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Abstract. We introduce a family of high-order time semi-discretizations for
semilinear wave equations of Klein–Gordon type with arbitrary smooth nonlin-

earities that are uniformly accurate in the non-relativistic limit where the speed

of light goes to infinity. Our schemes do not require pre-computations that are
specific to the nonlinearity and have no restrictions in step size. Instead, they

rely upon a general oscillatory quadrature rule developed in a previous paper

(Mohamad and Oliver, SIAM J. Num. Anal. 59, 2021, 2310–2319).

1. Introduction

Let X be a Hilbert space with inner product ⟨ · , · ⟩ and associated norm ∥ ·∥.
We study a semilinear wave equation on X,

c−2 ∂ttϕ+ Lϕ+ c2 ϕ = f(ϕ, t) , (1a)

ϕ(0) = ϕ0 , (1b)

∂tϕ(0) = ϕ′0 , (1c)

where ϕ : [0, T ] → X, L is a closed, densely defined, self-adjoint, non-negative op-
erator on X with domain D(L), c is a positive constant, and f : D(L)× [0, T ] → X
a smooth function. Such equations arise, for example, in acoustics, electromagnet-
ics, quantum mechanics, and geophysical fluid dynamics, both in the “relativistic”
(c = 1) and “nonrelativistic” (c ≫ 1) regimes. The motivation for studying (1) as
written is that it covers two well-studied special cases:

(i) X = Hr(Td), L = ∆, and f(ϕ, t) = |ϕ|2 ϕ, which corresponds to the
standard semilinear Klein–Gordon equation.

(ii) X = R2d, L = 0, and f(ϕ, t) = −2 e−c2tJ ∇V (ec
2tJϕ), where J is the

canonical symplectic matrix in 2d dimensions and V is a smooth potential.

Changing variables via q = ec
2tJϕ, we can write the system in the standard

form

q̇ = p , (2a)

1

2c2
ṗ = Jp−∇V (q) . (2b)

This system has been used as a finite-dimensional toy model for rotating
fluid flow, where the limit c→ ∞ corresponds to a rapidly rotating earth.
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Analytically, the non-relativistic limit regime is well-studied for these two examples.
We refer the reader to [11, 18] for the case of the Klein–Gordon equation and to
[10, 14, 15] for the case of system (2). Numerically, equation (1) is extensively
studied in the relativistic regime [12, 21]. However, due to the high oscillatory
character of the solutions when c is large, most numerical methods suffer from
severe time step restriction in the non-relativistic regime.

Several authors have considered the problem of finding “asymptotics-preserving
numerical schemes”, i.e., schemes that perform uniformly in this singular limit.
Some of these schemes [11] are based on a modulated Fourier expansion of the
exact solution [9, 16] where the highly oscillatory problem in (2) is reduced to
a non-oscillatory limit Schrödinger equation for which no time step restriction is
needed. Other schemes are based on multiscale expansions of the exact solution
[3, 6]. Chartier et al. [7] recently introduced a new method which employs an aver-
aging transformation to soften the stiffness of the problem, hence allowing standard
schemes to retain their order of convergence. Baumstark et al. [4] construct first
and second order uniformly accurate integrators for the Klein–Gordon equation
with cubic nonlinearity by integrating the trigonometric products arising from a
suitable mild formulation explicitly.

In this paper, we develop a family of high-order asymptotics-preserving schemes
for (1) that do not require pre-computations tied to the specific nonlinearity f
and have no restrictions in time step size. The construction of the new schemes is
explained in Section 4. We outline here their main ingredients, where the first two
follow the prior work [4]:

(i) Reformulate (1) as a coupled first order system using a linear transforma-
tion.

(ii) Factor out the rapidly rotating phase to make it explicit.
(iii) Iterate the resulting mild formulation up to the desired order for the coupled

first order system in the new variables.
(iv) Use the quadrature rule developed in [19] to handle the high oscillatory

integral in the resulting mild formulation and complete the construction of
the scheme.

The remainder of the paper is structured as follows. In Section 2, we state some
properties of the operator L within the framework of its functional calculus. In
Section 3, we introduce quadrature rules for the approximation of highly oscillatory
Banach-space-valued functions in specific settings that will fit the construction of
our schemes. Section 4 is devoted to the detailed construction of the schemes. Our
main result on the order of convergence of the schemes is stated and proved in
Section 5. In Section 6, we demonstrate that the new schemes are accurate to their
expected order and that their error behavior is indeed uniform in c.

2. Preliminaries

We define the operators Bc = c−1
√
L+ c2 and Ac = c2Bc−c2. These operators

are well-defined via the spectral theorem for densely defined normal operators (e.g.
[20]). Indeed, for any densely defined normal operator P : D(P ) ⊆ X → X, there
exists a unique spectral measure EP on the Borel σ-algebra B(C) into the orthogonal
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projections on X such that

P =

∫
C
λ dEP (λ) =

∫
σ(P )

λ dEP (λ) . (3)

This integral representation of P allows us to define the assignments P 7→ f(P ) for
any E-a.e. finite measurable function f by the formula

f(P ) =

∫
σ(P )

f(λ) dEP (λ) (4)

with domain

D(f(P )) =

{
x ∈ X :

∫
σ(P )

|f(λ)|2 d⟨EP (λ)x, x⟩ <∞
}
. (5)

Definition 1. Let A, B be two densely defined normal operators. If D(AB) ⊆
D(BA) and AB = BA on D(AB), we write AB ⊆ BA and say that “A commutes
with B.”

We fix in what follows an operator J ∈ L(X) such that

JL ⊆ LJ , J∗ = −J , and J2 = −I . (6)

We now collect important elementary properties of the operators J , Ac, and Bc.

Lemma 2. The operators J , Ac, and Bc satisfy the following properties.

