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Abstract. We prove convergence of the Hamiltonian Particle-Mesh (HPM)

method, initially proposed by J. Frank, G. Gottwald, and S. Reich, on a pe-
riodic domain when applied to the irrotational shallow water equations as a

prototypical model for barotropic compressible fluid flow. Under appropriate

assumptions, most notably sufficiently fast decay in Fourier space of the global
smoothing operator, and a Strang–Fix condition of order 3 for the local par-

tition of unity kernel, the HPM method converges as the number of particles

tends to infinity and the global interaction scale tends to zero in such a way
that the average number of particles per computational mesh cell remains con-

stant and the number of particles within the global interaction scale tends to

infinity.
The classical SPH method emerges as a particular limiting case of the HPM

algorithm and we find that the respective rates of convergence are comparable
under suitable assumptions. Since the computational complexity of bare SPH

is algebraically superlinear and the complexity of HPM is logarithmically su-

perlinear in the number of particles, we can interpret the HPM method as a
fast SPH algorithm.

1. Introduction

Particle methods are numerical methods for continuum dynamics in which the
approximation nodes move along a finite discrete set of Lagrangian trajectories.
For compressible fluid flow, particle methods became popular in the context of
astro- and plasmaphysical simulations as Smoothed Particle Hydrodynamics (SPH)
in the late 1970s [11, 16, 20]. In SPH, a finite number particles, each representing a
distribution of fluid mass given by a positive, compactly supported, smooth, radial
kernel function centered about the particle position, interact via Newtonian forces
determined from the overall mass density field. The resulting scheme is simple,
possesses a Hamiltonian structure with associated physically desirable conservation
laws, and can be very efficient in many interesting physical regimes. However, there
are a number of drawbacks associated with basic SPH: It is a low-order scheme and
also suffers from so-called tensile instabilities and spurious zero-energy modes, so
that a large number of modifications have been proposed [15, 21]. Moreover, SPH
convergence requires that the average particle distance decreases faster than the
interaction radius, so that simulations with higher accuracy requirements need to
work around the superlinear growth of the number of interactions which must be
computed.

One recent variant of the SPH scheme is the Hamiltonian Particle-Mesh (HPM)
method, proposed by Frank, Gottwald, and Reich [8]. The HPM method makes use
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of an auxiliary mesh on which long-range interactions can be computed efficiently.
At the same time, it carefully preserves the Hamiltonian structure of the fluid
system—a property which is generally lost with a particle-in-cell (PIC) approach.
In particular, HPM has a proper analog of the Kelvin circulation theorem [10].

The HPM method is characterized by two separate kernels. First, it features a
local partition of unity kernel which interpolates between particle values and grid
values; typically, these interactions can be computed in O(N) time, where N is
the total number of particles. Second, it features a global smoothing kernel which
provides for interactions on scales larger than the typical inter-particle distance. It
is typically characterized as a discrete inverse of an elliptic operator; its action can
be computed by fast methods in O(N) or O(N lnN) time.

In this paper, we prove the convergence of the HPM method on a space-periodic
domain and give an explicit estimate of the rate of convergence. The assumption of
space-periodicity has already been used in the exploratory work of [8] as it allows
for an easy implementation of global smoothing as the action of a discrete Fourier
multiplier. Analytically, the space-periodic setting allows us to use Fourier analysis
as our main tool. However, the HPM method extends to domains with boundaries
[6], although a full proof of convergence would be much more difficult.

Our strategy of proof generalizes work by Oelschläger [23] on the convergence
of the SPH method. The resulting error bounds are, under certain assumptions,
comparable to those of SPH. Due to the algebraically superlinear complexity of
SPH, we conclude that HPM can be interpreted as a “fast” SPH implementation.
We remark that there is also a proof of convergence of SPH in the Vasershtein metric
[3, 4]; this approach appears to give results which easily apply to more general
polytropic fluids, but yields results which are weaker than ours or Oelschläger’s
and shall not play a role here.

We study the HPM method applied to the simplest possible barotropic fluid
equation

∂tu+ u · ∇u+∇ρ = 0 , (1a)

∂tρ+∇ · (ρu) = 0 , (1b)

where u = u(x, t) denotes the velocity field and ρ = ρ(x, t) the density, on the
d-dimensional torus Td. When definiteness is required, we take the fundamental
domain x ∈ [−π, π)d. For d = 2, this system is also known as the irrotational
shallow water equations, where ρ provides an approximation to the depth of a
shallow layer of incompressible fluid with a free surface under gravity; often the
letter h is used. In this paper, we disregard the physical connotations and write h
to denote the numerical approximation to ρ.

To define the Hamiltonian Particle-Mesh method, we introduce a regular mesh
with K mesh nodes in each dimension. The mesh nodes are then given by {xα ≡
λα : α ∈ Gd} on Td, where G = Z ∩ [−K2 ,

K
2 ) with λ = 2π/K. For simplicity,

we assume that K is an odd integer. All results continue to hold when K is even
provided we explicitly symmetrize the discrete Fourier sums which arise later.

The local partition of unity kernel is constructed from a compactly supported
shape function Ψ which is assumed to satisfy a Strang–Fix condition of sufficiently
high order p. The Strang–Fix condition expresses that polynomials of degree less
than p can be written as countable linear combinations of integer translates of Ψ.
Our result includes, in particular, the cubic B-spline used by [8] where p = 4. In
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the proof, the Strang–Fix conditions are used to show that some discrete version
of integration by parts is permissible with remainders that do not blow up as the
mesh size tends to zero. Once the shape function Ψ is specified, the scaled kernel

ψλ(x) = λ−d Ψ(x/λ) (2)

and its translates form a periodic partition of unity on the mesh. Details of the
construction of periodic partitions of unity and a more general statement of the
sufficient assumptions on Ψ shall be described in Section 2.

The global smoothing operator Sµ is defined via discrete convolution on the mesh
as follows. For a mesh function h = (hα)α∈Gd , the action of the smoothing operator
Sµh at grid point α ∈ Gd is computed by multiplication in discrete Fourier space
with a scaled Fourier symbol σ via

(Sµh)α = (2π)d
∑
γ∈Gd

eiγ·xα σ(µγ) h̃(γ) , (3)

where

h̃(γ) =
1
Kd

∑
β∈Gd

e−iγ·xβ hβ (4)

denotes the discrete Fourier transform of h. A convenient choice for σ is

σ(ξ) =
1

(2π)d
1

(1 + |ξ|2)q
(5)

for sufficiently large q > 0. Thus, Sµ can be regarded as a discrete inverse of the
q-th power of the Helmholtz operator 1 − µ∆. A more general characterization of
permissible kernels will be provided in Section 3.

The HPM dynamics can then be stated as follows. We represent the fluid by N
particles with respective masses mk, positions Xk, and velocities Uk, which evolve
according to the system of ordinary differential equations

Ẋk(t) = Uk(t) , (6a)

U̇k(t) = λd
∑
α∈Gd

(Sµh(t))(xα)∇ψλ(xα −Xk(t)) , (6b)

where k = 1, . . . , N , and Sµ acts via (3) on the grid values hα(t) obtained by
evaluating the approximate continuum density

h(x, t) =
N∑
k=1

mk ψλ(x−Xk(t)) (6c)

on the grid nodes. In other words, we set hα(t) = h(xα, t). Equations (6a–c) form a
closed N -particle simple mechanical system where the interaction potential is given
by the expression on the right of equation (6b).

The particle masses mk are constants of the motion which are chosen at the
initial time. The total mass is defined as

M ≡
N∑
k=1

mk ≈
∫

Td
ρ(x, 0) dx . (7)

The initialization procedure and the sense in which the total (numerical) mass
approximates the total physical mass is made precise in Section 5.
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The accuracy of the HPM approximation shall be measured in terms of the error
functional

Q(t) =
1
2

N∑
k=1

mk

∣∣Uk(t)− u(Xk(t), t)
∣∣2 +

λd

2

∑
α∈Gd

∣∣(Srµh(t))(xα)− ρ(xα, t)
∣∣2

≡ Qkin(t) +Qpot(t) , (8)

where Srµ denotes the convolution square root of Sµ, defined via SrµS
r
µ = Sµ. This

error functional can be seen as a direct generalization of the HPM Hamiltonian

HHPM =
1
2

N∑
k=1

mk |Uk|2 +
λd

2

∑
α∈Gd

h(xα) (Sµh)(xα) , (9)

where h is given by (6c) and, as before, Sµ acts via (3) on the grid values of h.
We observe that the convolution square root Srµ in the expression for Qpot arises
as a symmetrization of the expression for the potential energy term in the HPM
Hamiltonian. The structure of the Hamiltonian and of the error functional reflects
the Eulerian–Lagrangian nature of the method. Our error functional is similar to
the one used by Oelschläger [23] in his work on SPH, with the space integral over
the density error used there replaced by its grid-approximation here.

