vorticities, we obtain

∂tq + [ψ, q] + [τ, ω] +
U
2
∂x(q + ∆τ) + β ∂xψ =

1
2

Di(ψ − τ) + Duψ , (33a)

∂tω + [ψ, ω] + [τ, q] +
U
2
∂x(ω + q + k2

d ψ) + β ∂xτ = −
1
2

Di(ψ − τ) + Duτ + κτ .

(33b)

In the following, we will endow the perturbation quantities with doubly periodic
boundary conditions. This is possible because the forcing terms, which are non-
periodic in the y-direction, drop out of the equations for the perturbation quantities.
However, the information on forcing is retained in the terms proportional to U.

The barotropic equation (33a) contains self-advection (i.e., the advection of
barotropic eddy PV by the barotropic velocity field), whereas the baroclinic equa-
tion (33b) is linear in the baroclinic variables. Thus, barotropic dynamics are similar
to two-dimensional vorticity dynamics characterized by an inverse energy cascade
whereas baroclinic dynamics are similar to the advection of a passive tracer which
possesses a direct energy cascade.10

9 To see this, add a small deviation from the linear dependence in the y-direction and then consider
the limit when this deviation vanishes.
10 Scott and Arbic (2007) show that there will be baroclinic self-interactions for unequal layers,
leading to an inverse cascade of baroclinic kinetic energy.
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As in Section 3.1, we consider the modal energy balances for the barotropic
(kinetic) energy

Eψ =
∑
k∈Z2

Eψ
k
= −

1
2

∑
k∈Z2

ψ∗k qk (34)

and baroclinic energy

Eτ =
∑
k∈Z2

Eτ
k = −

1
2

∑
k∈Z2

τ∗k ωk =
1
2

∑
k∈Z2

(k2 + k2
d) |τk |

2 , (35)

where the contribution prefactored by k2 is baroclinic kinetic energy and the contri-
bution prefactored by k2

d is available potential energy. Taking the Fourier transform
of the barotropic and baroclinic equations, multiplying with ψ∗

k
and τ∗

k
, respectively,

and taking the real part, we obtain

∂tE
ψ
k
= Tψ

k
+ Cψ

k
+ Dψ

k
, (36a)

∂tEτ
k = Tτk + Cτ

k + Gk + Dτ
k . (36b)

The terms

Tψ
k
= Re[ψ∗k Jk (ψ, q)] , (37a)

Tτk = Re[τ∗k Jk (τ, q)] − k2
d Re[τ∗k Jk (ψ, τ)] (37b)

with k = (kx, ky) describe energy transfer within the barotropic and baroclinic
modes,

Cψ
k
= Re[ψ∗k Jk (τ, ω)] −

U
2

k2 Re[ikx ψ∗k τk ] , (37c)

Cτ
k = Re[τ∗k Jk (ψ,∆τ)] −

U
2

k2 Re[ikx τ∗k ψk ] (37d)

describe transfer from baroclinic to barotropic modes and vice versa, respectively,

Gk =
U
2

k2
d Re[ikx τ∗k ψk ] (37e)

represents the generation of energy, and all dissipative terms are subsumed into Dψ
k

and Dτ
k
.

One can readily see that the generation term is proportional to the meridional
buoyancy flux which tends to level off the layer interface (for APE has to be released)
if the system is baroclinically unstable. In this case, its mean value has to be positive
definite in a statistically stationary sense. Note that Gk is defined by the dynamics
and is not an external parameter as in 2D barotropic turbulence theory.

Since
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k∈Z2

Tψ
k
=

∑
k∈Z2

Tτk = 0 , (38)

these two terms only redistribute energy between scales. Likewise,∑
k∈Z2

Cψ
k
= −

∑
k∈Z2

Cτ
k , (39)

so that these terms only redistribute energy between baroclinic and barotropicmodes.
In the traditional view of baroclinic turbulence (Rhines, 1977; Salmon, 1980),

one introduces spectral energy fluxes analogous to (25),

Π
ψ(k) = −

∫ k

0
Tψ(κ) dκ and Π

τ(k) = −
∫ k

0
Tτ(κ) dκ , (40)

describing the redistribution of energy between scales. There are numerous publica-
tions discussing the behavior of fluxes in this situation (e.g. Scott and Arbic 2007).
The barotropic flux Πψ can be shown to be negative at k < kd corresponding to an
inverse cascade of barotropic energy while the baroclinic flux Πτ is always positive
corresponding to a direct cascade of full (i.e. potential and kinetic) baroclinic energy.
Although there is an upscale (i.e. toward large scales) transfer of barotropic kinetic
energy, there is no inertial range at k < kd because the transfer of energy from the
baroclinic into barotropic mode is spread over all wave numbers, being stronger at
smaller k.

Thus, no spectral law can be predicted for the inverse cascade in this case.
In contrast, on scales smaller than Ld the stretching term in the expression for the
quasigeostrophic potential vorticity becomes small compared to the relative vorticity
and, as already mentioned, each layer behaves as in two dimensions implying the
scaling exponent −3 for the kinetic energy.

This picture relies on the fact that the assumed forcingmaintains a pool of available
potential energy which is then transferred to eddies through baroclinic instability,
which develops into a nonlinear regime of quasi-stationary balance between the
release of potential energy, non-linear transfer, and dissipation. In general, forcing
will drive both barotropic and baroclinic components of the mean flow. But even if
forcing is only baroclinic, as is the case here, a mean barotropic flow is created in
the presence of friction and/or topography. For uniform shear, the release of APE
through baroclinic instability is the main source of energy for the eddies, but the
kinetic energy of the mean flow may also be important in general.

The picture described so far is tied to the choice of writing the fields in terms of
barotropic and baroclinic modes. Arguments will differ when looking at the transfer
of energy between layers, or between kinetic and potential energy. In particular, the
sum of transfers between modes is zero only when integrated over wavenumbers.
This explains why the picture of transfers will be modified if considered for layers
(there will be transfers between the layers), and for the total energy (when baroclinic
and barotropic kinetic energies will be combined, and potential energy split off the
baroclinic energy).
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Fig. 2 Spectral energy fluxes corresponding to the fluxes in (42), integrated over the wavenumber
shell |k | = k. Figure adapted from Jansen and Held (2014), their Figure 4. Note that the vertical
axis shows k ∂tEk , so that area under the curve in singly logarithmic scaling corresponds to total
transfer rates. Note further that the scale of wavenumbers k shown is normalized by 2π/L, where
L is the domain size. The deformation scale kd = 1/Ld is marked by the vertical dotted line.

The total energy at wave vector k ,

Ek =
1
4

k2 (|ψ1 |
2
k + |ψ2 |

2
k ) +

1
2

k2
d |τ |

2
k (41)

has a rate of change

∂tEk = TK
k + TP

k + Gk + Di
k + Du

k (42)

with transfer rates

TK
k =

1
2

Re
[
ψ∗1k Jk (ψ1,∆ψ1) + ψ

∗
2k Jk (ψ2,∆ψ2)

]
, (43a)

TP
k = −k2

d Re
[
τ∗k Jk (ψ, τ)

]
, (43b)

a generation term Gk as before, and rates of frictional (infrared) dissipation Di
k
and

viscous (ultraviolet) dissipation Du
k
.

Intermodal or interlayer transfers are now included in the kinetic and potential
energy transfers. The emerging picture is perhaps the most transparent, see Fig. 2.
It shows that generation is nearly compensated by large-scale dissipation, that the
EPE flux is direct, for it takes the generated eddy energy Gk and carries it to larger
wavenumbers gradually releasing it to kinetic energy, and that the EKEflux is inverse,
for it takes the released potential energy and carries it back to the interval of small
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wavenumbers where it is dissipated. It is important to note that transfers into EKE and
from EPE are centered at kd and occupy at least one octave of wavenumbers more on
the short-wave side. Simulations by Jansen and Held (2014) demonstrate a spectrum
of barotropic EKE close to but steeper than −3 starting from kd and towards larger
wavenumbers. Yet a substantial part of the interval where this spectrum is observed
is where the transfers take place, i.e., where there cannot be an inertial range. In
other words, the existence of a well-defined spectral slope is not an indicator of an
inertial range, which is frequently forgotten.