(i) D(L) ⊆ D(Ac) = D(Bc) = D(JAc) = D(JBc),
(ii) ∥Acu∥D(Lj) ≤ 1

2 ∥u∥D(Lj+1) for any j ∈ N,
(iii) J and etJ commute with f(L) for any measurable function f : R → R and

t ∈ R; in particular, J and etJ commute with Ac, Bc, and B
−1
c ,

(iv) etJAc commutes with J and f(L) for any measurable function f : R → R
and t ∈ R,

(v) ∥etJAc∥ ≤ 1, and
(vi) ∥(etJAc − I)u∥ ≤ 1

2 |t| ∥u∥D(L).

Proof. The inclusion in (i) follows directly from∫
σ(L)

|λ+ c2|d⟨EL(λ)u, u⟩ ≤ (c2 + 1
2 ) ∥u∥

2 + 1
2

∫
σ(L)

|λ|2 d⟨EL(λ)u, u⟩ ; (7)

the remaining identities are obvious. To prove (ii), we note that, for λ ≥ 0

c
√
λ+ c2 − c2 ≤ λ

2
, (8)

and

∥Acu∥2D(Lj) =

∫
σ(L)

∣∣∣c√λ+ c2 − c2
∣∣∣2 (1 + |λ|2)j d⟨EL(λ)u, u⟩ . (9)

For (iii), we recall that J is bounded and commutes with L. Thus, by [20, Propo-
sition 5.15], J EL(K) = EL(K) J for all K ∈ B(C). Consequently, etJ EL(K) =
EL(K) etJ for all K ∈ B(C) and t ∈ R. Then the claim is a direct consequence of
[20, Proposition 4.23]. For (iv), note that

etJAc =

∫
C2

ectλ(
√

µ2+c2−c) dEJ(λ) dEL(µ) (10)

where the integral is with respect to the product measure EJ ⊗ EL(K1 × K2) =
EJ(K1)EL(K2) for all K1,K2 ∈ B(C). Hence, EJ and EL commute with EJ ⊗EL
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in the sense that EJ ⊗ EL(K1 × K2)E(K3) = E(K3)EJ ⊗ EL(K1 × K2) for all
K1,K2,K3 ∈ B(C). Once again, the claim follows from [20, Proposition 4.23].
Estimate (v) is a direct consequence of the skew-symmetry of J . Finally, to prove
estimate (vi), let u ∈ D(L). Since the spectrum of J is purely imaginary and
|eix − 1|2 ≤ x2 for x ∈ R, we estimate

∥(etJAc − I)u∥2 =

∫
σ(J)×σ(L)

|etcλ
(√

µ2+c2−c
)
− 1|2 ⟨dEJ(λ) dEL(µ)u, u⟩

≤ t2
∫
σ(J)×σ(L)

|cλ
(√

µ2 + c2 − c
)
|2 ⟨dEJ(λ) dEL(µ)u, u⟩

≤ t2 ∥JAcu∥2 . (11)

The claim then follows by estimate (ii). □

Remark 1. Lemma 2(iii) and (iv) imply that if P and Q are two operators such
that P is bounded and PQ ⊆ QP , then D(PQ) = D(Q) and P (D(Q)) ⊆ D(Q). In
other words, the domain of Q is invariant under any bounded operator commuting
with Q. In this paper, the analysis of the numerical schemes assumes solutions of
(1) in D(L) which is, in view of this remark, invariant under any bounded operator
commuting with L, in particular J , etJ , and etJAc .

3. Quadrature for Banach-space-valued functions

In this section, let (X, ∥ · ∥) be a complex Banach space and Ω ⊂ C be open. A
function F : Ω → X is analytic if it is differentiable, i.e., provided for every z0 ∈ Ω
there exists F ′(z0) ∈ X such that

F ′(z0) = lim
z→z0

F (z)− F (z0)

z − z0
. (12)

The following simple lemma shows that estimates on the quadrature error for dif-
ferentiable complex-valued functions directly imply a corresponding estimate for
X-valued functions.

Lemma 3. Let I be an open interval on the real line and µ a measure on I, possibly
discrete. Suppose a quadrature rule with nodes xk ∈ I and weights ωk, k = 1, . . . , n
satisfies the error estimate∣∣∣∣∫

I

f(x) dµ(x)−
n∑

k=1

ωk f(xk)

∣∣∣∣ ≤ C(n, I) sup
x∈I

|f (p)(x)| , (13)

for some p ∈ N and every f ∈ Cp(I,C). Then the quadrature rule satisfies the
error estimate∥∥∥∥∫

I

F (x) dµ(x)−
n∑

k=1

ωk F (xk)

∥∥∥∥ ≤ C(n, I) sup
x∈I

∥F (p)(x)∥ , (14)

where the integral is understood in the Bochner-sense, for every F ∈ Cp(I,X).

Proof. Fix ψ ∈ X∗. Let

en =

∫
I

F (x) dµ(x)−
n∑

k=1

ωk F (xk) . (15)
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Due to the properties of the Bochner integral,

ψ(en) =

∫ b

a

ψ ◦ F (x) dµ−
n∑

k=1

ωk ψ ◦ F (xk) , (16)

so that, applying (13) to f = ψ ◦ F , we obtain

|ψ(en)| ≤ C(n, I) sup
x∈I

∣∣ dp

dxp [ψ ◦ F ](x)
∣∣

≤ C(n, I) ∥ψ∥∗ sup
x∈I

∥F (p)(x)∥ . (17)

By the Hahn–Banach theorem, we can choose ψ ∈ X∗ with ∥ψ∥∗ ≤ 1 such that
ψ(en) = ∥en∥. This implies (14). □

With the help of this lemma, we lift three known estimates for the quadrature er-
ror of complex-valued functions to the Banach space setting. The first concerns the
trapezoidal rule approximation for the integral of a 1-periodic function F , namely
the uniformly weighted Riemann sum

Tn(F ) =
1

n

n−1∑
k=0

F
(k
n

)
. (18)

For given a > 0, let

Ωa = {z ∈ C : − a < Im z < a} . (19)

Then the following estimate, proved for X = C in [22], holds true.