A simplified version of our main result in the setting described so far can be
stated as follows. For every ε > 0, fix

p ≥ max
{

3,
d+ 3
ε
− d− 3

}
and q > max

{
3 +

d

2
,
d+ 3
ε
− d

2
− 3
}
. (10)

Then, in the limit N →∞ with

λ ∼ N−1/d and µ ∼ N−(1−ε)/d , (11)

we have an error bound of the form

Q(t) = O(N−2(1−ε)/d) (12)

over finite intervals of time so long as the exact solution of the barotropic fluid
system (1) remains smooth. This statement of our result is a reformulation of
Corollary 12 in Section 6.

To prove this result, we essentially take the time derivative of Q, carefully bound
suitable groups of terms by Q or other quantities known to be small, and finally
apply the Gronwall lemma. Many of our computations here can be seen as gridded
analogues of Oelschläger’s estimates; however, working on the grid introduces a
whole host of essential new error terms. It is possible to obtain a direct comparison
with the classical SPH method by letting λ → 0, so that our error functional (8)
converges to Oelschläger’s error functional [23] and the global smoothing operator
Sµ converges to a convolution operator on Td with a periodic SPH blob function.
Our theorem in this limit can be stated as follows.

For every ε > 0, fix

q ≥ d+ 2
ε
− 2 (13)

subject to the additional restriction q > max{3 + d/2, d}. Then, as N →∞ with

µ ∼ N−(1−ε)/d , (14)



CONVERGENCE OF THE HPM METHOD 5

we obtain an error bound for the periodic SPH method of the form

Q(t) = O(N−2(1−ε)/d) (15)

over finite intervals of time so long as the exact solution of the barotropic fluid
system (1) remains smooth. This statement is a reformulation of Corollary 14 in
Section 7; a more general statement is given in Theorem 13.

From our results, we conclude that HPM has one main advantage over the classi-
cal SPH method: The number of operations required to advance the HPM solution
one step in time is of order N lnN , where the logarithmic correction comes from the
fast Fourier transform required to evaluate the global smoothing operator on the
grid; all other operations have complexity O(N). If multigrid techniques were used
to compute the global smoothing, one could even obtain O(N) overall complexity.
On the other hand, the number of operations to advance an SPH solution with a
compactly supported SPH kernel one time step is O(N1+ε), because the number of
particles within the support of the scaled SPH kernel grows like Nε. This shows,
as claimed above, that we can think of HPM as a “fast” SPH method which, in
addition, preserves the Hamiltonian structure of SPH.

The HPM method does not appear to fare better than SPH when the number of
particles is the same. Rather, we see additional contributions to the error arising
due to the intermediate grid, which in particular lead to stricter requirements on
q relative to the corresponding SPH proof. We also note that we do not make
explicit use of the Hamiltonian structure, although the form of the error functional
is clearly motivated by the HPM Hamiltonian. In fact, it is trivial to add any
number of structure-breaking perturbations to the HPM method which, provided
they decrease sufficiently fast as a function of the parameters, will not change
the asserted order of the method. However, conservation is useful for maintaining
qualitative and possibly probabilistic features of the solution over times long after
trajectory accuracy has been lost; in the context of ODEs, this has been discussed,
e.g., in [12, 14].

The results as presented here improve on those reported earlier [18, 19] in several
respects. First, in [18] it was already observed that a Strang–Fix condition of
order one on the partition of unity kernel Ψ is necessary for convergence. Here,
we demonstrate that Strang–Fix conditions of higher order improve the order of
convergence we can assert. Note that in the statement of our main result we require
a Strang–Fix condition of minimal order p = 3. Although this is not strictly
necessary, it simplifies the proofs as only then certain error terms contribute at
their natural optimal order (this applies, in particular, to the proof of Lemma 3
below). As the cubic spline used by [8] already satisfies a Strang–Fix condition of
order 4, p ≥ 3 is not a serious restriction.

Second, our results here remain valid in the limit λ→ 0 with µ fixed. While this
is not a practically relevant regime, it is theoretically interesting as in this limit
HPM reduces to SPH so that a direct comparison of the various contributions to
the error is possible.

Third, we note here that under the assumption that the global smoothing op-
erator is even, the global smoothing error contributes only at order O(µ2). This
gives substantially better error bounds as in [18, 19, 23]. It also shows that the rate
of convergence obtained here is close to optimal, because it is not possible to re-
duce this component of the error to something better than O(µ2) unless the global
smoothing kernel satisfies higher moment conditions. Numerically, this would very
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easy to realize for the HPM method (unlike SPH where a large support of the SPH
blob causes a serious hit on the computational efficiency).

We do not claim that the assumptions we require are optimal. Most of them
appear fairly benign, except that we have relatively strict requirements on the
decay of the global smoothing kernel in Fourier space which exclude the case when
σ corresponds to the Fourier symbol of the inverse of the bi-Helmholtz operator as
used in the numerical work of [8]. Note that this does not imply that errors are
large in practice: ongoing numerical work shows that the pre-asymptotic behavior
of HPM with bi-Helmholtz smoothing in typical parameter regimes is remarkably
good. However, as λ tends to zero, the tails in the spectrum of the kernel eventually
become significant: Convergence of HPM to the SPH method clearly fails, and HPM
with a fixed number of particles per cell also appears to fail to converge toward the
exact solution. Moreover, the numerically observed rate of convergence indeed
depends strongly on q, improving with larger values. The detailed results will be
reported in a forthcoming paper [1].

We note that, for the SPH method, [3, 4] have first proved convergence to a
regularized continuum formulation and then taken the zero regularization limit on
the continuum equations. In our context, this would correspond to letting the mesh
size tend to zero and the number of particles tend to infinity with µ fixed. However,
it is an open question whether our methods can be adapted to this case and, in
particular, which error functional should be used. Independent of this question, the
study of the regularized continuum limit can give useful information on the pre-
asymptotic behavior of the numerical scheme; this point of view has, for example,
been taken in [7].

Another open question is the generalization to other constitutive laws. We be-
lieve that one should start with an error functional which once again comes from
the Hamiltonian. However, the associated higher powers translate poorly into the
Fourier representation, so that the Fourier-based approach employed here becomes
increasingly unmanageable. We expect that it would be necessary to work largely
in physical space, although the general structure of the argument might persist.

The remainder of this paper is structured as follows. We begin by developing
a general description of the admissible partition of unity kernels (Section 2) and
global smoothing operators (Section 3). In Section 4, we prove a number of cru-
cial technical estimates. Section 5 discusses the issue of initialization of the HPM
method and provides estimates on the rate of convergence of the error functional
at time t = 0. Section 6 finally treats the full time-dependent problem; we state
our main convergence result, Theorem 11, some special cases, and provide a proof
essentially via a Gronwall lemma type argument. In the final Section 7, we look at
the limit when λ→ 0 with µ fixed, which is the regime where HPM reduces to the
classical SPH method. In the appendix, we collect definitions and basic facts about
the Fourier transform and Sobolev spaces. In particular, we define the scaling of
the discrete Fourier transform used here, and how it links to the periodic Fourier
transform and to the Fourier transform on Rd.

Throughout the paper, c denotes an arbitrary numerical constant. We make no
attempt to label constants uniquely, so that the actual value of c may change from
one line to the next. Constants which may additionally depend on the true solution
(u, ρ) of the barotropic fluid model are written C; again, we make no attempt to
label such constants uniquely.
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2. Periodic partitions of unity

In this section, we scale a compactly supported partition of unity kernel to the
mesh and explain how higher order Strang–Fix conditions characterize its order of
polynomial reproduction.

2.1. Construction. Let Ψ: Rd → [0,∞) be even and compactly supported such
that it generates a translation invariant partition of unity on the integers, i.e.,∑

α∈Zd
Ψ(x− α) = 1 (16)

for all x ∈ Rd. Let K ∈ N large enough such that supp Ψ ⊂ (−K/2,K/2)d. Then
Ψ induces a periodic partition of unity on Td via

ψλ(x) =
1
λd

Ψ
(x
λ

)
(17)

where, as before, λ = 2π/K. For convenience, we extend this definition to all
x ∈ Rd periodically. We then easily verify that for every x ∈ Td,

λd
∑
α∈Gd

ψλ(x− xα) =
∑
α∈Gd

ψ1(x/λ− α) =
∑
α∈Zd

Ψ(x/λ− α) = 1 . (18)

2.2. Basic properties. We first remark that the partition of unity property im-
plies that the mass on the grid is a constant of motion for the HPM method, since

λd
∑
α∈Gd

hα =
N∑
k=1

mk λ
d
∑
α∈Gd

ψλ(xα −Xk) =
N∑
k=1

mk = M . (19)

Next, we characterize periodic partitions of unity in Fourier space by taking the
Fourier transform of (18). Applying the orthogonality relation (144) to the right
hand expression, and the shift formula (151) and the discrete orthogonality relation
(153) to the left hand expression, we obtain

δβ = λd
∑
α∈Gd

e−iβ·xα ψ̂λ(β) = (2π)d δper
β ψ̂λ(β) . (20)

Therefore,

ψ̂λ(0) =
1

(2π)d
and ψ̂λ(Kγ) = 0 for γ ∈ Zd \ {0} . (21)

Noting that, since supp Ψ ⊂ (−K/2,K/2)d,

ψ̂λ(β) =
1

(2πλ)d

∫
Rd

e−iβ·x Ψ
(x
λ

)
dx =

1
(2π)d

∫
Rd

e−iβ·λy Ψ(y) dy = FΨ(λβ) ,

(22)
where FΨ denotes the Fourier transform of Ψ on Rd, we can translate (21) back to
the unscaled kernel template Ψ, so that

FΨ(0) =
1

(2π)d
and FΨ(2πγ) = 0 for γ ∈ Zd \ {0} . (23)

Since Ψ has compact support, FΨ is a smooth function on Rd. (Note that we could
have arrived at (23) directly from (16) by taking an appropriate distribution-valued
Fourier transform. However, since we have to rescale to the torus in any case, this
route does not offer any advantage.)