Although the theoretical prediction of the inverse cascade is formally made for
the barotropic kinetic energy, it is commonly observed for baroclinic kinetic energy
and for layer kinetic energies. This behavior is clarified by Scott and Arbic (2007).

We see that if there is a hope for the interval of self-similar behavior in layer
QG dynamics, such behavior should be on the side of small wavenumbers and be
consistent with the −3 spectral law. However, the two-layer setup indicates very
clearly that the transfer from EPE to EKE involves wavenumbers around kd or larger.
For this reason this spectral law and self-similar behavior of inertial range can only
be expected to hold for wavenumbers essentially larger than kd, which come too
close to the scales where ageostrophy is important in the real ocean. The wavelength
associated to kd = 1/Ld is 2πLd. On meshes with spacing a = Ld this wavelength
is well resolved, but this extra resolution is just needed to accommodate for spectral
exchanges between EPE and EKE. In practice, in ocean circulation models, the
resolution of k−1

d is not always (or not everywhere) achieved. In this case, eddy
dynamics may suffer not only from excessive subgrid dissipation but also from the
mere fact that the interval where EPE has to feed EKE is too short. The spectral
interval where most of the generation (conversion from the available potential energy
to the EPE) takes place tends to be at wavenumbers smaller than kd. Yet, as shown
by Jansen and Held (2014), the generation turns out to be sensitive to dissipation in
the vicinity of kd. We propose that the ability of subgrid closures to least interfere
with energy generation presents a convenient guiding principle in these cases.

An important parameterization for relatively coarse, non-eddy-permitting ocean
simulations was introduced by Gent and McWilliams (1990); it is now known as the
Gent–McWilliams parameterization. Here, we explain the idea in the context of the
two-layer model (28). On scales larger than Ld, the relative vorticity is expected to be
small compared to the stretching term, the last term in (28b), which models pertur-
bations of the layer interface. Correspondingly, the dominant nonlinear contribution
to (28a) is the divergence of the thickness flux

(−1)i k2
d [ψ

eddy
i , 1

2 (ψ
eddy
1 − ψ

eddy
2 )] = (−1)i k2

d [ψ, τ] = (−1)i k2
d ∇ · (τ∇

⊥ψ) . (44)

This term will be very small if mesoscale eddies are not well resolved. The proposal
of Gent and McWilliams (1990) amounts to adding a flux-divergence of the form

Fi = (−1)i k2
d ∇ · (κ ∇τ) (45)

to the right hand sides of the two-layer equations as a parameterization for the
effect of unresolved eddies on the resolved flow. The coefficient κ is sometimes
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taken constant, more frequently, however, selected as a polynomial of the velocity
differenceU = |u1−u2 | based on qualitative theorywhere degree and the coefficients
of the polynomial are chosen empirically. In this case, κ is a measure of vertical
instability in the system; see, e.g., Stone (1972), Cessi (2008), and Held and Larichev
(1996).

By construction, the Fi model only the subgrid layer thickness flux, not the full
potential vorticity flux. They provide a sink for potential energy, thus emulating the
effect of baroclinic instability on the potential energy balance in a model that is too
coarse to resolve this process directly. This technique prevents the buildup of an
unlimited pool of available potential energy, but does not model Reynolds stresses
nor does it feed energy back into the pool of resolved eddy kinetic energy.

Note that while (45) looks like diffusion, it acts on the layer thickness. Whenever
the interface between two layers is inclined, thickness diffusion means that it will be
leveling the interface. This implies that fluid will move in opposite direction in the
layers, showing that the Gent–McWilliams parameterization creates a circulation
that tends to flatten isopycnals. Thus, while thickness diffusion proceeds in two
dimensions, the generated fluid motion is three dimensional, and it is advective. See
Gent (2011) for a detailed discussion.

3.3 Continuously stratified and surface QG dynamics

Even within the quasigeostrophic family of models, the picture presented so far is
not the end of the story. First, when allowing for continuous stratification, there are
many baroclinic vertical modes. Second, there are surface trapped motions that can
be understood in the framework of surface geostrophic dynamics (SQG); see, e.g., a
discussion and further references in von Storch et al. (2019).

For simplicity, we consider the three-dimensional QG equations on a layer of
uniform depth H with rigid lid upper boundary condition at z = 0. The model then
reads

∂tq + [ψ, q] = 0 , (46a)

q = f + ∆hψ + f 2
0 ∂z

∂zψ

N2(z)
(46b)

where ∆h denotes the horizontal Laplacian and brackets, as before, the horizontal
Jacobian, with boundary conditions for the buoyancy b at z = 0,−H:

∂tb + [ψ, b] = 0 , (47a)
b = f0 ∂zψ . (47b)

According to Wunsch (1997), the bulk of ocean kinetic energy is well captured
by the barotropic and first baroclinic modes. For this reason, the major conclusion
regarding the spectral slope −3 of the direct enstrophy cascade remains valid for the
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bulk of the ocean. However, the standard basis for vertical modes, as given by the
eigenvalue problem

f 2
0 ∂z

∂zΨn(z)
N2(z)

+ λ2
n Ψn(z) = 0 (48)

with zero boundary conditions for ∂zΨ at z = 0,−H, does not take into account
surface buoyancy perturbations. Baroclinic instabilities evolving as solutions of (46)
deal with the modes of the full operator that satisfy the boundary conditions (47),
and cannot be understood in the frame of the standard basis. Certain text-book
instabilities, for example the Eady problem (see, e.g., Vallis 2006), rely entirely on
surface-trapped dynamics.

Even though it is possible to reformulate the surface dynamics as δ-sheets of
potential vorticity, such solutions cannot be represented in terms of the vertical
eigenmode basis. Layered models, however, include the surface dynamics in their
upper and lower layer potential vorticity. Therefore, the two-layer model described in
Section 3.2 above cannot separate surface-driven instabilities from interior instability
mechanisms, the simplest model where this can be explored is the three-layer model
studied in Badin (2014).

To separate the surface dynamics from the interior in the continuously stratified
QG model, one considers the case where q = const in an infinitely deep layer, so
that only surface dynamics remains. Then, the horizontal Fourier coefficients of the
stream function ψ representing the surface buoyancy perturbation satisfy

f 2
0 ∂z

∂zψk (z)
N2(z)

− k2 ψk (z) = 0 (49)

with non-homogeneous Neumann conditions at the top and decay towards infinite
depth. When N = const, the ψk decay with depth as exp(kNz/ f0), i.e., they decay
on a vertical scale

H &
f0

kN
. (50)

Correspondingly, in a uniformly stratified layer of depthH, only surface perturbations
larger in size than the first baroclinic Rossby radiusmay reach through the fluid depth.

In the absence of forcing and dissipation, surface dynamics will preserve integrals
of buoyancy variance and the product ψb. The latter leads to an inverse cascade at
large scales with a −1 spectrum of surface kinetic energy and the former leads to a
direct buoyancy variance cascade with a −5/3 spectrum (see, e.g., Smith et al. 2002).
Note that the prediction concerns surface kinetic energy, and is valid for uniform
stratification. Since in this case |∇ψk | = k |ψk | ∼ |bk |, we expect the same spectral
law for kinetic energy

EEKE =
1
4

∑
k

|∇ψk |2 (51)

and available potential energy
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EAPE =
1

4N2

∑
k

|bk |2 . (52)

Small scales do not penetrate deep and spectra become steeper. Furthermore, they
are modified by stratification; examples including exponential stratification and the
case of a mixed upper layer are discussed in Callies and Ferrari (2013).

Instabilities in the real ocean project on both deep-ocean modes and surface
modes, and depend on the structure of PV of the basic ocean state. Surface dynamics
are expected to be an important contributor at locations where the interior PV
gradients are weak. Since shallow surface modes are excited as a result of evolving
instability, the transfer of available potential energy into eddy kinetic energy is not
spectrally local. This implies that the argument in favor of precisely the −1 or −5/3
spectral slope at the surface is rather weak. However, it is appropriate to expect that
spectral laws for near-surface velocities at small scales are shallower than the −3
prediction for the enstrophy range.