Theorem 4. Let F be an X-valued function, 1-periodic on the real line, analytic
with ∥F (z)∥ ≤ A on the strip Ωa for some a > 0. Then for any n ∈ N,∥∥∥∥∫ 1

0

F (x) dx− Tn(F )

∥∥∥∥ ≤ 2A

ean − 1
. (20)

The constant 2 is as small as possible.

The second concerns the Gauss formula for the integral of a function f defined
on the interval [−1, 1],

Gm(f) =

m∑
k=1

ωk f(ξk) , (21)

where the ξk are the zeros of the Legendre polynomial pm of degree m and the
weights are given by

ωk =
2

(1− ξ2k) [p
′
m(ξk)]2

. (22)

For given b > a and ρ > 1
2 (b− a), let Eρ(a, b) denote the ellipse with foci a, b such

that the lengths of its minor and major semiaxes sum up to ρ. Namely,

Eρ(a, b) =
{
z ∈ C : z = 1

2 (ρ e
iθ + 1

4 (b− a)2 ρ−1 e−iθ)+ 1
2 (a+ b), 0 ≤ θ < 2π

}
, (23)

and Σρ(a, b) the open region in C bounded by Eρ(a, b).
The formula (21) can easily be written out for functions defined on an arbitrary

interval [a, b] using the affine change of variables

ℓ : Σ 2ρ
b−a

(−1, 1) → Σρ(a, b) , ℓ(x) =
b− a

2
(x+ 1) + a . (24)
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Theorem 5. Fix k ∈ N, ε0 > 0, and ρ > 1
2 (b − a). Set α = ε0 min{0, a, b} and

β = ε0 max{0, a, b}. Let F : [α, β] × Σρ(a, b) → X be such that ζ 7→ F (ζ, z) is k-
times differentiable for any z ∈ Σρ(a, b) and that z 7→ ∂i1F (ζ, z), where ∂1 denotes
the partial derivative with respect to the first argument, is analytic on Σρ(a, b) for
i = 0, . . . , k − 1 and any ζ ∈ [α, β] with

max
i

sup
[α,β]×Σρ(a,b)

∥∂i1F∥ ≤ Aan , (25a)

sup
[α,β]×[a,b]

∥∂k1F∥ ≤ Adif . (25b)

We abbreviate f(x) = F (εx, x). Then, for any m ∈ N and ε ∈ (0, ε0],∥∥∥∥∫ b

a

f(x) dx−Gm(f)

∥∥∥∥ ≤ 16Aan e
ερ ρ2

(2ρ− b+ a)

(
b− a

2ρ

)2m+1

+
2Adif (b− a)k+1 εk

k!
, (26)

where

Gm(f) =
b− a

2

m∑
i=1

ωi f(ηi) (27)

with nodes ηi = ℓ(ξi).

Proof. Writing the Taylor series with respect to the first variable of F , we find that
for every x ∈ [a, b] there exists ξ = ξ(ε, x) ∈ [a, b] such that

f(x) =

k−1∑
i=0

(x− a)i εi

i!
∂i1F (εa, x) +

(x− a)k εk

k!
∂k1F (εξ, x) . (28)

Thus, the following estimate, proved for X = C in [8], holds true for the quadrature
formula (21) applied on each fi(z) = (z − a)i ∂i1F (εa, z), i = 0, . . . , k − 1, which is
analytic and bounded on Σρ(a, b):∥∥∥∥∫ b

a

fi(x) dx−Gm(fi)

∥∥∥∥
≤ 16 ρ2

(2ρ− b+ a)

(
b− a

2ρ

)2m+1

sup
z∈Σρ(a,b)

∥(z − a)i ∂i1F (εa, z)∥ . (29)

This yields the first term on the right of (26). The Lagrange remainder in (28) is
estimated independently for the continuum integral over the interval [a, b] and for
the discrete integral Gm, in both cases yielding the same contribution to the second
term on the right of (26). □

The third concerns the Gauss formula for the discrete sum
∑N−1

j=0 F (xj) on
equidistant nodes

xj = −1 +
2j

N − 1
, 0 ≤ j ≤ N − 1 (30)

with

2

N

N−1∑
j=0

F (xj) ≈ Sn(F ) ≡
n∑

k=1

wk,N F (sk,N ), (31)

where the quadrature nodes sk,N are the zeros of the so-called Gram polynomial
pn,N of degree n. Such polynomials are defined by their orthonormality with respect
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to the discrete equidistant sum, namely

N−1∑
j=0

pn,N (xj) pk,N (xj) = δnk . (32)

The weights wk,N are given by

wk,N =
an,N
an−1,N

2

N p′n,N (sk,N ) pn−1,N (sk,N )
, (33)

where an,N denotes the leading coefficient of pn,N . For a detailed derivation and
discussion, see [1, 2, 19].

Theorem 6. Fix n ∈ N such that n < N and let F : [a, b] → X be a 2n-times
differentiable function with ∥F (2n)∥ ≤ A on [a, b]. Then∥∥∥∥ b− a

N − 1

N−1∑
j=0

F (yj)−
N (b− a)

2(N − 1)
Sn(F )

∥∥∥∥ ≤ 16A (b− a)2n+1 n!4

(2n+ 1) (2n)!3
. (34)

Formula Sn(f) is defined with nodes rk,N = ℓ(sk,N ) and the equidistant summation
points are given by yj = ℓ(xj), where ℓ is the affine change of variable (24).