8 V. MOLCHANOV AND M. OLIVER

With this characterization, it is straightforward to derive the following convolu-
tion error bound. The proof is similar to that of Lemma 2 and shall be omitted.

Lemma 1. For every s > 2 + d/2 there exists a constant c such that for all
f ∈ Hs(Td),

sup
x∈Td
|(ψλ ∗ f)(x)− f(x)| ≤ c λ2 ‖f‖Hs . (24)

2.3. Strang–Fix conditions. We say that a compactly supported partition of
unity satisfies a Strang–Fix condition of order p if, in addition to (23),

DαFΨ(2πγ) = 0 for γ ∈ Zd \ {0} and |α| < p . (25)

It is long known that this condition implies that polynomials of degree less than
p can be written as countable linear combinations of integer translates of Ψ [26];
Strang and Fix [28] proved that the best approximation of an L2(Rd) function
provided by the span of scaled translates of Ψ is of order k in the scaling parameter;
see, e.g., [2] for an overview and more general results.

It is convenient to assume that the partition of unity kernel Ψ is a tensor product
of a one-dimensional partition of unity kernel Θ, i.e.

Ψ(x) =
d∏
i=1

Θ(xi) , (26)

so that

FΨ(ξ) =
d∏
i=1

FΘ(ξi) . (27)

We note that a radial kernel cannot satisfy the periodic partition of unity condition
[29], so we are not excluding an obvious case here.

2.4. Smoothness conditions. To prove our main result, we must assume that
the partition of unity is sufficiently smooth, namely that there exists some constant
c such that

|FΘ(ξ)| ≤ c

1 + |ξ|ν
, (28)

where the exponent ν > 0 is to be specified later. Then an estimate of the form
(28) also holds for derivatives of FΘ, i.e., for every k ∈ N there is a constant ck
such that

|DkFΘ(ξ)| ≤ ck
1 + |ξ|ν

. (29)

A proof of (29) is achieved by induction in k: noting that Ff(ξ) = (iξ)−1Ff ′(ξ),
we obtain

|FΘ(i)(ξ)| ≤ c |ξ|i

1 + |ξ|ν
≤ 2 c

1
1 + |ξ|ν−i

(30)

provided i ≤ ν. Moreover,

|DkFΘ(ξ)| = |F((−ix)kΘ)(ξ)| = |ξ|−1 |F(kxk−1Θ + xkΘ′)(ξ)|

≤ k |ξ|−1 |F(xk−1Θ)(ξ)|+ |ξ|−1 |F(xkΘ′)(ξ)| . (31)
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Applying this procedure I = dνe times to the final term, we obtain

|DkFΘ(ξ)| ≤ k
I−1∑
i=1

|F(xk−1Θ(i))(ξ)|
|ξ|i

+
|F(xkΘ(I))(ξ)|

|ξ|I
. (32)

For the terms in the left hand sum, an estimate of the form (29) follows from the
induction assumption and (30). The corresponding bound on the final term is a
consequence of the Riemann–Lebesgue lemma.

2.5. B-splines. The Strang–Fix and smoothness conditions are satisfied by cardi-
nal B-splines in the following way. Start with the zero order spline

θ0 = 1[−1/2,1/2)d , (33)

the characteristic function of the box, and, for i ∈ N, recursively define

θi = θ0 ∗ θi−1 . (34)

Since θ0 satisfies the smoothness condition (28) with ν = 1 (as is easily verified by
direct computation), due to the convolution theorem for the Fourier transform, θi
satisfies (28) with ν = i+ 1.

Similarly, θ0 satisfies (21), but none of the higher order Strang–Fix conditions.
Thus, again due to the convolution theorem, θi satisfies the Strang–Fix condition
of order i+ 1.

3. The global smoothing operator Sµ

The smoothing operator Sµ appearing in the formulation of the HPM method
has a role akin the SPH blob function in that it provides for a medium range
interaction between the particles. In HPM, however, it acts exclusively on grid
values which allows for efficient computation via spectral methods. It is most
conveniently defined as a discrete spectral approximation to a convolution operator
on L2(Rd). This is detailed in the following.

3.1. Definitions. Let σ(ξ) denote the real and nonnegative Fourier symbol of a
convolution operator on L2(Rd) and let σr(ξ) =

√
σ(ξ)/(2π)d denote the Fourier

symbol of its convolution square root. On our mesh, it induces a family of scaled
discrete convolution operators via

S̃µ(γ) = σ(µγ) and S̃µ,r(γ) = σr(µγ) (35)

for γ ∈ Gd with K-periodic extension to the whole of Zd and arbitrary scaling
parameter µ > 0. Then, for any grid function f ,

(Sµf)α ≡ (Sµ ~ f)α = λd
∑
β∈Gd

Sµα−β fβ = (2π)d
∑
γ∈Gd

eiγ·xα σ(µγ) f̃(γ) , (36)

where we write Sµ to denote the operator, and Sµ to denote the corresponding
discrete convolution kernel. With a corresponding definition for Srµ, it is easy to
check that

Sµ = Srµ S
r
µ . (37)

Note that we may extend (Sµf)α to a function on Td via

(Sµf)(x) = (2π)d
∑
γ∈Gd

eiγ·x σ(µγ) f̃(γ) . (38)
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The operator Sµ is self-adjoint on the grid, and almost self-adjoint as an operator
into L2(Td) in the sense that, setting

(S∗µg)α = (2π)d
∑
γ∈Gd

eiγ·xα σ(µγ) ĝ(γ) (39)

for any g ∈ L2(Td), we have∫
Td

(Sµf)(x) g(x) dx = λd
∑
α∈Gd

fα (S∗µg)α . (40)

Since Sµ is a band-limited operator, the convolution square root decomposition (37)
can be written

Sµ = Sr∗µ Srµ , (41)

where the right hand operator is interpreted as mapping into L2(Td).

3.2. Assumptions. We assume that σ is even, normalized such that

σ(0) =
1

(2π)d
, (42a)

and decays sufficiently fast, i.e., that there exists a constant c such that

σ(ξ) ≤ c

1 + |ξ|ζ
, (42b)

where the exponent ζ is to be specified later. Further, we require that σ ∈ C`+1(Rd)
where, in the proof of the main Theorem 11, we will take ` = 2+ dd/2e. Finally, we
need to assume that convolution kernel decays sufficiently fast in physical space.
For our purposes, this decay condition is most conveniently formulated in terms
of the Fourier symbol σr; we require that there exists a constant c such that, for
multi-indices k with 1 ≤ |k| ≤ `,

|Dk
ξ [ξσr(ξ)]| ≤ c σr(ξ) , (43a)

and for |k| = `+ 1,

sup
τ∈[0,1]

∑
γ∈Zd

∣∣∣∣Dk
ξ [ξσr(ξ)]

∣∣∣
ξ=γ+τ

∣∣∣∣2 ≤ c . (43b)

Condition (43b) expresses, in other words, that arbitrary translates of Dk
ξ [ξσr(ξ)]

are uniformly bounded in `2(Zd). We remark that (43a) implies that derivatives of
σ up to order ` possess a decay estimate of the form (42b) as well. In particular,
as we will require in several places in this paper, second derivatives of σ and of σr

are uniformly bounded.

3.3. Inverse powers of the Helmholtz operator. All numerical studies of the
HPM method so far used inverse powers of the Helmholtz operator as a simple and
natural choice for the global smoothing operator. When the underlying convolution
operator on L2(Rd) is given by (1−∆)−q, then, in the notation of Section 3.1,

σ(ξ) =
1

(2π)d
1

(1 + |ξ|2)q
and σr(ξ) =

1
(2π)d

1
(1 + |ξ|2)q/2

. (44)
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Clearly, σ is smooth, even, properly normalized, and satisfies the decay condition
(42b) provided 2q ≥ ζ. To prove (43a), we notice that, when k = ei,

Dk ξj
(1 + |ξ|2)q/2

= δi−j
1

(1 + |ξ|2)q/2
+ q

ξi ξj
(1 + |ξ|2)q/2+1

(45)

so (43a) is true for |k| = 1. Taking further derivatives leads to decay with a larger
exponent, so that (43a) holds true for |k| ≥ 2 as well. Finally, to prove (43b), it
suffices to test for convergence of the sum, which holds whenever d < 2q + `.