3.4 Ocean models and observational evidence

To study ocean turbulence beyond the idealized models mentioned before, we must
turn to numerical studies of the primitive equations, full ocean circulation models,
and observational evidence. In this context, mesoscale or submesoscale structures
which become ageostrophic in high-resolution models are of particular interest.
In the following, we review a few studies which highlight these issues with the
understanding that this selection is far from being complete or representative.

To begin, the recent interest in surface quasigeostrophic (SQG) dynamicswas trig-
gered by the observation that energy spectra of surface geostrophic velocities derived
from altimetric data are noticeably shallower atmany locations than spectra predicted
by the theory of QG turbulence (Lapeyre, 2009). High-resolution simulations also
lend support to the relevance of the SQG concept for understanding the simulated
behavior and observations. However, at scales about the first baroclinic Rossby ra-
dius and smaller, in real situations as well as in high-resolution simulations with full
primitive equations, surface quasi-geostrophic dynamics are accompanied by frontal
and mixed-layer instabilities which deviate from geostrophy. Klein et al. (2008) and
Capet et al. (2008) analyze the near surface dynamics in ocean simulations per-
formed at the resolution of 2 km and down to 0.75 km, respectively, and demonstrate
that there is a close resemblance to SQG dynamics. The spectra of surface kinetic
energy have a slope close to −2 from the spectral maximum to the spectral cutoff at
large k. This is much shallower than the slope predicted by quasigeostrophic theory.
The conceptual difference to SQG is, however, that the Rossby numbers of eddies
at these scales are no longer small and a substantial ageostrophic flow component is
generated, which modifies the turbulent energy fluxes. The presence of frontal and
mixed-layer instabilities implies that the transfer of available potential energy into
kinetic energy continues at rather small scales associated with these instabilities.
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Nevertheless, the near-surface velocities are nearly in geostrophic balance and the
ageostrophic components explain only a small fraction of kinetic energy, only visible
close to the high-wavenumber spectral end. Despite their smallness with respect to
the dominant rotational component (computed via the Helmholtz decomposition),
they are responsible for the downscale cascade of the total eddy kinetic energy. The
cascade of the dominant rotational component of the velocity behaves differently: it
is upscale and of smaller amplitude than the cascade of full velocity. The fact that it
is upscale is perhaps not surprising: as there are transfers from the available potential
energy to kinetic energy, as in QG or SQG turbulence, the flux of rotational kinetic
energy proceeds to larger scales from the scale of forcing.

Callies and Ferrari (2013) discuss existing views and assess two data sets shedding
light on the behavior of ocean submesoscales. They consider scales from about 200 to
1 km. For a site in the Gulf Stream, they found steep (−3) spectra of kinetic energy
for scales between 200 and 20 km, and shallower spectra at smaller scales consistent
with the −2 slope of the internal gravity wave spectrum. For a site in the North
Pacific, they report shallower spectra whose behavior with depth, however, does not
agree with the prediction of SQG. It is proposed that the gravity-wave continuum
and unbalanced motions can contribute to this behavior.

To summarize, the range of submesoscale, where the subgrid scales of eddy-
permitting (and eddy-resolving) ocean circulation models are located, combines
features of QG and SQG turbulence but also includes ageostrophic (unbalanced)
motions, depending onmesh resolution and ocean stratification.Wavenumbers larger
than kd are those of the forward cascade of EKE, but the inverse cascade can be
present for the rotational component of EKE at even smaller scales if small-scale
instabilities continue to transfer the available potential energy to EKE. No true slope
prediction can be made on scales around kd because of intermodal exchanges and
spectrally spread dissipation.

Inertial ranges may emerge on the side of smaller scales on very high resolution
meshes, but even there one should expect a dependence on the depth and a contri-
bution from submesoscale (frontal) instabilities. So even when they emerge, inertial
ranges may deviate from the predictions of QG turbulence because of a forward
energy cascade. The dominance of the rotational velocities in the energy spectra
does not imply their dominance in energy transfers at large wavenumbers. One may
try to draw a certain analogy with the −5/3 spectrum observed in the atmosphere
between 500 and 10 km, which is that of stratified turbulence with forward energy
cascade; see the bibliography, discussion, and analysis of high-resolution simulations
in Augier and Lindborg (2013). On larger scales, it matches the dynamics predicted
by QG theory.

At present, resolutions in ocean circulation models are such that the near-subgrid
scales are in a range where self-similar behavior is unlikely. Subgrid closures can
therefore not be universal in the range of resolutions about the Rossby radius. Hence,
perhaps the guiding principle should be that of minimizing their damping effect
on the rate at which energy is released from the pool of APE and the KE of the
background state to the EKE at the resolved scales.
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4 Energy backscatter

Although most ocean circulation models used for climate research are coarse, the
number of eddy-permitting models is increasing and will dominate in the future.
Such models simulate eddy dynamics, but cannot resolve it fully for they suffer
from overdissipation. Its origin can be explained as follows. In order to remove the
variance of velocity and enstrophy at grid scales for numerical stability, they use
harmonic or biharmonic dissipative subgrid viscosity operators (Fox-Kemper and
Menemenlis, 2008). Together with removing the grid-scale noise, these operators
also dissipate energy at adjacent scales, which are in this case the scales close to
the internal Rossby radius. As we have seen, these scales host exchanges between
the potential and kinetic energy compartments and also determine the eddy energy
release from the available potential energy. Their over-dissipation is the reason why
eddy-permitting flows seldom reach the observed levels of eddy kinetic energy.

The problem of overdissipation and, inmore broad context, of subgrid closure that
takes into account the existence of unresolved scales, has been known in atmospheric
sciences for a long time. First papers on this issue appeared almost simultaneously
with the KLB concept of two-dimensional turbulence, see Leith (1971) and the
discussion in Frederiksen and Davies (1997). It may be explained within the spectral
picture of triad interactions in two-dimensional turbulence as follows: Since we
can only resolve wavenumbers up to some kmax numerically, it is clear that we not
only miss spectrally local interactions responsible for the enstrophy transfer through
the boundary at k = kmax, which lead to a net energy drain and hence behave as
a form of dissipation in the ensemble mean, but also nonlocal triads, having two
legs at k > kmax or on both sides of kmax and one leg at large scales kLS � kmax,
which might force the resolved scales. These interactions are termed backscatter. It
is not represented by the usual dissipative subgrid operators, which is the main cause
of overdissipation in conventional models. A fully deterministic representation of
backscatter is impossible as the details of the state of the subgrid are in principle not
available. Thus, the best we can hope for is some stochastic model of backscatter.

Theoretical developments in this direction assume as a rule QG dynamics, peri-
odic boundary conditions or spherical geometry, ensemble averaging, and “spectral
language” to come up with parameterizations. As an example we mention the work
by Kitsios et al. (2013) who derive both stochastic and deterministic closures by
comparing truncated and high-resolution dynamics in a two-layer QG setup on the
sphere. It is believed that both types can be equally skillful, for, in any case, useful
formulas rely on ensemble averaging and thus do not describe realizations.

Although the turbulent dynamics dictates that drain and backscatter should be
described as stochastic processes, additional issues such as numerical stability have to
be taken into account. For deterministic parameterizations, the resulting expressions
contain powers of the Laplacian, sometimes going beyond the biharmonic one.
Their study shows that even in the context of two-layer QG turbulence which is
statistically homogeneous in the zonal direction, the final parameterizations of drain
and backscatter depend not only on kd and kmax, but also on the extent of the energy
containing range.
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It will be much more difficult to propose parameterizations for domains with
horizontal boundaries where spectral language and zonal homogeneity are missing.
In addition, all backscatter parameterizations raise the the question of numerical
stability due to the effective negative viscosity of the terms providing backscatter.
Finally, in addition to eddy-eddy interactions considered by Kitsios et al. (2013),
contributionsmay come from interactions involving the unresolvedmean field (in the
sense of time averages) component. These examples show that progress is possible,
but we can hardly expect universally valid solutions.

In the following, we review two specific backscatter parameterization in detail.
The first, due to Jansen and Held (2014), is based on a very straightforward scalar
model for the subgrid energy. The second, due to Grooms and Majda (2014), uses a
more sophisticated linear model for the subgrid dynamics.