Proof. Assume first that a = −1 and b = 1; the general case then follows via the
affine change of variable ℓ. Assume further that X = R. The general case where X
is a complex Banach space follows by applying Lemma 3.

Thus, let H be the unique polynomial of degree 2n − 1 satisfying the Hermite
interpolation problem

F (sk,N ) = H(sk,N ) , F ′(sk,N ) = H ′(sk,N ) , k = 1, . . . , n . (35)

By Rolle’s theorem, for any x ∈ [−1, 1] there exists s(x) ∈ [−1, 1] such that

F (x)−H(x) =
F (2n)(s)

(2n)!
q2n,N (x) , (36)

where qn,N is the polynomial

qn,N (x) =

n∏
k=1

(x− xk,N ) . (37)

Since (31) is exact for all polynomials of degree less than 2n− 1,

2

N

N−1∑
j=0

F (xj) = Sn(H) = Sn(F ) . (38)

Thus, using (36), we estimate∥∥∥∥ 2

N − 1

N−1∑
j=0

F (xj)−
N

N − 1
Sn(F )

∥∥∥∥ =
2

N

N−1∑
j=0

∥F (xj)−H(xj)∥

≤ 2A

(N − 1) (2n)!

N−1∑
j=0

q2n,N (xj) . (39)

Note that deg(qn,N ) = n and qn,N has the same zeros as the Gram polynomial
pn,N . Hence,

pn,N = an,N qn,N , (40)
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where the constant an,N is given by [19]

an,N =

√
(2N + 1) (N − n− 1)!

(N + n)!

(2n)! (N − 1)n

2n n!2
. (41)

Since pn,N is normalized,

N−1∑
j=0

q2n,N (xj) =
1

a2n,N
=

(N + n)!

(2n+ 1) (N − n− 1)! (N − 1)2n
2n n!4

(2n)!2
. (42)

For N > n ≥ 1, we have

(N + n)!

(N − n− 1)! (N − 1)2n+1
=

(N + n) (N + n− 1) · · · (N − n)

(N − 1) (N − 1) · · · (N − 1)

≤
(
1 +

1

n

)2n+1

≤ 8 ,

which completes the proof. □

In the next section, we will need to approximate a double integral of a function
of two variables where one of the integrals is continuous, the other discrete, namely

N−1∑
j=0

∫ 1

0

F (jT, xT, x) dx (43)

where T ≈ 1/N ≪ 1. In principle, this is a tensor product construction using
Theorem 6 to approximate the discrete sum and Theorem 5 for the continuous
integral, except that we need to be careful about uniformity with respect to the
small parameter T . To simplify notation later in Section 4, we shall write

F (s, Tx, x) ≡ G(s, x;T ) (44)

and sometimes drop the parametric dependence of G on T for convenience. In the
following, we fix 0 < T0 < τ0 < 1, 0 < γ < 1, and integer n ≥ 1. Then the
assumptions necessary to invoke Theorem 6 resp. Theorem 5 read as follows.

Assumption 1. There exists a constant A such that for every (x, T ) ∈ [0, 1]× [0, T0],
s 7→ G(s, x;T ) is 2n-times differentiable with

sup
[0,τ0]×[0,1]×[0,T0]

∥∂2n1 G∥ ≤ A . (45)

Assumption 2. Suppose that

(i) for every s ∈ [0, τ0] and every z ∈ Σ1/(2γ)(0, 1), the map ζ 7→ F (s, ζ, z) is 2n-
times differentiable on [0, T0] and there exists a constant Aan independent
of s ∈ [0, τ0] such that

max
i

sup
[0,T0]×Σ1/(2γ)(0,1)

∥∂i1F∥ ≤ Aan , (46)

(ii) for every s ∈ [0, τ0] and every ζ ∈ [0, T0], the map z 7→ ∂i2F (s, ζ, z) is
analytic on Σ1/(2γ)(0, 1) for i = 0, . . . , 2n − 1 and there exists a constant
Adif independent of s ∈ [0, τ0] such that

sup
[0,T0]×[0,1]

∥∂k2F (s, · , · )∥ ≤ Adif . (47)
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The following proposition then combines estimates (34) and (26) in the form
required later.

Proposition 7. Under Assumption 1 and Assumption 2, there exists a constant
C = C(F, γ, τ0, T0, n) such that for any (τ, T ) ∈ (0, τ0] × (0, T0] and (m,N) ∈ N2

with T = τ/N and n < N , we have∥∥∥∥T N−1∑
j=0

∫ 1

0

G(jT, x;T ) dx− τ

4

n∑
i=1

m∑
k=1

wi,N ωkG(ri,N , ηk;T )

∥∥∥∥ ≤ C τ (γ2m + τ2n) .

(48)

Proof. Using Theorem 6, we find that

T

N−1∑
j=0

G(jT, x;T ) =
τ

2

n∑
i=1

wi,N G(ri,N , x;T ) +R(x, T ) , (49)

where, in view of Assumption 1, estimate (34) implies that there exists a constant
C depending on sup[0,τ0]×[0,1]×[0,T0]∥∂

2n
1 G∥ and n such that

∥R(x, T )∥ ≤ C τ2n+1 . (50)

Since F (ri,N , ·, ·) satisfies Assumption 2, it satisfies the assumption of Theorem 5
on [0, T0] × Σ1/(2γ)(0, 1) for each ri,N . Thus, taking the integral of (49) over [0, 1]
and using estimate (26), we obtain (48). □

Remark 2. The main parameters to make the right hand side small are τ and m.
The parameter γ ∈ (0, 1), on the other hand, is fixed. We ensure smallness of the
right hand side of (48) by first choosing τ sufficiently small, then m sufficiently
large such that the first term on the right of (48) is no larger than the second term.