3.4. Modified smoothing operator. For internal use in the proof of our main
theorem, it is useful to define a modified smoothing operator which acts on functions
f ∈ L2(Td),

Sµf(x) = (2π)d
∑
γ∈Zd

eiγ·x σ(µγ) f̂(γ) , (46)

with an analogous definition for Srµ. Then the following holds.

Lemma 2. For every s > 2 + d/2 there exists a constant c such that for all
f ∈ Hs(Td),

sup
x∈Td
|Sµf(x)− f(x)| ≤ c µ2 ‖f‖Hs . (47)

Proof. Recall that σ is even with σ(0) = (2π)−d and uniformly bounded second
derivative. Hence, we can estimate

|Sµf(x)− f(x)| ≤
∑
γ∈Zd
|(2π)d σ(µγ)− 1| |f̂(γ)|

≤ c µ2
∑
γ∈Zd
|γ|2 |f̂(γ)| ≤ c µ2

(∑
γ∈Zd
|γ|−2s+4

) 1
2
‖f‖Hs (48)

The remaining sum on the right converges provided s > 2 + d/2, proving (47). �

Due to the Poisson summation formula, the difference of Sµ−Sµ depends only on
the high wavenumber Fourier coefficients of f , so an estimate similar to the proof of
Lemma 2 shows that, for sufficiently smooth f , (Sµ−Sµ)f is small when λ is small.
However, when acting on the partition of unity kernel ψλ whose derivatives are not
bounded uniformly in λ, it is much harder to find strong estimates on Sµ − Sµ.
Such bounds will be provided as Lemma 4 and Lemma 5 further below.

4. Auxiliary estimates

We begin by proving four auxiliary estimates. The first pair can be seen as
discrete versions of integration by parts, the second pair concerns the difference
between full and truncated Fourier series in certain integral expressions.

Lemma 3. Suppose that the one-dimensional partition of unity kernel Θ satisfies a
Strang–Fix condition of order 3 and that its Fourier coefficients have decay exponent
ν > 2. Then for every s > 3 + d/2 there exists a constant c such that for all
ρ ∈ Hs(Td),

sup
x∈Td

∣∣∣∣∇ρ(x)− λ2d
∑

α,β∈Gd
ρ(xα)Sµ,rα−β ∇ψλ(x− xβ)

∣∣∣∣ ≤ c (λ2 + µ2) ‖ρ‖Hs . (49)
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Proof. We denote the second term on the left of (49) by g(x) and compute

ĝ(γ) = λ2d
∑

α,β∈Gd
ρ(xα)Sµ,rα−β iγ e−iγ·xβ ψ̂λ(γ)

= (2π)2d iγ ψ̂λ(γ)
1
Kd

∑
α∈Gd

ρ(xα) e−iγ·xα σr(µγ)

= (2π)2d iγ ψ̂λ(γ)σr(µγ) ρ̃(γ) , (50)

where we have used the differentiation rule (150) and shift formula (151) for the
Fourier transform in the first equality, the definition (152) and shift formula (158)
for the discrete Fourier transform as well as the symmetry of σr in the second and
third equalities.

We now write γ = α+ κK with α ∈ Gd and κ ∈ Zd. Then

|∇ρ(x)− g(x)| ≤
∑
γ∈Zd
|iγ ρ̂(γ)− ĝ(γ)|

≤
∑
α∈Gd

|iα ρ̂(α)− ĝ(α)|+
∑

γ∈Zd\Gd
|γ| |ρ̂(γ)|+

∑
γ∈Zd\Gd

|ĝ(γ)|

≡ G1 +G2 +G3 . (51)

To find an estimate for G1, we write

|iα ρ̂(α)− ĝ(α)| = |α| |ρ̂(α)− (2π)2d FΨ(λα)σr(µα) ρ̃(α)|

= |α| |ρ̂(α)− ρ̃(α)|+ |α| |1− (2π)2d FΨ(λα)σr(µα)| |ρ̃(α)| . (52)

We know that FΨ(0) = σr(0) = (2π)−d, that FΨ and σr are even so that their
first order derivatives vanish at the origin, and that their second order derivatives
are uniformly bounded, so that

G1 ≤
∑
α∈Gd

|α| |ρ̂(α)− ρ̃(α)|+ c (λ2 + µ2)
∑
α∈Gd

|α|3 |ρ̃(α)|

≤ G2 + c (λ2 + µ2)
∑
γ∈Zd
|γ|3 |ρ̂(γ)|

≤ G2 + c (λ2 + µ2)
( ∑
γ∈Zd\{0}

|γ|−2s+6

) 1
2
‖ρ‖Hs , (53)

where, in the second inequality, we have used the Poisson summation formula (159)
on both of the terms. The sum in the final expression is convergent provided
s > 3 + d/2.

A matching upper bound for G2 is easily found, namely

G2 =
∑

γ∈Zd\Gd
|γ|−2−d/2 |γ|3+d/2 |ρ̂(γ)|

≤
( ∑
γ∈Zd\Gd

|γ|−4−d
) 1

2
‖ρ‖

H3+d/2

≤ c λ2 ‖ρ‖
H3+d/2 . (54)
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Finally,

G3 = (2π)2d
∑

κ∈Zd\{0}

∑
α∈Gd

|α+ κK| |FΨ(2πκ+ λα)|σr(µα) |ρ̃(α)| . (55)

Due to the Strang–Fix condition of order 3 and the smoothness condition (29),

|α+ κK| |FΨ(2πκ+ λα)| ≤ c |λα|3 |α+ κK| sup
ξ∈[−π,π]d

|D3FΨ(2πκ+ ξ)|

≤ c λ2 |α|3 |2πκ+ λα| sup
ξ∈[−π,π]d

d∏
i=1

|D3FΘ(2πκi + ξi)|

≤ c λ2 |α|3 sup
1≤j≤d

|κj |
d∏
i=1

1
1 + |κi|ν

≤ c λ2 |α|3
d∏
i=1

1
1 + |κi|ν−1

. (56)

Noting the uniform boundedness of σr(µα), we obtain

G3 ≤ c λ2
∑

κ∈Zd\{0}

d∏
i=1

1
1 + |κi|ν−1

∑
α∈Gd

|α|3 |ρ̃(α)| . (57)

We note that the first sum on the right converges whenever ν > 2, the second sum
can be estimated as in (53). �

Lemma 4. Suppose that the one-dimensional partition of unity kernel Θ satisfies a
Strang–Fix condition of order p and that its Fourier coefficients have decay exponent
ν > 2. Further, suppose that the smoothing kernel σ has decay exponent ζ > d+ p.
Then there exists a constant c such that, for λ ≤ µ,

sup
x∈Td

∣∣∣∣λd ∑
α∈Gd

(Sµh)α∇ψλ(xα − x)−
∫

Td
Sµh(y)∇ψλ(y − x) dy

∣∣∣∣ ≤ cM λp−1

µp+d
. (58)

Proof. Let J denote the argument of the supremum in (58). Applying the discrete
and the continuous Parseval identity, respectively, we find

J = (2π)d
∑
γ∈Zd

σ(µγ)
[
1Gd(γ) h̃(γ) (∇ψλ(· − x))̃(γ)− ĥ(γ) (∇ψλ(· − x))̂(γ)

]
= (2π)d

∑
γ∈Gd

σ(µγ) (h̃− ĥ)(γ) (∇ψλ(· − x))̃(γ)

+ (2π)d
∑
γ∈Gd

σ(µγ) ĥ(γ) [(∇ψλ(· − x))̃(γ)− (∇ψλ(· − x))̂(γ)]

− (2π)d
∑

γ∈Zd\Gd
σ(µγ) ĥ(γ) (∇ψλ(· − x))̂(γ)

≡ J1 + J2 + J3 . (59)

By the Poisson summation formula (159) and shift formula (151), we compute

(h̃− ĥ)(γ) =
N∑
k=1

mk

∑
κ∈Zd\{0}

e−i(γ+κK)·Xk ψ̂λ(γ + κK) . (60)
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Bounding ψ̂λ(γ + κK) as in (56), we obtain

|(h̃− ĥ)(γ)| ≤ cM
∑

κ∈Zd\{0}

|λγ|p
d∏
i=1

1
1 + |κi|ν

≤ cM λp |γ|p (61)

where the sum converges whenever ν > 1. Moreover, noting (22) and applying the
decay condition (28), we find

|(∇ψλ(· − x))̃(γ)| =
∣∣∣∣∑
κ∈Zd

i(γ + κK) e−i(γ+κK)·x ψ̂λ(γ + κK)
∣∣∣∣

≤ c
∑
κ∈Zd
|γ + κK|

d∏
i=1

1
1 + |κi|ν

≤ c

λ
, (62)

where, as in (56), the sum converges so long as ν > 2. Altogether,

|J1| ≤ cM λp−1
∑
γ∈Gd

σ(µγ) |γ|p . (63)