4.1 Models with scalar subgrid energy budget

Since, as mentioned above, comprehensive first-principle models are necessarily
complex, we think that simplified implementations of energy backscatter proposed
by Jansen and Held (2014) and Jansen et al. (2015), who consider kinetic energy
backscatter for QG and primitive equations respectively, deserve attention. These
parameterizations do not aim at mimicking missing interactions with subgrid scales,
but seek instead to compensate for the overdissipated energy, which is much easier.
Importantly, the amount of energy returned through the proposed backscatter para-
meterization can be controlled, which is a prerequisite for stability of the algorithm.

Jansen and Held (2014) study the two-layer quasigeostrophic equations with the
Leith parameterization as nonlinear small scale dissipation operator. In each layer i,

Duψi = −∆(νi ∆
2ψi) with νi = CL a6 |∆2ψi | , (53)

where a denotes the grid-spacing and CL = 0.005. The associated overall rate of
viscous dissipation at wavenumber k is

Vk =
1
2

∑
i∈{1,2}

k2 (ψi)
∗
k (νi ∆

2ψi)k . (54)

(The layers are assumed to be of equal thickness, hence the additional factor of 1/2
in the expression for Vk and in similar expressions below.) The rate of frictional
dissipation in the bottom layer at wavenumber k is

Fk =
1
2 λ k2 |ψ2 |

2
k . (55)

Summing over wavenumbers, the total rate of ultraviolet and infrared dissipation are

V =
∑
k

Vk and F =
∑
k

Fk (56)
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Since transfers are summed to zero, the overall balance of energy is

∂tE = G − F − V , (57)

where G is the generation term with Fourier representation (37e).
To compensate for the excessive dissipation at small scales, the simplest model is

to add an energy source that returns energy at a rate

S = (1 − ε)V (58)

so that all but a small fraction ε ≈ 0.1 representing the physical rate of ultraviolet
dissipation is returned. Jansen and Held (2014) tested two different models for this
source, one deterministic, the other stochastic. In the deterministic version, each
layer potential vorticity equation is given a source term

si = −A(t)∆2ψi (59)

which corresponds to negative Laplacian viscosity in the momentum equations. The
amplitude A(t) is set by the condition that the constraint (58) be satisfied at every
instance in time. Since the Laplacian is less scale selective than the biharmonic
ultraviolet dissipation, energy will be returned at larger scales than those at which it
is dissipated.

The second implementation is stochastic, with

si = A(t)1/2 η(x, t) , (60)

where the η is Gaussian noise, δ-correlated in space and time. The forcing is kept
barotropic, i.e., the same noise process is used for both layers, to replenish the inverse
cascade of barotropic kinetic energy. In this case, the ensemble mean 〈S〉 will be
proportional to A(t) so that the amplitude can be found at each time step from the
constraint (58). Of course, (58) is satisfied only in the ensemble mean. However,
it is also approximately satisfied for each realization as the stochastic forcing is
distributed over a large number of spatial locations of the computational grid. The
rate of backscatter energy pumping at mode k is given by

Sk =
1
2

∑
i∈{1,2}

(ψi)
∗
k (si)k . (61)

Thus, even when the si have a white noise spectrum, energy backscatter is biased
toward the scales with already high energy content. In practice, this involves scales
larger than those of Vk .

Jansen and Held (2014) conclude that both parameterizations work rather simi-
larly; however, the stochastic implementation returns energy over a broader interval
of wavenumbers. The principal question here, namely how much energy has to be
returned and where it should be returned, is left without answer and presents a topic
for future research. The amplitude of backscatter is selected globally, which is only
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appropriate if flow energy is distributed uniformly. In the general case, one needs a
local criterion.

A small variation of the kinematic backscatter assumption (58) is the introduction
of a dynamic global subgrid energy budget Esg via

ÛEsg = V − S − 2λγ Esg . (62)

The last term represents dissipation of subgrid energy by bottom friction, where
the parameter γ is the fraction of subgrid energy residing in the lower layer and
λ the bottom drag coefficient.11 This form of a global subgrid energy reservoir is
suggested by Jansen and Held (2014) as a motivation to justify assumption (58), but
could also be used computationally by assuming that the amplitude of backscatter
A(t) is proportional to the total subgrid energy in the reservoir.

At the next level of complexity, one may use a local subgrid energy budget. Jansen
et al. (2015) suggest a budget for the subgrid energy density e of the form

∂te = v − s − ∇ · F − d , (63)

where v is the rate of viscous dissipation per unit volume of the resolved scales, s is
the rate of backscatter per unit volume, F is the flux redistributing subgrid energy,
and d is the rate of dissipation of subgrid energy per unit volume. Each of these terms
must be modeled. Jansen et al. (2015) assume biharmonic ultraviolet dissipation

v =
1
H

∑
i

hi νi |∆ui |
2 , (64)

where H is the total depth, hi are the layer depths, and νi are the layer horizontal
biharmonic viscosity coefficients, assumed positive. In this setting, all operators act
in the horizontal only. For the backscatter source, one can take harmonic viscosity
so that

s = −
1
H

∑
i

hi νbs |∇ui |
2 (65)

with negative coefficient of viscosity

νbs = −Cbs a
(
max{2e, 0}

) 1
2 (66)

with Cbs an order-one constant. If the energy to be scattered back becomes too large,
e becomes negative and backscatter viscosity goes to zero. This controls the amount
of energy returned back.

A major point for discussion is the choice of flux F for the subgrid energy. Jansen
et al. (2015) choose the purely diffusive flux

11 In a more realistic setting, one may wish to also model the dissipation of the fraction of subgrid
energy that cascades downscale and turns into fully three-dimensional turbulence. This intention is
implicit in the closure condition (58).
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F = −ksg ∇e , (67)

where ksg is an appropriately selected constant of diffusivity. This choice is guided
by the observation that the transfer from and to the subgrid can be very spatially
rough so that a mechanism is needed to regularize the distribution of e horizontally.
However, the question arises whether subgrid energy should not perhaps be advected
by the resolved flow, or be subject to some other non-local mechanism of transfer.

Finally, the dissipation rate d in (63) is typically small and may be neglected.
It turns out that the backscatter parameterizations by Jansen and Held (2014) and

Jansen et al. (2015) lead to noticeable improvements even in situations where non-
trivial bottom topography is present, and allow themesoscale eddy dynamics in eddy-
permitting simulations to approach those of high-resolution runs. On a qualitative
level, the success of these simple implementations of backscatter rests on the idea
that energy needs to be scattered back only in places where it is strongly dissipated.
Although the vertically averaged or basin averaged subgrid kinetic energy balance
used to assess the backscatter viscosity presents an oversimplification, the energy
scattered back is nevertheless modulated by the distribution of resolved energy. This
also implies that the parameterization may bring improvements only in situations
when an eddy-permitting model already correctly simulates the pattern of kinetic
energy distribution but lacks amplitude. In realistic applications resolving the vertical
structure with many more layers, the vertical distribution of backscatter viscosity
may matter, since surface trapped modes may exhibit more vertical structure, but this
remains to be seen. A theory of where to return the energy scattered back presents
an interesting question for further research too. Clearly, with only the harmonic
operator at one’s disposal, the deterministic backscatter parameterization has limited
capabilities so that stochastic closures may still be needed. Furthermore, a missing
point is the cascade of EPE which is dissipated too by subgrid diffusive closures or
through upwind transport algorithms. Too diffusive transport schemes may result in
the reduced transfer between EPE and EKE, so that the role of subgrid closures in
the tracer equations should be explored. Conversely, Ilıcak et al. (2012) show that
spurious mixing of transport algorithms depends on velocity variance at grid scales,
so that energizing these scales above a certain level is not recommended. This issue
is further explored in Klingbeil et al. (2019). This set of questions shows that even
in the context of energy backscatter, the problem is far from being resolved and new
ideas are required.