4. Uniformly accurate schemes

Following [4], we introduce “twisted variables” in which the linear operator in
the equation is uniform as c → ∞. The twisting technique was also used in an
earlier paper of Castella et al. [5] who, in a related context, developed an averaging
technique for highly-oscillatory Hamiltonian problems. In a first change of variables,
we set

U = ϕ− c−2B−1
c Jϕ̇ , (51a)

V = ϕ+ c−2B−1
c Jϕ̇ . (51b)

In terms of the variables U and V , equation (1) reads

JU̇ = −c2BcU +B−1
c f

(
1
2 (U + V ), t

)
, (52a)

JV̇ = c2BcV −B−1
c f

(
1
2 (U + V ), t

)
. (52b)

As a second change of variables, we define

u = e−c2tJ U , v = ec
2tJ V . (53)

In terms of u and v, system (52) takes the form

u̇ = JAcu− JB−1
c e−c2tJ f

(
1
2 (e

c2tJu+ e−c2tJv), t
)
, (54a)

v̇ = −JAcv + JB−1
c ec

2tJ f
(
1
2 (e

c2tJu+ e−c2tJv), t
)
. (54b)
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We can write this system more compactly in terms of the vector-valued functions
W = (U, V )T and w = (u, v)T. Letting Ac and Bc act diagonally on D(Ac)×D(Ac)
and defining

J =

(
J 0
0 −J

)
, (55a)

F(W, t) = (−J, J)T f
(
1
2 (U + V ), t

)
, (55b)

we can write

ẇ = JAcw +B−1
c e−c2tJ F

(
ec

2tJw, t
)
. (56)

Let τ > 0 be the time step of the numerical scheme. We write ti = iτ for i =
0, 1, 2, . . . and apply the Duhamel formula, so that

w(ti + τ) = eτJAc w(ti)

+B−1
c

∫ τ

0

e(τ−s)JAc e−c2(ti+s)J F
(
ec

2(ti+s)J w(ti + s), s
)
ds . (57)

Since we are free adapt the time τ of what is to emerge as the numerical scheme,
it is convenient to select τ as an integer multiple of the fast period T = 2π/c2 so
that τ = NT for some N ∈ N. As esJ = cos(s)I + sin(s)J ,

e±c2tiJ = e2πiNJ = I (58)

whenever i is integer. Thus, such factors drop out of all expressions further below,
reducing the computational cost of the scheme.

The two following assumptions on the nonlinearity f and on the solution of (57)
are required for the rigorous analysis of convergence.

Assumption 3. For given n ∈ N and T0 > 0, we assume that f satisfies the following:

(i) t 7→ f(u, t) is 2n-times differentiable for any u ∈ D(L2n),
(ii) x 7→ f(e2πxJu, t) has an analytic extension to Σ 1

2γ
(0, 1) for some γ ∈ (0, 1)

for any t ∈ [0, T0].
(iii) f is Lipschitz with respect to the first argument on bounded sets of X with

a constant uniform in t ∈ [0, T0].
(iv) For any t ∈ [0, T0], f(·, t) : D(L2n) → X is 2n-times Gâteau differentiable

such that Dkf(u, t) ∈ L(D(L2n−αk), D(L2n−|αk|)) for every k = 1, . . . , 2n,
u ∈ D(L2n), and multi-index αk = (j1, . . . , jk) for which each component
is larger than 1 and |αk| ≤ 2n.

Here, D(L2n−αk) refers to the direct product D(L2n−j1)× · · · × D(L2n−jk).

Assumption 4. For given n, in the setting of Assumption 3, there exists T ∈ (0, T0]
and K > 0 independent of c such that

sup
0≤t≤T

∥w(t)∥D(Ln) ≤ K . (59)

Remark 3. Assumption 3 includes a wide range of nonlinearities. It is easy to
verify that polynomial nonlinearities as well as the nonlinearity of the semilinear
Klein–Gordon equation as introduced in Section 1 satisfy this requirement.

Remark 4. To see how the differentiability requirement (iv) arises, consider the
following example, which is a simplified version of the estimates which arise in the
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analysis of the numerical scheme below. Take g(s) = esJAcf(h(s)), h(s) = esJAcu,
u ∈ D(Ln) and n = 1. Since

e−sJAc g′′(s) = −A2
c f(h(s)) + 2JAcDf(h(s))h

′(s)

+D2f(h(s))[h′(s), h′(s)] +Df(h(s))h′′(s) , (60)

∥g′′∥X is uniformly bounded in c provided

Df(u) ∈ L(D(L2n−1), D(L2n−1)) = L(D(L)) , (61a)

Df(u) ∈ L(D(L2n−2), D(L2n−2)) = L(X) , (61b)

D2f(u) ∈ L(D(L2n−(1,1),D(L2n−2) = L(D(L)×D(L), X) . (61c)

This suffices to satisfy Assumption 1 for G(s, x, T ) = g(s).

Remark 5. Assumption 4 holds provided the initial data satisfies the bound

∥w(0)∥D(Ln) ≤ K0 (62)

where the constant K0 does not depend on c. This can be proved directly from

the Duhamel formula (57) as the operators B−1
c , esJAc , and esc

2J are bounded
uniformly in c in the strong operator topology of D(Ln).

To guarantee uniform convergence with respect to c, we make the following im-
portant observation which effectively asserts that the time derivative ẇ is bounded
uniformly in c.