An integral estimate on the right hand sum yields a bound of the form (58). Simi-
larly,

|J2| ≤ cM
∑
γ∈Gd

σ(µγ)
d∏
i=1

1
1 + |λγi|ν

∑
κ∈Zd\{0}

|λγ|p |γ + κK|
d∏
i=1

1
1 + |κi|ν

. (64)

As before, this yields a bound of the form (58). Finally,

|J3| ≤ cM
∑

γ∈Zd\Gd
σ(µγ) |γ| ≤ cM λζ−d−1

µζ
. (65)

When λ ≤ µ and ζ > d+p, this term contributes to lower order than J1 and J2. �

Remark 1. In estimate (58) and also in Lemma 5 below, we obtain a negative
power of µ on the right. On the other hand, in the next Section 5 we will see that
a very similar expression yields an estimate of O(µ2). The difference is due to the
following. We can reorder the sums in (60), writing

(h̃− ĥ)(γ) =
∑

κ∈Zd\{0}

( N∑
k=1

mk e−i(γ+κK)·Xk
)
ψ̂λ(γ + κK) . (66)

Here, we have no reason to assume any structure on the distribution of the Xk,
so the best we can assert is that the inner sum is bounded by M . On the other
hand, when the Xk are on a regular grid, for example, as in the proof of Lemma 7
below, then the inner sum can be interpreted as a discrete Fourier transform with
correspondingly much tighter bounds. It is an open question whether, as the HPM
particles evolve, the particle locations retain sufficient uniformity for as long as the
potential energy error remains small to assert a bound which is substantially better
than the brute-force estimate used in the proof of Lemma 4.

Lemma 5. Suppose that the one-dimensional partition of unity kernel Θ satisfies a
Strang–Fix condition of order p and that its Fourier coefficients have decay exponent
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ν > 1. Further, suppose that the smoothing kernel σ has decay exponent ζ > 2p+d.
Then there exists a constant c such that, for λ ≤ µ,

‖Srµh− Srµh‖L2(Td) ≤ cM
λp

µp+d/2
. (67)

Proof. As in the proof of Lemma 4, we apply the Parseval identity, so that, using
(61), we obtain∫

Td
|(Srµ − Srµ)h|2 dx =

∑
γ∈Gd

σ(µγ) |h̃(γ)− ĥ(γ)|2 +
∑

γ∈Zd\Gd
σ(µγ) |ĥ(γ)|2

≤ c
∑
γ∈Zd

σ(µγ)M2 λ2p |γ|2p + cM2
∑

γ∈Zd\Gd
σ(µγ)

≤ cM2 λ2p

µ2p+d
+ cM2 λ

ζ−d

µζ
(68)

where convergence of the first sum on the second line is contingent upon ζ > 2p+d.
The contribution from the second sum is of lower order relative to the first under
this same condition provided λ ≤ µ. This completes the proof. �

Lemma 6. Suppose that the one-dimensional partition of unity kernel Θ satisfies a
Strang–Fix condition of order p and that its Fourier coefficients have decay exponent
ν > 1. Then for every s > p + d/2 there exists a constant c such that for all
g ∈ Hs(Td), ∣∣∣∣λd ∑

α∈Gd
hα gα −

∫
Td
h(x) g(x) dx

∣∣∣∣ ≤ cM λp ‖g‖Hs . (69)

Proof. By the continuous and discrete Parseval identities,

λd
∑
α∈Gd

hα gα −
∫

Td
h(x) g(x) dx

= (2π)d
∑
γ∈Gd

(h̃(γ)− ĥ(γ)) g̃(γ) + (2π)d
∑
γ∈Gd

ĥ(γ) (g̃(γ)− ĝ(γ))

+ (2π)d
∑

γ∈Zd\Gd
ĥ(γ) ĝ(γ)

≡ J1 + J2 + J3 . (70)

Using (61) to bound h̃− ĥ and the Poisson summation formula for g̃, we estimate

|J1| ≤ cM λp
∑
γ∈Gd
|γ|p

(∑
κ∈Zd
|ĝ(γ + κK)|

)

≤ cM λp
∑
γ∈Zd
|γ|p |ĝ(γ)| ≤ cM λp

( ∑
γ∈Zd\{0}

|γ|2(p−s)
) 1

2
‖g‖Hs , (71)

where the sums in the above expression converge due to s > p + d/2. Similarly,
using the uniform boundedness of the Fourier coefficients of ψ and the Poisson
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summation formula, we estimate

|J2| ≤ cM
∑
γ∈Gd

∑
κ∈Zd\{0}

|ĝ(γ + κK)| ≤ cM
( ∑
γ∈Zd\Gd

|γ|−2p−d
) 1

2
‖g‖

Hp+d/2
. (72)

An integral estimate on the remaining sum on the right yields once again a bound
of the form (69). Finally, J3 can be bounded as in (72). �

5. Initialization

The HPM method can be initialized in many different ways. In this paper, we
only consider initial particle placements on a uniform grid with mesh spacing Λ,
so that the initial particle positions Xk can be identified, by enumeration, with
the initialization mesh points {Xβ ≡ Λβ : β ∈ Hd} where H = Z ∩ [−L2 ,

L
2 ) with

Λ = 2π/L. For simplicity, we assume that L is an integer multiple of K or vice
versa, as this simplifies the argument. Similar results can be proved for more general
ratios of K and L.

Then, with the same identification between enumeration index k and multi-index
β, we set, at time t = 0,

mβ = Λd ρ(Xβ) and Uβ = u(Xβ) . (73)

Lemma 7. Suppose that the one-dimensional partition of unity kernel Θ satisfies
a Strang–Fix condition of order 2, and that its Fourier coefficients have decay expo-
nent ν > 1. Fix n ∈ N. For every K ∈ N, let L = nK. Then for every s > 2 + d/2
there exists a constant c such that for all ρ ∈ Hs(Td), for all µ ≤ 1 and for all K
sufficiently large, with h initialized as above,

sup
x∈Td
|(Srµh)(x)− ρ(x)| ≤ c (λ2 + µ2) ‖ρ‖Hs . (74)

Proof. Set g(x) = (Srµh)(x)− ρ(x). Then, for every γ ∈ Zd,

ĝ(γ) = (2π)d σr(µγ) h̃(γ) 1Gd(γ)− ρ̂(γ) . (75)

By the Poisson summation formula (159) and shift formula (151), we compute

h̃(γ) =
N∑
k=1

mk

∑
κ∈Zd

e−i(γ+κK)·Xk ψ̂λ(γ + κK)

= (2π)d
∑
κ∈Zd

1
Ld

∑
β∈Hd

e−i(γ+κK)·Xβ ρ(Xβ)FΨ(2πκ+ λγ)

= (2π)d
∑
κ∈Zd

∑
ι∈Zd

ρ̂(γ + κK + ιL)FΨ(2πκ+ λγ) (76)

where, in the last step, we have identified the β-sum as a discrete Fourier transform
on the Λ-grid and expressed it via the corresponding Poisson summation identity.

Now suppose that L = nK for some n ∈ N and write

h̃(γ) = (2π)d ρ̂(γ)FΨ(λγ) + (2π)d
∑

ι∈Zd\{0}

ρ̂(γ + ιnK)FΨ(λγ)

+ (2π)d
∑

κ∈Zd\{0}

∑
ι∈Zd

ρ̂(γ + (κ+ ιn)K)FΨ(2πκ+ λγ) . (77)
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Then

sup
x∈Td
|g(x)| ≤

∑
γ∈Zd
|ĝ(γ)|

≤
∑
γ∈Gd
|1− (2π)2dσr(µγ)FΨ(λγ)| |ρ̂(γ)|+

∑
γ∈Zd\Gd

|ρ̂(γ)|

+ (2π)2d
∑
γ∈Gd

σr(µγ)
∑

ι∈Zd\{0}

|ρ̂(γ + ιnK)| |FΨ(λγ)|

+ (2π)2d
∑
γ∈Gd

σr(µγ)
∑

κ∈Zd\{0}

∑
ι∈Zd
|ρ̂(γ + (κ+ ιn)K)| |FΨ(2πκ+ λγ)|

≡ G1 +G2 +G3 +G4 . (78)

To estimate G1, we proceed as in the proof of Lemma 3, noting that FΨ(0) =
σr(0) = (2π)−d and that FΨ and σr are even, so that their first order derivatives
vanish at the origin. As the second order derivatives are uniformly bounded, we
obtain