To apply these ideas to the full primitive equations, we face further questions.
To our knowledge, this has not been pursued exhaustively, and we can only sketch a
direction; more theoretical analysis and numerical experiments are needed here. To
start, we may localize even further, treating the subgrid energy density e as a full
three-dimensional field, so that the evolution equation (63) now takes the form

∂te = v − s − ∇h · Fh − ∂zFz − d , (68)

where F is the flux redistributing the subgrid energy, taken as Fh = −Kh ∇he and
Fz = −Kz ∂ze, where Kh and Kz are appropriately selected horizontal and vertical
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diffusion coefficients. As before, d is the rate of dissipation of subgrid energy; it is
small and may be neglected. This approach is more expensive, for now the evolution
equation has to be integrated in three spatial dimensions.

The contribution from ultraviolet dissipation now takes the form

v = −νvisc |∆hu |
2 , (69)

where νvisc is the coefficient of horizontal biharmonic viscosity. Vertical viscosity in
the momentum equation would generally be provided by a vertical mixing parame-
terization which relies on some physics and empirical data, e.g. using a KPP closure
(Large et al., 1994) or k-ε closure (Umlauf and Burchard, 2003). The corresponding
backscatter source term reads

s = −νbs |∇u |2 (70)

where νbs is again given by an expression of the form (66).
Onemay consider stochastic implementation options for the backscatter source. A

caveat here is that for the primitive equations, the source must respect the divergence
condition. This could be done by a simple projection. Another possibility is to write
the horizontal source in the form

s = ∇ × (Ψk) , (71)

with Ψ(x, t) = P(x) η(x, t) A(t). Here P is a spatial pattern of eddy kinetic energy
(which may be modeled, inferred from high resolution simulations, or taken from
observations), A(t) the amplitude (selected to ensure subgrid energy balance), and
η is a random field generated, for example, by a Markov process. Because of the
presence of a differential operator, one has to introduce correlations in time and
space to ensure that the resulting forcing is smooth.

Another issue is that, for the primitive equations, the concept of backscatter re-
lates in equal measure to the momentum and to the tracer equations. Compensation
for kinetic energy overdissipation is not necessarily sufficient if tracer variance is
overdissipated. In principle, an approach resembling the one applied to the quasi-
geostrophic potential vorticity equations can be proposed. However, there are some
technical difficulties. First, in many cases dissipation is already built into the imple-
mentation of the transport operators and cannot be easily accessed. Second, even
if it is not, biharmonic operators are not always available for tracers.12 Finally, the
production of tracer variance and the production of kinetic energy are linked, so that
additional theoretical analysis is required.

12 For tracers, one commonly uses rotated operators that mix along isopycnals. Their biharmonic
versions are more expensive and less stable. Furthermore, such operators do not directly dissipate
potential energy.
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4.2 Stochastic superparameterizations

While the backscatter approximation by Jansen and Held (2014) and Jansen et al.
(2015) seeks to return excessively dissipated energy back to the main flow, it needs
an eddy permitting model that is able to simulate a correct pattern of eddy variability.
Their subgrid representation only captures the subgrid energy e and does not attempt
to represent the parameterized action of the Reynolds stress. In models that are not
fully eddy permitting, this approachwill not work and one needs amore sophisticated
model of the subgrid. We will discuss so-called stochastic superparameterizations
as proposed by Grooms and Majda (2013, 2014) and Grooms et al. (2015b) in the
context of quasi-geostrophic two-layer models.

Themain difference between the stochastic parameterization (SP) and the stochas-
tic superparameterization (SSP) is that the latter involves a prognostic fine grid equa-
tion which is motivated by the underlying physical evolution equation and involves
coarse mesh quantities as well as a stochastic source term. We first explain the idea
in the context of the simple single layer model (4), where the essential features of
the method are already visible with less notational effort.

Let us decompose the stream functionψ into a coarsemesh stream functionψc and
a fine mesh stream function ψ ′, and like-wise define the corresponding vorticities,
so that

ψ = ψc + ψ
′ and ζ = ζc + ζ

′ , (72)

where it is understood that ζc = ∆ψc and ζ ′ = ∆ψ ′. We also split the forcing into a
deterministic physical forcing Fc on the coarse mesh and a stochastic forcing F ′ on
the fine mesh. Inserting this ansatz into (4), we obtain

∂t ζc + ∂t ζ
′ + [ψc, ζc] + [ψc, ζ

′] + [ψ ′, ζc] + [ψ
′, ζ ′]

+ β ∂xψc + β ∂xψ
′ = Fc + F ′ + Dζc + Dζ ′ . (73)

We now split this equation into an evolution equation for the coarse variables and
an evolution equation for the fine mesh variables. This procedure is non-rigorous,
so there is some freedom of choice. However, the fine system should be linear with
constant coefficients so that it can be solved explicitly, for otherwise the combined
computational cost would be higher than the cost of simulating the entire system on
the fine grid.

Following Grooms and Majda (2014), we decompose the domain Ω into disjoint
subdomainsΩi . Each subdomain contains exactly one grid point of the coarse mesh,
and the coarse mesh variables are assumed constant on each adjacent subdomain.
The fine systems are then solved independently for one coarse time step with periodic
boundary conditions on each subdomain.

The coarse system should contain all coarse terms and the divergence of the eddy
potential vorticity flux13

13 The overbar operation denotes averaging over one fine grid cell. Note that it is not possible
to simply take the fine grid Jacobian and average over a coarse cell, as this expression would be
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Fepv = ζ ′∇⊥ψ ′ . (74)

All the remaining terms go into the fine mesh system which is solved independently
on each coarse mesh cell. The coarse system then takes the form

∂t ζc + [ψc, ζc] + ∇ · Fepv + β ∂xψc = Fc + Dζc , (75)

and the fine system reads

∂t ζ
′ + [ψc, ζ

′] + [ψ ′, ζc] + β ∂xψ
′ = S + F ′ + Dζ ′ , (76)

where the nonlinear eddy-eddy interactions are represented by

S = ∇ · Fepv − [ψ
′, ζ ′] . (77)

The coarse system is solved on the coarse grid. The fine system is linear except
for the eddy-eddy term which must be modeled. Grooms and Majda (2014) suggest
to replace each Fourier mode Sk by the right hand side of an Ornstein–Uhlenbeck
stochastic process of the form

dζ = −γ ζ dt + σ dW , (78)

where W is a standard Wiener process.14 The Ornstein–Uhlenbeck process is con-
trolled by two parameters, the inverse correlation time γ and the variance σ2/(2γ)
whichwill later be chosen differently for differentwavenumbers. They further assume
that the coarse grid fields can be held constant in each fine cell and that there is no
forcing on the fine scale. Then the full fine scale model in the Fourier representation
reads

dζ ′k = (`k − γk ) ζ
′
k dt + σk dWk , (79)

where `k is the Fourier symbol of all linear terms in (76) and the Wiener processes
Wk are mutually independent.

The crucial observation is that S is quadratic in fine scale quantities, so that a
space average corresponds, by the Plancharel theorem, to an integral over |ψk |2.
Averaging further over the stochastic ensemble, it is clear that it suffices to compute
the evolution of E[|ψk |2]. By the Itô Lemma, it is easy to derive a deterministic linear
ordinary differential equation for this quantity, which can be solved explicitly and
independently for each wave number.

The coefficients γk are tuned so that the equilibrium distribution without the
interaction terms `k match a given power spectrum. Later, when initializing the
second moment equation, the initial value is taken to be the equilibrium value,

identically zero. Instead, one uses the average flux and practically operates on it with the coarse
grid divergence.
14 The stochastic process can also be viewed as accounting for all other approximations which are
implicitly made: the replacement of exact operators by coarse-grid approximations in (75), the use
of periodic boundary conditions for the fine cell dynamics, and the uncertainty in the initialization
and re-initialization of the fine grid dynamics.
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again without interactions. Thus, the effect of the interaction with the coarse grid
quantities, which are encoded in `k , is to color the fine grid statistics consistent with
the coarse grid flow. In particular, when applying this method to stratified models,
`k > 0 at scales where the flow is baroclinically unstable, resulting in growth of the
primed quantities.

At this point, the effective subgrid dynamics as seen from the coarse grid is purely
deterministic. Grooms and Majda (2014) found that it is necessary to take a large
number of modes in the subgrid to match the correct spectral decay. To keep the
computational cost low, and to account for the observation that real ocean eddies
have anisotropies that vary in space and time, they select at random a direction in
each subgrid cell, independent for each point in coarse space-time, and choose a
one-dimensional spectral decomposition in this cell.