Lemma 8. The solution w of (57) satisfies

∥w(ti + s)− w(ti)∥ ≤ s

2
∥w(ti)∥D(L) + s sup

σ∈[0,s]

∥∥F(
ec

2(ti+ξ)J w(ti + σ)
)∥∥ . (63)

Proof. The proof is a direct application of estimate (vi) in Lemma 2 and the fact
that ∥B−1

c ∥ ≤ 1. □

In a first step, we define a sequence of “pre-schemes” Φl : X × R → X which
provide consistent approximations to the right hand side of the Duhamel formula
(57) to order τ l+1, namely

Φ1(w, z) = ezJAc w −B−1
c

∫ z

0

e−c2sJ F(ec
2sJ w, s) ds , (64a)

Φl+1(w, z) = ezJAc w −B−1
c

∫ z

0

e(z−s)JAc e−c2sJ F
(
ec

2sJ Φl(w, s), s
)
ds . (64b)

The pre-schemes approximate the true solution in the following sense.

Lemma 9. Under Assumption 3 (iii), let w be a solution for (57) satisfying As-
sumption 4 for n = 1, and fix l ∈ N∗. Then there exist constants Cl independent of
c such that all s ≥ 0,

∥w(ti + s)− Φl(w(ti), s)∥ ≤ Cl s
l+1 . (65)

Proof. We set Rl(w(ti), s) = w(ti + s) − Φl(w(ti), s) and proceed by induction.
When l = 1,

R1(w(ti), s) = B−1
c

∫ s

0

e−c2σJ F
(
ec

2σJ w(ti), σ
)
dσ

−B−1
c

∫ s

0

e(s−σ)JAc e−c2σJ F
(
ec

2σJ w(ti + σ), σ
)
dσ . (66)
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The estimate on R1 follows by using Lemma 8 to freeze w(ti+σ) and Lemma 2(iv)
to remove the operator e(s−σ)JAc in the second integral in (66). For l ≥ 1,

Rl+1(w(ti), s) = B−1
c

∫ s

0

e(s−σ)JAc e−c2σJ F
(
ec

2σJ Φl(w(ti), σ), σ
)
dσ

−B−1
c

∫ s

0

e(s−σ)JAc e−c2σJ F
(
ec

2σJ w(ti + σ), σ
)
dσ . (67)

By Lemma 2 and the fact that f is Lipschitz on bounded sets of X with respect to
the first argument, there exists a constant C independent of c such that

∥Rl+1(w(ti), s)∥ ≤ C s sup
σ≤s

∥Rl(w(ti), σ)∥ . (68)

This completes the proof. □

While the operator Ac and the associated semi-group etJAc are uniformly well-
behaved as c→ ∞, the integrals in (64) still contain highly oscillatory terms with a
single fast frequency. For the latter, effective numerical quadrature is possible [19].
Following the strategy developed there, we split z/T ≡ Nz +θz into its integer part
Nz = ⌊z/T ⌋ and fractional part θz = z/T −Nz. Then the integral in (64a) can be
written

B−1
c

∫ z

0

e−c2sJ F(ec
2sJ w, s) ds

= B−1
c

Nz−1∑
j=0

∫ (j+1)T

jT

e−c2sJ F(ec
2sJ w, s) ds

+B−1
c

∫ z

NzT

e−c2sJ F(ec
2sJ w, s) ds

= T

Nz−1∑
j=0

∫ 1

0

G0(jT, σ) dσ + T

∫ θz

0

G0(NzT, σ) dσ (69)

with

G0(ρ, σ) = B−1
c e−2πσJ F(e2πσJ w, ρ+ σT ) (70)

and where, in the second equality of (69), we have used (58). Analogously, the
integral in (64b) can be written

B−1
c

∫ z

0

e−sJAc e−c2sJ F
(
ec

2sJ Φl(w, s), s
)
ds

= T

Nz−1∑
j=0

∫ 1

0

G[Φl](jT, σ) dσ + T

∫ θz

0

G[Φl](NzT, σ) dσ , (71)

where, for Υ: X × R → X,

G[Υ](ρ, σ) = B−1
c e−(ρ+σT )JAc e−2πσJ F

(
e2πσJ Υ(w, ρ+ σT ), ρ+ σT

)
. (72)
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Altogether, (64) then takes the form

Φ1(w, z) = ezJAc w − T

Nz−1∑
j=0

∫ 1

0

G0(jT, σ) dσ − T

∫ θz

0

G0(NzT, σ) dσ , (73a)

Φl+1(w, z) = ezJAc

(
w − T

Nz−1∑
j=0

∫ 1

0

G[Φl](jT, σ) dσ − T

∫ θz

0

G[Φl](NzT, σ) dσ

)
.

(73b)

We now use the approximate the integrals in (73) by classical Gauss quadrature
and the sums by Gauss summation to obtain

Ψ1(w, z) = ezJAc w − NzT

4

n∑
j=1

m∑
k=0

wj,Nz ωkG0(rj,Nz , ηk)

− θzT

2

m∑
k=0

ωkG0(NzT, θzηk) , (74a)

Ψl+1(w, z) = ezJAc

(
w − NzT

4

n∑
j=1

m∑
k=0

wj,Nz
ωkG[Ψl](rj,Nz

, ηk)

− θzT

2

m∑
k=0

ωkG[Ψl](NzT, θzηk)

)
. (74b)

Remark 6. For a scheme of global order l, we use Ψl with z = τ as the time stepper.
At the top level, the second sum in (74a) or (74b) does not contribute. However,
when l ≥ 2, the inner evaluations of Ψl−1,Ψl−2, . . . will generally be evaluated at
points z that are not integer multiples of T , so that their z-arguments have to be
re-split into the respective integer (Nz) and fractional (θz) multiples of T . Thus,
in general, the second sum on the right of (74) is required for consistency.