G1 ≤ c (λ2 + µ2)
∑
γ∈Gd
|γ|2 |ρ̂(γ)|

≤ c (λ2 + µ2)
( ∑
γ∈Zd\{0}

|γ|−2s+4

) 1
2
‖ρ‖Hs (79)

where the sum converges provided s > 2 + d/2. Next,

G2 ≤
( ∑
γ∈Zd\Gd

|γ|−4−d
) 1

2
‖ρ‖

H2+d/2 ≤ c λ2 ‖ρ‖
H2+d/2 . (80)

For G3, we note that σr and FΨ are uniformly bounded, so that G3 has a bound
of the form (80) as well. Finally, we estimate

G4 ≤ c
∑
γ∈Gd

∑
ι∈Zd
|ρ̂(γ + ιK)|

∑
κ∈Zd\{0}

|FΨ(2πκ+ λγ)|

≤ c
∑
γ∈Gd

∑
ι∈Zd
|ρ̂(γ + ιK)| |λγ|2

∑
κ∈Zd\{0}

d∏
i=1

1
1 + |κi|ν

≤ c λ2 ‖ρ‖Hs (81)

where we use an estimate of the form (56) in the second step. In the last step, we
note that the κ-sum converges whenever ν > 1, and that the remaining double-sum
can be estimated as in (79). �

Corollary 8. Under the assumptions of Lemma 7,

Q(0) ≤ cM (λ2 + µ2) ‖ρ‖Hs . (82)

Proof. The initial kinetic energy error is zero by construction. For the potential
energy error, we pull out one factor of Srµh−ρ in the L∞ norm and apply Lemma 7.
The remaining sums are, under the given assumptions, consistent approximations
of the total mass M . �
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The following lemma states the corresponding estimate for the case when the
initialization grid is coarser than the computational grid. This is a computationally
inefficient regime, but the result is interesting for looking at the SPH limit of HPM.

Lemma 9. Suppose that the global smoothing operator σ has decay exponent ζ > 2d.
Then for every s > 2 + d/2 there exists a constant c such that for every L ∈ N and
K = nL for sufficiently large n ∈ N, and for all ρ ∈ Hs(Td) and h initialized as
above,

sup
x∈Td
|(Srµh)(x)− ρ(x)| ≤ c

(
λ2 + µ2 + Λs−d/2 +

Λζ/2−d

µζ/2

)
‖ρ‖Hs . (83)

Proof. We follow the proof of Lemma 7. In place of (77) we split differently, writing

h̃(γ) = (2π)d ρ̂(γ)FΨ(λγ) + (2π)d
∑

κ∈Zd\{0}

ρ̂(γ + κnL)FΨ(2πκ+ λγ)

+ (2π)d
∑
κ∈Zd

∑
ι∈Zd\{0}

ρ̂(γ + (κn+ ι)L)FΨ(2πκ+ λγ) . (84)

Then G1 and G2 remain as before. The new G3 reads

G3 = (2π)2d
∑
γ∈Gd

σr(µγ)
∑

κ∈Zd\{0}

|ρ̂(γ + κnL)| |FΨ(2πκ+ λγ)| , (85)

which can be estimated as G4 in the previous case. The new G4 reads

G4 = (2π)2d
∑
γ∈Gd

σr(µγ)
∑
κ∈Zd

∑
ι∈Zd\{0}

|ρ̂(γ + (κn+ ι)L)| |FΨ(2πκ+ λγ)|

= (2π)2d
∑
γ∈Gd

σr(µγ)
∑

ι∈Zd\{0}

|ρ̂(γ + ιL)|
∑
κ∈Zd
|FΨ(2πκ+ λγ)| (86)

where now we can only assert convergence of the κ sum uniformly in γ due to the
decay condition on FΨ. Hence,

G4 ≤ c
∑
γ∈Hd

∑
ι∈Zd\{0}

|ρ̂(γ + ιL)|+ c
∑

γ∈Gd\Hd
σr(µγ)

∑
ι∈Zd\{0}

|ρ̂(γ + ιL)|

≤ c
∑

γ∈Gd\Hd
|ρ̂(γ)|+ c

∑
γ∈Zd\Hd

σr(µγ)
∑
β∈Zd
|ρ̂(β)|

≤ cΛq ‖ρ‖
Hq+d/2

+ c
Λζ/2−d

µζ/2
‖ρ‖

H1+d/2 (87)

where we have estimated the left hand sum as in (80) and note that the first sum
in the right hand term converges provided d < ζ/2; an integral estimate then yields
the final upper bound. Collecting terms and setting q = s−d/2, we obtain (83). �

With the same argument as in the proof of Corollary 8, we can state the following.

Corollary 10. Under the assumptions of Lemma 9,

Q(0) ≤ cM
(
λ2 + µ2 + Λs−d/2 +

Λζ/2−d

µζ/2

)
‖ρ‖Hs . (88)
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6. Time dependent estimates

We have now assembled all necessary tools to state and prove our main result
on the convergence of the HPM method.

Theorem 11. Assume that the barotropic fluid equations (1) possess a classical
solution of class

u, ρ ∈ C1([0, T ];H4+d(Td)) (89)
for some T > 0. Suppose that the one-dimensional partition of unity kernel Θ is
even and compactly supported as in Section 2, satisfies a Strang–Fix condition of
order p ≥ 3, has Fourier coefficients decaying with exponent ν > 2 in (28), and
satisfies

|FΘ(ξ)| ≥ c for ξ ∈ [−π, π] (90)
with some constant c. Suppose further that the symbol σ of the global smoothing
operator satisfies the conditions of Section 3.2 with ` = 2+dd/2e and decay exponent
ζ > 2p+ d.

Now fix n ∈ N. For every K ∈ N, set N = (nK)d and let X1(t), . . . , XN (t)
denote the solution to the HPM system (6), initialized on a regular grid as described
in Section 5, Lemma 7. Then there exist constants C1 and C2 such that for all µ ≤ 1
and K so large that supp Θ ⊂ (−K/2,K/2) and λ ≤ µ,

Q(t) ≤ C1 eC2t

(
µ2 +

λp−1

µp+d

)
(91)

for all t ∈ [0, T ].

Remark 2. Except in d = 1, the L2-sense of convergence asserted by Theorem 11 is
too weak to say anything about convergence of individual trajectories. In particular,
the weights mk in the expression for the error of the particle velocities in Qkin decay
like N−1, hence faster than the right hand side of the error estimate (91).

Let us consider a few special cases. First, under the assumption that µ = λa,
the two terms in the error estimate (91) scale identically when

a =
p− 1

p+ d+ 2
. (92)

Then the following error estimates result.

Corollary 12. Under the assumptions of Theorem 11, take µ = λa, where a is
given by (92). Then there exist constants C1 and C2 such that

Q(t) ≤ C1 eC2t λ
2(p−1)
p+d+2 (93)

for all t ∈ [0, T ].

Remark 3. The exponent in estimate (93) tends to 2 as p→∞.

If the one-dimensional partition of unity kernel is a cubic spline, then ν = 4 and
p = 4 as stated in Section 2.5. Hence, with

µ = λ
3

6+d (94)

and provided that ζ > 8 + d, we have the error estimate

Q(t) ≤ C1 eC2t λ
6

6+d (95)
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for all t ∈ [0, T ]. If we use an inverse power of the Helmholtz operator for global
smoothing, we must require that q > 4 + d/2. Thus, our proof excludes the case
studied in [8] where q = 2. In this case, we would not even be able to apply
Theorem 11 with p = 1, so our approach does not even yield a proof of convergence.

Proof of Theorem 11. The time evolution of the error functional is given by

dQ
dt

=
N∑
k=1

mk

(
Uk − u(Xk)

)
·
(
U̇k −

d
dt
u(Xk)

)
+ λd

∑
α∈Gd

(
(Srµh)α − ρ(xα)

)(
(Srµḣ)α − ρ̇(xα)

)
. (96)

Inserting the particle momentum equation (6b) for U̇k, noting that, due to (6a) and
the shallow water momentum equation (1a),

d
dt
u(Xk) = u̇(Xk)+Uk ·∇u(Xk) = −u(Xk)·∇u(Xk)−∇ρ(Xk)+Uk ·∇u(Xk) , (97)

noting that, due to the definition of the HPM height field (6c),

ḣα = −
N∑
k=1

mk Uk · ∇ψλ(xα −Xk) , (98)

inserting the shallow water continuity equation (1b) for ḣ, and regrouping terms,
we obtain

dQ
dt

= A0 +A1 +A2 +A3 (99)

where

A0 =
N∑
k=1

mk Uk · U̇k + λ3d
∑

α,β,γ∈Gd
Sµ,rα−β hβ S

µ,r
α−γ ḣγ

=
N∑
k=1

mk Uk · U̇k + λ2d
∑

α,β∈Gd
Sµα−β hβ ḣα = 0 , (100a)

A1 =
N∑
k=1

mk

(
Uk − u(Xk)

)
·
(
(u(Xk)− Uk) · ∇u(Xk)

)
, (100b)