Grooms et al. (2015b) perform a detailed computational study of their stochas-
tic superparameterization in a two-layer zonally re-entrant channel mimicking the
Antarctic Circumpolar Current. They compare the model with a deterministic Gent–
McWilliams (GM) parameterization in a regime where mesoscale eddies are not
resolved on the coarse grid and with an eddy resolving high-resolution simulation.
Their setting is similar to the two-layer quasi-geostrophic model discussed in Sec-
tion 3.2, with vorticity equations

∂tq1 + [ψ1, q1] = −
2
ρ0H

∂yF(y) + ν2 ∆
2ψ1 , (80a)

∂tq2 + [ψ2, q2] = −r ∆ψ2 + ν2 ∆
2ψ2 , (80b)

where ν2 is Newtonian viscosity, r the Ekman drag coefficient, and the layer potential
vorticities are given by

q1 = f0 + βy + ∆ψ1 +
1
2 k2

d (ψ2 − ψ1) − k2
e ψ1 , (81a)

q2 = f0 + βy + ∆ψ2 +
1
2 k2

d (ψ1 − ψ2) +
2 f0
H

hb . (81b)

The lateral boundary conditions are periodic in the zonal and stress-free in the
meridional direction. This system is different from the two-layer equation (28) in the
following way: The flow here is driven by a steady sinusoidal wind forcing F(y).15
It includes explicit bottom topography hb to avoid unrealistic spin-up of the mean
current. A stretching term with coefficient ke = 1/Le = f /

√
gH is included in the

upper layer potential vorticity so that the model is formally valid to scales up to the
external Rossby radius of deformation Le. Finally, dissipation is second order as is
common for relatively coarse resolution models; the eddy-resolving simulation as
well as the fine grid dynamics, however, are set up with fourth order dissipation.

In the coarse model, the divergence of the subgrid potential vorticity fluxes is
introduced layerwise as explained in the single layer setting; for details see Grooms

15 The steady wind stress tilts the layer interface through Ekman pumping. When it is sufficiently
tilted, the flow becomes baroclinically unstable. So here, as before, the mean forcing maintains a
pool of mean kinetic and available potential energies.
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and Majda (2014). In order to compare the performance of GM and SPP, the au-
thors analyze the temporal statistics of the surface elevation at each fixed point; in
particular, they compute the bias of the mean and the bias of the variance relative
to the highly resolved reference simulation. While the time mean biases of both
parameterizations are similar in magnitude and spatial pattern (Figure 3), the time
variance of the stochastic superparameterization run is significantly closer to the
reference simulation, even though both models are variance deficient (Figure 4).

While this model achieves a spectrally consistent proxy for the missing potential
vorticity flux, it imposes locality and spatial uniformity of the subgrid model. In
reality, however, as follows from the pattern of eddy kinetic energy in Grooms et al.
(2015b), the eddy kinetic energy is (i) essentially non-uniform and (ii) does not
correlate with the places of maximum instability—indeed, EKE spots are always
downstream of places with maximal baroclinic instability. So the main conceptual
question is how to introduce non-trivial advection of subgrid quantities by the coarse
flow.

Another question is how to make this approach practical. In essence, we need the
dependence of mean subgrid fluxes as a function of velocities and quasigeostrophic
PVgradients. For a two-layer quasigeostrophicmodel, this can still be done.However,
for continuous stratification and for the primitive equations, there is the vertical
dependencewhichwill soon requiremore computational effort than directly applying
an eddy resolvingmesh. Another question is how to avoid over-exciting gravity waves
in a gravity-wave permitting model.

There may be possible simplifications. For example, since the fine grid dynamics
depends only on the magnitude of resolved velocities, PV gradients, and the angle
between the velocities and gradients, one may only consider a finite set of velocity
values and PV gradients, and interpolate the results for the eddy flux divergence
between the simulated patterns computed for this set. Such a look-up table may
considerably reduce computational cost. Further, for primitive equation models, the
subgrid may still be treated in quasi-geostrophic approximation. Thus, it will be pos-
sible to represent PV gradients on the subgrid which is seen essential for providing
a proper proxy for baroclinic instability, and cannot be easily done if the superpa-
rameterization is formulated in terms of primitive variables where information on
PV gradients would be lost when going to the fine grid.

5 Other closures

5.1 The Mana–Zanna parameterization of ocean mesoscale eddies

Mana and Zanna (2014) study the correlation of different functional forms for the
eddy source term with a highly resolved direct numerical simulation, select the
best candidate function, and match the remaining coefficients with the empirical
data. More detailed tests in a double gyre configuration are reported in Zanna et al.
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Fig. 3 Time mean bias of interface elevation in meters of the Gent–McWilliams parameterization
(top) vs. the stochastic superparameterization (bottom). The zonal direction is shown in the hori-
zontal in units of 10 000 km, the meridional direction in the vertical in units of kilometers. Graphs
are adapted from Grooms et al. (2015b).

Fig. 4 Ratio of interface elevation time variance of the reference simulation over time variance
corresponding to the data shown in Fig. 3. The variance deficiency of the Gent–McWilliams
parameterization (top) is significantly larger than the variance deficiency of the stochastic superpa-
rameterization (bottom). Graphs are adapted from Grooms et al. (2015b).

(2017). In these two papers, the authors work in a 3-layer quasigeostrophic setting;
possible extensions to primitive equation models are discussed and tested in Anstey
and Zanna (2017). In the following, we describe the Mana–Zanna parameterization
following the concise derivation later given by Grooms and Zanna (2017). We will
present a slightly more general view which raises interesting possibilities for further
optimization of the closure.

For simplicity, we restrict the discussion to the barotropic single-layer QG equa-
tions without β-effect. Working exclusively in the continuum setting on the plane, we
define a time-independent coarsening operation via convolution with a filter kernel,
i.e.,

ζ(x) =

∫
R2
φδ(x − y) ζ(y) dy (82)

where φδ is a radial kernel with δ referring to the width of the filter. Applying this
operation to the barotropic vorticity equation (4a), we can write

Dt ζ ≡ ∂t ζ + [ψ, ζ] = S + F + D∗ζ , (83)
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where D∗ is some coarsened dissipation operator and S denotes the eddy source term

S = [ψ, ζ] − [ψ, ζ] + Dζ − D∗ζ . (84)

In Mana and Zanna (2014), the authors seek to build a model for S in terms of
the divergence of Rivlin–Ericksen stresses which originated in the description of
non-Newtonian fluids with infinitesimal memory (see, e.g., Truesdell and Rajagopal
1999). These tensors satisfy material frame invariance and observer objectivity,
properties required of a physical material law. For the barotropic vorticity equation,
an exact implementation of an inviscid second grade Rivlin–Ericksen fluid would
correspond to

S = α Dt∆ζ (85)

which leads to the vorticity formulation of the Euler-α model further discussed in
Section 5.2 below. Their study, however, finds that a better correlation is obtained
by using

S = α∆Dt ζ (86)

which differs from (85) by nonlinear commutators, but preserves the property of
frame invariance. They also find that the coefficient α on the right hand side is neg-
ative, which precludes a straightforward interpretation as advection by a smoothed
velocity field.