Remark 7. Note that in the case where F is constant with respect to the second
variable, the function G0 = G0(x) is one-variable periodic function. Thus, the
approximation from Theorem 4 can also be used to define a first order scheme
(l = 1) with accuracy that is exponential in the number of nodes. More specifically,
for τ = NT ,

Φ1(w, τ) = eτJAc w − τ

∫ 1

0

G0(x) dx

= eτJAc w − τ

m

m−1∑
k=0

G0

( k
m

)
+O(τ e−dm) (75)

for some d > 0.

Lemma 10. Let l, n ∈ N∗ and w ∈ D(L2n). Fix 0 < z0 < 1, c0 > 0, and assume
that f satisfies Assumption 3, with analyticity property (ii) valid on the ellipse
Σ1/(2γ)(0, 1) for some γ ∈ (0, 1). Then there exists Cl = Cl(f, ∥w∥D(L2n), c0, z0, n)
such that for all m ∈ N∗ and z ≤ z0 < 1,

∥Ψl(w, z)− Φl(w, z)∥ ≤ Cl z (z
2n + γ2m) . (76)

Proof. In view of the expression for each G0 and G, there exist F0 and F such that

G0(ρ, γ, T ) = F0(ρ, Tσ, σ) , G(ρ, γ, T ) = F (ρ, Tσ, σ) , (77)



14 H. MOHAMAD AND M. OLIVER

where, since w ∈ D(L2n) and f satisfies Assumption 3, F0 and F satisfy the condi-
tions of Proposition 7 on [0, z0]× [0, 2π/c20]× Σ1/(2γ)(0, 1).

We set Sl(w, z) = Ψl(w, z) − Φl(w, z) and proceed by induction. For l = 1, we
can directly use Proposition 7 for the difference of first terms and Theorem 5 for
the difference of second terms, (76) holds true as stated. For l > 1, we have

e−zJAc Sl+1(w, z)

= −NzT

4

n∑
j=1

m∑
k=0

wj,Nz ωkG[Ψl](rj,Nz , ηk) − θzT

2

m∑
k=0

ωkG[Ψl](NzT, θzηk)

+
NzT

4

n∑
j=1

m∑
k=0

wj,Nz
ωkG[Φl](rj,Nz

, ηk) +
θzT

2

m∑
k=0

ωkG[Φl](NzT, θzηk)

− NzT

4

n∑
j=1

m∑
k=0

wj,Nz
ωkG[Φl](rj,Nz

, ηk) − θzT

2

m∑
k=0

ωkG[Φl](NzT, θzηk)

+ T

Nz−1∑
j=0

∫ 1

0

G[Φl](jT, σ) dσ + T

∫ θz

0

G[Φl](NzT, σ) dσ (78)

We write S
(1)
l+1(w, z) and S

(2)
l+1(w, z) to denote the first two and the last two lines on

the right of (78), respectively. As f is Lipschitz with respect to the first argument
on bounded sets of X, there exist K1 and K2, each depending on f , such that

∥S(1)
l+1(w, z)∥ ≤ K1 z sup

j,k
∥Sl(w, rj,Nz

+ ηkT )∥+K2 z sup
k

∥Sl(w,NzT + θzηkT )∥

≤ (K1 +K2)Cl z
2 (z2n + γ2m) . (79)

On the other hand, using Proposition 7, there exists a constant K3 depending on
f , ∥w∥D(L2n), c0, z0, and n such that

∥S(2)
l+1(w, z)∥ ≤ K3 z (z

2n + γ2m) . (80)

Thus, combining (79) and (80), we conclude that there exists a constant Cl+1

depending on f , ∥w∥D(L2n), c0, z0 and n such that

∥Sl+1(w, z)∥ ≤ Cl+1 z (z
2n + γ2m) , (81)

which concludes the proof. □

As stated before, we select the time step τ to be an integer multiple of the fast
period T so that τ = NT for some N ∈ N. As a numerical approximation to the
exact solution w at time ti+1, we take the scheme

wi+1 = Ψl(wi, τ) , (82a)

w0 =

(
ϕ0
ϕ0

)
− c−2JB−1

c

(
ϕ′0
ϕ′0

)
. (82b)

5. Convergence analysis

The scheme (82) satisfies the following global estimate.
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Theorem 11. Let f satisfies Assumption 3, with analyticity property (i) valid on
the ellipse Σ1/(2γ)(0, 1) for some γ ∈ (0, 1). Fix l ∈ N∗, c0 > 0, and let n = ⌊ l+1

2 ⌋.
Assume further that there exists K > 0 such that for every c ≥ c0,

∥ϕ0∥D(L2n) + c−2 ∥B−1
c ϕ′0∥D(L2n) ≤ K . (83)

Then there exist T > 0 and C = C(f,K, T , c0, n) such that for all c ≥ c0, τ ∈ 2π
c2 N,

ti ≤ T , and m ∈ N∗,

∥ϕi − ϕ(ti)∥ ≤ C (τ l + γ2m) (84)

where ϕ solves (1) and

ϕi =
(wi)1 + (wi)2

2
(85)

with wi given by (82).