A2 =
N∑
k=1

mk Uk · ∇ρ(Xk)− λ2d
∑

α,β∈Gd
ρ(xα)Sµ,rα−β

N∑
k=1

mk Uk · ∇ψλ(xβ −Xk) ,

(100c)

and

A3 = −
N∑
k=1

mk u(Xk) · (U̇k +∇ρ(Xk))

+ λ2d
∑

α,β∈Gd
Sµ,rα−β hβ ∇ · (ρu)(xα)− λd

∑
α∈Gd

ρ(xα)∇ · (ρu)(xα) . (100d)
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We now seek estimates for the nonzero terms A1, A2, and A3. For A1, we can
proceed directly as in [23], estimating

|A1| ≤
N∑
k=1

mk |Uk − u(Xk)|2 |∇u(Xk)| ≤ c ‖∇u‖L∞ Qkin . (101)

For A2, we estimate

|A2| =
∣∣∣∣ N∑
k=1

mk Uk ·
(
∇ρ(Xk)− λ2d

∑
α,β∈Gd

ρ(xα)Sµ,rα−β ∇ψλ(xβ −Xk)
)∣∣∣∣

≤
N∑
k=1

mk |Uk| sup
x∈Td

∣∣∣∣∇ρ(x)− λ2d
∑

α,β∈Gd
ρ(xα)Sµ,rα−β ∇ψλ(x− xβ)

∣∣∣∣ . (102)

Recalling (7) and using the Cauchy–Schwarz inequality, we find

N∑
k=1

mk |Uk| ≤
N∑
k=1

mk |u(Xk)|+
N∑
k=1

mk |Uk − u(Xk)|

≤M ‖u‖L∞ +
√
M

( N∑
k=1

mk |Uk − u(Xk)|2
) 1

2
,

≤M ‖u‖L∞ +
√
M
√
Q (103)

Inserting this estimate back into (102) and applying Lemma 3 to the second term
on the right of (102), we find

|A2| ≤ (M ‖u‖L∞ +
√
M
√
Q) c (λ2 + µ2) ‖ρ‖Hs ≤ C (λ2 + µ2) (M +Q) . (104)

To estimate the final group of terms, we note that

−
N∑
k=1

mk u(Xk) · U̇k =
N∑
k=1

mk u(Xk) · λd
∑
α∈Gd

(Sµh)α∇ψλ(Xk − xα) (105)

and define, as in [23],

Y (x) =
N∑
k=1

mk δ(x−Xk)− ρ(x) . (106)
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We can then write A3 = A31 + · · ·+A35 with

A31 =
N∑
k=1

mk u(Xk) ·
(
λd
∑
α∈Gd

(Sµh)α∇ψλ(Xk − xα)

−
∫

Td
Sµh(y)∇ψλ(Xk − y) dy

)
, (107a)

A32 =
∫

Td
u(x) ·

∫
Td
Sµ(ψλ ∗ Y )(y)Y (x)∇ψλ(x− y) dy dx , (107b)

A33 = −
N∑
k=1

mk u(Xk) ·
(
∇(ψλ ∗ Sµ(ψλ ∗ ρ))(Xk)−∇ρ(Xk)

)
, (107c)

A34 =
∫

Td
(ψλ ∗ Sµ(ψλ ∗ ρ))(x)∇ · (ρu)(x) dx− λd

∑
α∈Gd

ρα∇ · (ρu)α , (107d)

and

A35 = λd
∑
α∈Gd

(Srµh)α∇ · (ρu)α −
∫

Td
(ψλ ∗ Sµh)(x)∇ · (ρu)(x) dx . (107e)

A direct application of Lemma 4 shows that

|A31| ≤ c ‖u‖L∞M
2 λ

p−1

µp+d
. (108)

To estimate A32, we adopt the strategy of [23], writing

A32 =
∫

Td
u(x) ·

∫
Td
Srµ(ψλ ∗ Y )(y)Y (x)∇Srµ(ψλ(x− ·))(y) dy dx

=
∫

Td
Srµ(ψλ ∗ Y )(y)

∫
y+Td

Y (x)u(x) · ∇Srµ(ψλ(x− ·))(y) dxdy , (109)

where we notice that the inner integrand is, by definition, periodic in x so that
the inner integral is invariant under translations of its domain of integration. We
denote this inner integral by Z(y) and write

Z(y) =
∫
y+Td

Y (x)u(x) · ∇Srµ(ψλ(x− ·))(y) dx

=
∫
y+Td

Y (x)u(x) ·
∑
γ∈Zd

eiγ·(y−x) σr(µγ) iγ FΨ(λγ)

=
∫
y+Td

Y (x)u(x) · gper(y − x) dx

=
∫

Td
Y (y − z)u(y − z) · gper(z) dz

=
∫

Rd
Y (y − z)u(y − z) · g(z) dz (110)

where the final equality is based on identity (142) with

g(z) =
∫

Rd
eiξ·z σr(µξ) iξFΨ(λξ) dξ . (111)
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We now Taylor expand u(y − z) about y,

u(y − z) =
∑
|k|≤`

Dku(y)
k!

(−z)k +
∑
|k|=`+1

`+ 1
k!

(−z)k
∫ 1

0

(1− s)` Dku(y − sz) ds ,

(112)
and substitute into (109). Here k is a multi-index; we denote the part of Z(y)
associated with each k by Zk, and the corresponding part of A32 by Tk. At lowest
order,

Z0(y) =
∫

Rd
Y (y − z)u(y) · g(z) dz

= u(y) ·
∫

Td
Y (y − z) gper(z) dz (113)

so that, reversing the steps taken in (110),

|T0| =
∣∣∣∣∫

Td
Srµ(ψλ ∗ Y )(y)u(y) · ∇Srµ(ψλ ∗ Y )(y) dy

∣∣∣∣
=

1
2

∣∣∣∣∫
Td
∇ · u

(
Srµ(ψλ ∗ Y )

)2 dy
∣∣∣∣

≤ 1
2 ‖Du‖L∞(Td) ‖S

r
µ(ψλ ∗ Y )‖2

L2(Td) . (114)

For 1 ≤ |k| ≤ `,

Tk =
∫

Td
Srµ(ψλ ∗ Y )(y)Zk(y) dy (115)

where

Zk(y) =
(−1)|k|

k!
Dku(y) ·

∫
Rd
Y (y − z) zk g(z) dz

=
(−1)|k|

k!
Dku(y) ·

∫
Td
Y (y − z) gper

k (z) dz , (116)

with gk(z) = zk g(z). Then

|Tk| = c ‖Dku‖
L∞(Td) ‖S

r
µ(ψλ ∗ Y )‖

L2(Td)

(∑
γ∈Zd
|Ŷ (γ)|2 |Fgk(γ)|2

) 1
2

(117)

with

|Fgk(γ)| = 1
(2π)d

∣∣∣∣∫
Rd

e−iz·γ zk
∫

Rd
eiz·ξ σr(µξ) iξFΨ(λξ) dξ dz

∣∣∣∣
=
∣∣Dk

γ

[
γ σr(µγ)FΨ(λγ)

]∣∣
=
∣∣∣∣∑
j≤k

(
k

j

)
Dj
γ

[
γ σr(µγ)

]
Dk−j
γ FΨ(λγ)

∣∣∣∣
≤ |γ|σr(µγ)λ|k| (DkFΨ)(λγ) + c

∑
0<j≤k

µ|j|−1
∣∣Dj

β

[
β σr(β)

]∣∣
≤ c (λ |γ|+ 1)σr(µγ) , (118)

where β = µγ, we employed the uniform bounds on derivatives of FΨ, and we used
assumption (43a) on the global smoothing kernel. We must now distinguish two
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cases. When γ ∈ Gd, λ |γ| ≤ π and, by assumption (90), FΨ(λγ) is bounded from
below. When γ ∈ Zd \ Gd, λ |γ| > π and no such lower bound exists due to the
Strang–Fix condition on Ψ. Hence,

|Fgk(γ)| ≤

{
c σr(µγ) |FΨ(λγ)| for γ ∈ Gd

c λ |γ|σr(µγ) for γ ∈ Zd \Gd .
(119)

Plugging (119) into (117), further noting that |Ŷ (γ)| ≤ ‖Y ‖L1 ≤ cM , we obtain

|Tk| ≤ C ‖Srµ(ψλ ∗ Y )‖
L2(Td)

(
‖Srµ(ψλ ∗ Y )‖

L2(Td) + λM

( ∑
γ∈Zd\Gd

|γ|2 σ(µγ)
) 1

2
)

≤ C ‖Srµ(ψλ ∗ Y )‖2
L2(Td) +M2 λ

ζ−d

µζ
(120)

provided the decay exponent of the global smoothing kernel satisfies ζ > d+2. The
second term in this estimate is of lower order relative to (108) when, for example,
p > 2, as is assumed throughout.

When |k| = `+ 1, we have

Tk = (`+ 1)
∫

Td
Srµ(ψλ ∗ Y )(y)

∫ 1

0

(1− s)` Zk(y; s) dsdy (121)

where

Zk(y; s) =
(−1)|k|

k!