Grooms and Zanna (2017) provide a posteriori justification of (86) along the
following lines. They argue that, after high pass filtering, S is the dominant term
on the right hand side of (83).16 In particular, the Laplacian of S dominates the
Laplacians of the other two terms so that

∆Dt ζ ≈ ∆S . (87)

They proceed to show that S is highly correlated with ∆S, so that (87) implies (86).
Let us explore such correlations from a more general perspective. We define a

family of abstract approximate Laplacians which includes the usual 5-point discrete
Laplacian in two dimensions. Suppose that {µε}ε>0 is a family of finite positive
Borel measures on Rn with supp µε ⊂ B(x, ε), the ball centered at x with radius ε,
satisfying

µε({x}) = 0 , (88a)

lim
ε→0

∫
B(x,ε)

yi dµε(y) = 0 , (88b)

and

16 This assumption was tested with harmonic dissipation. It would be questionable with higher
order dissipation so that, in general, the contribution from dissipation would need to be carried
explicitly.
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lim
ε→0

∫
B(x,ε)

yi yj dµε(y) = 2 δi j (88c)

for all i, j = 1, . . . , n. In particular, various normalized symmetric measures, includ-
ing point measures and surface Lebesgue measures in lower dimensions satisfy these
conditions. Then

∆S(x) = lim
ε→0
|µε | (Avε(S) − S(x)) , (89)

where |µε | = µε(Rn) and

Avε(S) =
1
|µε |

∫
B(x,ε)

S(y) dµε(y) . (90)

Assume now that S is a homogeneous isotropic δ-correlated Gaussian random field
with variance σ2. Setting

w =

(
S(x)

Avε(S) − S(x)

)
(91)

and fixing ε > 0 at a small finite value, we find that the covariance matrix of w is
given by

Σ = Cov[w, w] = σ2
(

1 −1
−1 (b + 1)

)
, (92)

with b = |µ2
ε |/|µε |

2, where |µ2
ε | =

∑
y∈B(x,ε) µ

2
ε({y}).17

The eigenvalue ratio corresponding to the subdominant principal component of
Σ is given by

r ≡
λ2

λ1 + λ2
=

b −
√

b2 + 4 + 2
2 b + 4

. (93)

It quantifies the fraction of variance not explained by a linear relationship between
the components of w. When µε does not have point measure components, b = 0 and
consequently, the eigenvalue ratio r = 0, indicating perfect correlation between the
components of w. The largest value of b in the class of point measures with equal
weights corresponds to the 4-point Laplacian where µε consists of three unit Dirac
masses at angles 0, 2π/3, and 4π/3. In this case, b = 1/3 and r = (7 −

√
37)/14 ≈

0.066. For the usual 5-point stencil as considered in Grooms and Zanna (2017),
b = 1/4 and r = 9 −

√
65/18 ≈ 0.052.

Thus, even for relatively concentrated measures, a major fraction of the variance
is explained by a linear relationship between S and the approximate Laplacian of
S as defined via the right hand expression in (89) for finite ε. The constant of
proportionality is the ratio of the components of the principal eigenvector of Σ, i.e.

S(x) ≈ 1
2 (b −

√
4 + b2) (Avε(S) − S(x)) . (94)

17 The sum in this definition is countable and convergent as |µε | = µε (B(x, ε)) < ∞. Thus,
|µ2

ε | = 0 if and only if the measure µε has no non-zero point measure components, which is the
case for measures that are absolutely continuous with respect to the Lebesgue measure in the ball
or on the sphere.
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In the concrete case of the 5-point Laplacian, we find

S ≈ −
1
8
(1 −
√

65)
ε2

4
∆S = −(cε)2 ∆S ≈ −(cε)2 ∆Dt ζ (95)

where c ≈ 0.469782, which is close to the empirical value found byMana and Zanna
(2014).18

It is clear from the argument above that the eigenvalue ratio improves when the
measure becomes less localized. On the other hand, the assumption of S being a δ-
correlated randomfieldmust break down on small scales; we expect the decorrelation
length to be at or slightly larger than the grid scale. Thus, it should be possible to
replace the Laplacian in the argument above with a discrete operatorΛwhose stencil
nodes are at least a decorrelation length apart and which is effectively acting as a
high pass filter. The form of Λ can then be optimized for its eigenvalue ratio. In this
context, we remark that the approximation made in (87) does not seem necessary to
proceed, as ΛF and ΛD∗ζ are readily computable. We believe that this question is
worth further investigation.

A different line of reasoning might be based on a random field model for S with
finite spatial correlations. Assuming a given spectrum for S, the characterization
of the two-point correlation function via the Wiener–Khintchin Theorem (see, e.g.,
Yaglom 1987) could still allow us to compute the covariance matrix Σ explicitly and
subsequently optimize the filter Λ. Finally, a detailed analysis of the structure of S is
warranted. Grooms et al. (2015a) provide an argument that the spectrum of S grows
like k5, which can likely only be true on a limited range of scales as a perfectly
δ-correlated random field should have a flat spectrum. Thus, in particular the details
of spatial correlation near the grid scale require attention.

5.2 α-models

The so-called α-models initially came up in the study of nonlinear waves, not in
turbulence. What is now known as the Camassa–Holm equation was first discovered
by Fuchssteiner and Fokas (1981) who sought completely integrable generalizations
of the Korteweg–de Vries (KdV) equation with a bi-Hamiltonian structure. It was
independently re-derived by Camassa and Holm (1993)—for a more detailed expo-
sition see Camassa et al. (1994)—as a next order correction to the KdV equation
in small amplitude expansion of unidirectional surface waves in irrotational shallow
water. Camassa and Holm’s work attracted a lot of attention as, in addition to integra-
bility and bi-Hamiltonian structure, they found a family of peaked soliton solutions.
Solutions of the Camassa–Holm equation can be seen as geodesics on the diffeomor-
phism group with respect to a right-invariant H1-metric (Kouranbaeva, 1999). The

18 The slight discrepancy in the value of c as compared with Grooms and Zanna (2017) is due to the
different normalizations of the vector w. Ideally, the components of w should have unit variance,
but both our choices are close enough to being normalized for the point being made.
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striking parallel to Arnold’s (1966) view of ideal three-dimensional hydrodynamics
as geodesic flow on the volume preserving diffeomorphism group endowed with an
L2-metric was pointed out by Holm et al. (1998) who, replacing the L2 with an
H1-metric, obtained a hydrodynamic analog to the Camassa–Holm equations which
is now known as the Euler-α equations or the Lagrangian averaged Euler equations.
In velocity-momentum variables, they read

∂t v − u × (∇ × v) + ∇p = 0 , (96a)

v = (1 − α2
∆)u , (96b)

∇ · u = 0 . (96c)

The Euler-α equations arise from the “kinetic energy” Lagrangian

Lα = 1
2

∫
|u |2 + α2 |∇u |2 dx , (97)

which is a constant of the motion.
The connection to turbulence was made soon after its discovery, based on a

number of observations. The momentum v is transported by a velocity field u which
is smoother than the momentum; see (96b). This was seen as analogous to Reynolds
averaging, even though the two operations are not equivalent; further, the non-viscous
terms take the form of a Rivlin–Erikson tensor, so that, in their inviscid form, they
coincide with the equations of motion for a non-Newtonian fluid of second grade
(Foias et al., 2001). Analytically, the Euler-α equations possess properties which
are notably lacking in ideal and Newtonian fluids: in two dimensions, the Euler-α
model has unique global point vortex solutions (Oliver and Shkoller, 2001) and in
three dimensions, the viscous α-equations have global classical solutions (Marsden
and Shkoller, 2001; Foias et al., 2002). We note that it is not a priori clear how to
add viscosity to (96): The references quoted so far argue that momentum should be
diffused; see Chen et al. (1999a) for a discussion of this issue. The classical equations
of a viscous second grade fluid, in contrast, diffuse velocity—a mathematically
weaker form of dissipation so that, correspondingly, the global existence of solution
is only known for small initial data (Cioranescu and Girault, 1997), much like the
situation for the Navier–Stokes equations in three dimensions.

Several authors have given derivations of the Euler-α equations as the equations
of motion for some notion of a Lagrangianmean flow. Holm (1999, 2002) recognized
a close connection between Lagrangian averaging and the generalized Lagrangian
mean (GLM) of Andrews and McIntyre (1978). To provide closure, Holm assumes
that first order fluctuations in a small-amplitude expansion are parallel-transported
by the mean flow—an assumption he refers to as a Taylor hypothesis in analogy with
G.I. Taylor’s observation that turbulent fluctuations are correlated in the downstream
direction of a flow (Taylor, 1938). Marsden and Shkoller (2003), in contrast, assume
that first order fluctuations are transported as a vector field, and that parallel transport
of second order fluctuations is, on average, orthogonal to the velocity field. Recently,
Gilbert andVanneste (2018) have pointed out that a geometric view of the Lagrangian
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mean fixes the higher order closure conditions. In this framework, the Euler-α
equations emerge from Lagrangian averaging under the minimal set of assumptions
that (i) the averaged map is the minimizer of geodesic distance, (ii) first order
fluctuations are statistically isotropic, and (iii) first order fluctuations are transported
by the mean flow as a vector field (Oliver, 2017; Badin et al., 2018).