Proof. Note first that for every c ≥ c0,

∥w0∥D(L2n) ≤ ∥ϕ0∥D(L2n) + ∥c−2 JB−1
c ϕ′0∥D(L2n) ≤ K . (86)

Thus, there exist two constants T ,K > 0 depending on c0 and w0 for which As-
sumption 4 is satisfied. Lemmas 10 and 9 allow us to write

w(ti + τ) = Φl(w(ti), τ) +Rl(w(ti), τ)

= Ψl(w(ti), τ) +Rl(w(ti), τ)− Sl(w(ti), τ) . (87)

Setting ei = ∥w(ti)− wi∥, we now split the error as follows:

ei+1 ≤ ∥Rl(w(ti), τ)∥+ ∥Sl(w(ti), τ)∥
+ ∥Ψl(w(ti), τ)−Ψl(wi, τ)∥ . (88)

Recalling that F is Lipschitz on X and arguing by induction on l, we find that
there exists a constant C1 > 0 depending on f such that

∥Ψl(w(ti), τ)−Ψl(wi, τ)∥ ≤ (1 + C1τ)
l ei . (89)

By Lemma 9 and 10, there exists a constant C2 > 0 depending on f , K, T , c0, and
n such that

∥Rl(w(ti), τ)∥+ ∥Sl(w(ti), τ)∥ ≤ C2 τ (τ
l + γ2m) . (90)

Then, (88) reads

ei+1 ≤ (1 + C1τ)
l ei + C2 τ (τ

l + γ2m) . (91)

Thus, we find by induction that

ei ≤ (1 + C1 τ)
il e0 + C2

(1 + C1 τ)
il − 1

C1
(τ l + γ2m) . (92)

Since e0 = 0 and 1 + x ≤ ex, we obtain

ei ≤ C2
eC1lT − 1

C1
(τ l + γ2m) ≡ C (τ l + γ2m) . (93)

To obtain the final estimate, we undo the variable twist, noting that

ϕ(ti) =
(ec

2tiJ(w(ti))1 + (e−c2tiJ(w(ti))2
2

=
w(ti)1 + w(ti)2

2
. (94)

Then (93) directly implies estimate (84). □
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Figure 1. Scaling of the local error with the time step τ .

6. Numerical tests

We now demonstrate the scaling behavior of the new uniformly accurate time
integrators (UAT) in a simple test case where an explicit reference solution is avail-
able. Our example has ϕ : [0, T ]× Td → C with L = δ −∆ and f(ϕ) = |ϕ|2ϕ with
some δ > 0. Then, for arbitrary a ∈ Rd, the function

ϕ(t, x) =
√
δ + |a|2 ei(ct+a·x) (95)

is a solution of (1) with

ϕ0 =
√
δ + |a|2 eia·x , ϕ′0 = ic

√
δ + |a|2 eia·x . (96)

For simplicity, we consider only solutions with no dependence on x, i.e. a = 0,
where

ϕ(t, x) = ϕ(t) =
√
δ eict . (97)

The order of the Gaussian quadrature approximating the inner integral in (73) is
chosen as m = 6, 8, 10 at level l = 0, 1, 2. Theoretically, in view of (84), m should
be chosen so that

m ≈ ln(τ)

2 ln(γ)
l . (98)

However, as we do not have any access to a good estimate for γ, we determined a
minimal choice of m empirically.

In Figure 1, we confirm numerically the theoretical convergence rate with respect
to τ for the first, second and third order schemes given by (82). Shown is the local
error

Eloc(τ) = ∥ϕ1 − ϕ(τ)∥ , (99)

which corresponds to i = 1 in (84), for fixed c = 200 as the time step τ is varied.
As explained in Section 4, we work with time steps that are integer multiples of the
fast period, i.e., τ = 2π

c2 k for integer k. It is possible to modify the code such that
arbitrary time steps are possible. However, this would require retaining all factors

e±c2ti in the generating formula (57) and all expressions that follow, and the second
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Figure 2. Comparison of the second-order uniformly accurate
time integrator with two of the standard solvers from Scipy: the
implicit variable-order backward differentiation scheme and the ex-
plicit Dormand–Prince embedded order 8(5,3) Runge–Kutta
scheme.

sum in (74) would already appear at the top level of the recursion, cf. Remark 6.
As there is no advantage of doing so, we did not implement this general case.

Figure 1 shows, in particular, that the local error of the third order method
scales like τ4, thus the global error will scale like τ3, except for rather small values
of τ where the limitations of double-precision floating point begin to matter. In
general, floating-point errors might occur when we use the quadrature formula on
very small intervals. As Figure 1 shows, this occurs when using the third order
scheme for small values of τ , since calling the function Ψ3(w, τ) defined in (74b)
includes implicit calls of Ψ2(w, y) and Ψ1(w, x) for x, y with x ≪ y ≪ τ , which
means that the lengths of the subintervals on which we use the Gauss formula for
the discrete sums when calling Ψ2(w, y) and Ψ1(w, x) are very small.

Figure 2 illustrates the uniformity of the error as a function of c using the second
order UAT integrator compared with the explicit Dormand–Prince embedded order
8(5,3) Runge–Kutta (“DOP853”) scheme [17] and the implicit multi-step variable-
order (1 to 5) method based on a backward differentiation formula (“BDF”) for the
derivative approximation [13]. Error performance of the new scheme is uniform,
while the error increases with c for the built-in schemes, indicating that their error
indicator heuristics are insufficient for dealing with such extreme multi-scale dy-
namics. We remark that the coefficients of the Gauss summation formula need to
be recomputed for every value of N . The main step of this computation is finding
the roots of a polynomial of degree n, with N -dependent coefficients. For practical,
small values of n, the associated cost is not a significant part of the overall cost of
computation.

In Figure 3, we compare the computation time for single time step using the
second order integrator with the solvers used in Figure 2. We see that computation
time goes up quadratically in c, as expected, while computation time of the UAT
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Figure 3. Computation time for a single time step of the uni-
formly accurate time integrator vs. the computation time over the
same interval of time using the built-in solvers, controlling their er-
ror tolerances so that their error is no more than 30% larger than
the error of the uniform scheme.

scheme is constant by design. Timings refer to our reference implementation in
Python, which is available as supplementary material, on a single core of an Intel
i7 mobile processor, without any attempt at speed-optimizing the code which is
bottlenecked in the Python interpreter for this low-dimensional test problem. A
more involved study on approximate slow manifolds for semilinear equations of
Klein–Gordon type is current work-in-progress and will be reported on separately.
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