The numerical evidence supporting the use of α-models is mixed. Early nu-
merical studies for homogeneous turbulence were encouraging (Chen et al., 1999b;
Mohseni et al., 2003). The underlying idea has also been ported to rotating geo-
physical fluid flow (Holm and Nadiga, 2003) and used in various test cases (Hecht
et al., 2008a; Aizinger et al., 2015). Careful comparative studies for two-dimensional
quasi-geostrophic turbulence, however, show that the α-model perturbs the dynam-
ics of two-dimensional turbulence and, in particular, suffers from accumulation of
enstrophy at small scales (Lunasin et al., 2007; Graham and Ringler, 2013) and
has inferior correlation with an empirically observed subgrid stress tensor (Mana
and Zanna, 2014), where the computationally observed behavior is close to (95), a
relationship that is similar, but not identical to the α-model closure. In addition, as
the inversion of the Helmholtz filter in (96b) is nonlocal, it is not appealing for use
in a full ocean model. We note, however, that the idea of filtering in a geometrically
intrinsic setting is more general than what is usually pursued and may have some
merit even in the setting of the nearly geostrophic turbulence in mesoscale ocean
dynamics.

In the final part of the section, we shall sketch a possible non-standard inter-
pretation of the α-model dynamics as a model for two-dimensional turbulence. For
simplicity, we return to the barotropic vorticity equation of Section 3.1 with β = 0
and initially ignore forcing and dissipation. In this setting, the model coincides with
the well-studied two-dimensional Euler-α equation whose vorticity dynamics reads

∂tξ + [ψ, ξ] = 0 , (98a)
ξ = Lα∆ψ , (98b)

where (96b) corresponds to the choice Lα = 1 − α∆, but Lα could also be a more
general operator defined via a Fourier symbol `α(k). The α-energy at wavenumber
k is Ek = − 1

2 ψ
∗
k
ξ
k
and the α-enstrophy is given byZk = k2 `α(k) Ek ; system (98)

conserves total α-energy and α-enstrophy.
Now suppose that α-wavenumber k corresponds to a different physical wavenum-

ber κ(k) and that there is a corresponding physical energy

E(κ) = E(k)/h(k) . (99)

A straightforward computation shows that total physical energy and enstrophy are
conserved if and only if

κ2(k) = `α(k) k2 (100a)

and
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h(k) = 1
2 k `′α(k) + `α(k) . (100b)

Looking at the detailed triad interactions of the α-model, we find transfer rate
relations similar to (15) where the rate of nonlinear energy transfer is with respect
to α-wavenumbers whereas the prefactors on the right hand side are satisfied with
respect to physical wavenumbers. Thus, in general, it is not even approximately
true that the α-triad picture corresponds to the physical triad picture under the
wavenumber mapping implied by energy and enstrophy conservation. However,
there is one class of triads for which this is approximately the case: when one leg of
the triad is in the lowwavenumbers and two legs are in the highwavenumber range; to
be definite, we take p � k < q and set δ = p/k � 1. Wemight call such interactions
catalytic triads as (15) show that there is an O(1) energy exchange between modes
k and q while mode p exchanges energy only at a rate O(δ). In other words, mode
p takes the role of a catalyst, mediating the transfer of energy in the high wave
number regime while not participating in it to leading order. Provided the turbulent
regime is dominated by catalytic triads (which is not the classical KLB picture,
but it is likely that these triads are key players in the inverse cascade) then, under
mild assumptions on `α, an α-model can be interpreted as representing the physical
interactions under the mappings (100) up to relative errors in rates and mapped wave
numbers of O(δ). The details of this computation involve only elementary estimates
and shall be omitted here.

Thus, to interpret the α-dynamics consistently via the remapping of wave num-
bers, the same map must be applied when adding forcing and dissipation terms.
Dissipation in the α-model momentum equation, in particular, should take the form
D(κ(k)). This corresponds to momentum rather than velocity diffusion and thus co-
incides with the dissipation operator typically used in connection with α-models as
reviewed earlier in this section.

Finally, to consistently interpret the energy spectrum, it must be mapped back
to physical wave numbers. In the comparison of Graham and Ringler (2013), for
example, no such map is applied. This constitutes an interesting open question as,
to our knowledge, such analysis has never been done. A related open problem is to
formulate the α-model subgrid closure mapped to physical wave numbers.

6 Concluding remarks

In this chapter, we have reviewed the foundations of geostrophic turbulence and its
implications for ocean models in the eddy permitting regime. In the past decade,
a number of authors have looked at the problem of effective parameterizations for
subgrid eddy activity and for the resulting backscatter of energy into the resolved
grid. Most of the detailed testing so far has been done in the context of quasi-
geostrophic layer models, with increased attention to full primitive equation setups
in recent years.
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Our selection of parameterizations for close discussion is necessarily incomplete,
highlighting recent developments in favor of older ideas, putting an emphasis on
mathematical structure toward systematic, or even rigorous, analysis, and with a
view toward applicability for a new generation of global circulation models featuring
irregular grids with spatially varying grid resolution which rules out approaches that
require explicit Fourier transforms or other constructs tied to a regular grid.

To a large extent, the ideas expressed here are exploratory. None of the param-
eterizations described here is widely used in operational models so that a major
development cycle of introducing more energy consistent parameterizations lies
ahead. It is also not clear which of these approaches will be the most fruitful in the
long run, or whether some new or possibly old ideas will prevail.

Such old ideas could include the anticipated vorticity method of Sadourny and
Basdevant (1985) which seeks to introduce a force −Dk × u such that, for example
when D is chosen as an upwind estimate of the layer potential vorticity, the scheme
conserves energy exactly while dissipating enstrophy. In practice, this approach is
insufficient as it does not remove the component of small-scale numerical noise in u
that does not project on curl as required for numerical stability. Graham and Ringler
(2013) report that first-order anticipated vorticity either results in an excess of energy
at all scales or dissipation of enstrophy across a too large portion of the spectrum;
they suggest that applying a high-order spatial operator within the anticipated PV
formalismmay solve this issue, but at the expense of easy implementability in current
GCMs. Yet, the underlying idea is interesting as the mathematically most direct way
to reconcile energy conservation with enstrophy dissipation.

The classical development of Smagorinsky closures has been central in the mod-
eling and simulation of turbulent flow regimes; see, e.g., the review byMeneveau and
Katz (2000). However, it is not directly applicable to typical ocean regimes where,
due to the scales at which forcing, instabilities, and dissipation acts, one is often not
in a self-similar scaling regime which is a prerequisite of LES and Smagorinsky-type
closures. Dynamical Smagorinsky closures (when the subgrid viscosity is computed
by applying an additional coarsening filter and fitting the difference between this and
the original filter to the simulated stresses) could be of interest, although even with
these techniques the lack of self-similarity may be an issue.

Stochastic modeling of subgrid interactions and backscatter has been developed,
based on the direct interaction approximation of Kraichnan (1959), by Frederiksen
and co-workers (Frederiksen and Davies, 1997; O’Kane and Frederiksen, 2008;
Kitsios et al., 2013, 2014, 2016). While their work involves a detailed analysis
of unresolved eddy-eddy interactions, it also heavily relies on spectral language,
so that it is not clear how applicable this approach is in the context of complex
geometries and possibly nonuniform grids and what the tradeoffs in terms of skill
vs. computational expense are. We also remark that there is similarity between the
expression for the subgrid drain dissipation matrix in Kitsios et al. (2013) and the
estimation of a dynamic Smagorinsky coefficient in the spirit of Germano et al.
(1991).

For systems with an explicit fast-slow scale separation, it may be possible to
model the fast time scale component with a stochastic process and use stochastic
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mode reduction to reduce the system to a stochastic equation on the slow time
scale. Such methods are reviewed in Section 5 of Franzke et al. (2019). However,
it is completely open whether this approach is applicable to subscale modeling in
geostrophic turbulence where there is no clear scale separation, and whether these
techniques scale up to full ocean models.
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