∫
Rd
Y (y − z) Dku(y − sz) · gk(z) dz

= (2π)d
(−1)|k|

k!

∑
α,γ∈Zd

eiγ·y Ŷ (α) (Dku)̂(γ − α)Fgk(α+ s(γ − α)) . (122)

Hence,

‖Zk(y; s)‖2
L2(Td) ≤ c ‖Y ‖

2

L1(Td)

∑
γ∈Zd

(∑
α∈Zd
|(Dku)̂(γ − α)| |Fgk(α+ s(γ − α))|

)2

= cM2
∑

β,β′,γ∈Zd
|(Dku)̂(β)| |(Dku)̂(β′)| |Fgk(γ + (s− 1)β)| |Fgk(γ + (s− 1)β′)|

≤ cM2

(∑
β∈Zd
|(Dku)̂(β)|

)2

sup
τ∈[0,1]

∑
γ∈Zd
|Fgk(γ + τ)|2 . (123)

To proceed, we estimate, similarly as in (118),

|Fgk(γ)| ≤ |γ|σr(µγ)λ`+1 (DkFΨ)(λγ) + µ`
∣∣Dk

β

[
β σr(β)

]∣∣ |FΨ(λγ)|

+ c
∑

0<j<k

µ|j|−1
∣∣Dj

β

[
β σr(β)

]∣∣λ|k−j| |(DkFΨ)(λγ)|

≤ c (µ`+1 |γ|+ µ`)σr(µγ) + c µ`
∣∣Dk

β

[
β σr(β)

]∣∣ , (124)

where, as before, β = µγ. Further, we have assumed λ ≤ µ, employed the uniform
bounds on derivatives of FΨ, and used assumption (43a) on the global smoothing
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kernel. Inserting (124) into (123) and using assumption (43b), each of the terms
contributes the same bound, namely

‖Zk( · ; s)‖L2
≤ cM ‖u‖Hs µ

`−d/2 (125)

for s > ` + 1 + d/2 where, to obtain a finite bound from the contribution of the
first term on the right of (124), the decay exponent of the global smoothing kernel
σ must satisfy ν > d. So, altogether,

|Tk| ≤ C ‖Srµ(ψλ ∗ Y )‖2
L2(Td) +M2 µ2`−d . (126)

To complete the estimation of A32, we define

ρsamp(x) =
∑
γ∈Gd

eiγ·x ρ̃(γ) , (127)

and note that Qpot = 1
2 ‖S

r
µh− ρsamp‖2L2

. Hence,

‖Srµ(ψλ ∗ Y )‖L2
= ‖Srµh− Srµ(ψλ ∗ ρ)‖L2

≤ ‖Srµh− Srµh‖L2
+ ‖Srµh− ρsamp‖L2

+ ‖ρsamp − Srµ(ψλ ∗ ρ)‖L2

≤ cM λp

µp+d/2
+
√

2Qpot + c (λ2 + µ2) ‖ρ‖Hs (128)

where, in the last inequality, the first term was estimated using Lemma 5, and
the last term was estimated using Lemma 16, Lemma 2, and Lemma 1, where we
require that s > 2 + d/2. Altogether, with ` = 2 + dd/2e and ζ > 2p+ d, we obtain

|A32| ≤ C Q+ C (λ2 + µ2) +M2 λ2p

µ2p+d
. (129)

To estimate A33, we proceed as in (108), here referring to Lemma 2 and Lemma 1
with s > 3 + d/2, thereby obtaining

|A33| ≤ c ‖u‖L∞M (λ2 + µ2) ‖ρ‖Hs+1 . (130)

The smoothness assumptions on ρ and u imply that the second term in (107d) is
a (better than) O(λ2) approximation to the corresponding integral, see Lemma 15.
Using Lemma 2 and Lemma 1 once again, we find that A34 possesses the upper
bound

|A34| ≤ c (λ2 + µ2) ‖ρ‖Hs ‖ρ‖Hs−1 ‖u‖Hs−1 (131)

so long as s > 2 + d/2.
Finally, to estimate A35, we note the self-adjointness of the various smoothing

and convolution operators and write

A35 = λd
∑
α∈Gd

hα (Srµ∇ · (ρu))α −
∫

Td
h(x)Sµ(ψλ ∗ ∇ · (ρu))(x) dx

= λd
∑
α∈Gd

hα
[
(Srµ∇ · (ρu))α − Sµ(ψλ ∗ ∇ · (ρu))α

]
+ λd

∑
α∈Gd

hα gα −
∫

Td
h(x) g(x) dx , (132)
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where g(x) = Sµ(ψλ ∗ ∇ · (ρu))(x). Applying Lemma 16, Lemma 2, and Lemma 1
to the first term on the right, and Lemma 6 to the second term on the right, we
obtain

|A35| ≤ cM (λ2 + µ2) ‖ρu‖Hs (133)
provided the Strang–Fix condition of the one-dimensional partition of unity kernel
Θ is of order p ≥ 2, and that s > 3 + d/2.

Collecting all the contributions to the differential inequality for Q(t) and drop-
ping lower order contributions, we obtain

dQ
dt
≤ C

(
Q+ µ2 +

λp−1

µp+d

)
(134)

Due to the initial error bound provided by Corollary 8, the error bound (91) follows
from a direct application of the Gronwall inequality. �

7. The SPH limit

All estimates in the proof of Theorem 11 are uniformly valid for λ small. We
can therefore take the limit λ→ 0 and obtain the following convergence result for
the SPH method on a periodic domain.

Theorem 13. Assume that the barotropic fluid equations (1) possess a classical
solution of class (89) for some T > 0. Suppose further that the symbol σ of the
global smoothing operator satisfies the conditions of Section 3.2 with ` = 2 + dd/2e
and decay exponent ζ > max{6 + d, 2d}.

Take L ∈ N, set N = Ld, and let X1(t), . . . , XN (t) denote the solution to the
HPM system (6), initialized on a regular grid as described in Section 5, Lemma 9.
Then there exist constants C1 and C2 such that for all µ ≤ 1,

Q(t) ≤ C1 eC2t

(
µ2 +

Λζ/2−d

µζ/2

)
(135)

for all t ∈ [0, T ].

In (135), the potential energy term in the error functional is understood in the
sense that the Riemann sum has converged to the corresponding integral as λ→ 0.

Proof of Theorem 13. Take any partition of unity kernel Ψ which satisfies the as-
sumptions of Theorem 11 with p = 3. Now follow the proof of Theorem 11 up to
(134) and let λ→ 0. Due to the initial error bound provided by Corollary 10, also
applied in the limit λ→ 0, (135) follows via the Gronwall inequality. �

Under the assumption that µ = Λa, the two terms in the error estimate (135)
scale identically when

a =
ζ − 2d
ζ + 4

. (136)

Then the following error estimate results.

Corollary 14. Under the assumptions of Theorem 13, take µ = λa, where a is
given by (136). Then there exist constants C1 and C2 such that

Q(t) ≤ C1 eC2t Λ
2ζ−4d
ζ+4 (137)

for all t ∈ [0, T ].
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Remark 4. The exponent in estimate (137) tends to 2 as ζ →∞.

Remark 5. In the case of periodic SPH, we could easily reduce our proof to a minor
modification of Oelschläger’s proof [23]. Comparing term by term, we note two
main differences between our result and his: First, Oelschläger did not assume that
the SPH kernel is even. Without this assumption, the smoothing error estimate
Lemma 2 and related arguments only yield a bound of O(µ). This carries through
the argument, so that the second term in (134) is also only linear in µ. An O(µ2)
estimate for SPH using symmetry of the kernel was already given by Price [24].

Second, Oelschläger takes a probabilistic view on the initialization procedure,
assuming that the particles are initially random variables, independently and iden-
tically distributed with density ρ. The corresponding bound on the expected error
is weaker than our deterministic initialization error bound Corollary 10, and the
resulting time dependent error bound must also be read as an expected value.

Appendix A. Fourier Transforms

In two appendices we recall basic facts of Fourier analysis. Although this is
entirely textbook material [13, 27], it is necessary to be very clear about conventions
because our proofs interlink the Fourier transform on Rd, the periodic Fourier
transform, and the discrete Fourier transform in the limit of vanishing mesh size.

A.1. Fourier transform on Rd. We denote the Fourier transform of a function
f ∈ L2(Rd) by

Ff(ξ) =
1

(2π)d

∫
Rd

e−iξ·x f(x) dx . (138)

The Dirac delta distribution has the representation
1

(2π)d

∫
Rd

eiξ·x dx = δ(ξ) , (139)

which implies the Fourier inversion formula

f(x) =
∫

Rd
eiξ·x Ff(ξ) dξ . (140)

A function g ∈ L2(Rd) which is decaying sufficiently fast such that its Fourier
transform Fg is continuous can be periodized by setting

gper(x) =
∑
β∈Zd

eiβ·x Fg(β) . (141)

Then, if f ∈ L2(Td), periodically extended to Rd,∫
Rd
f(x) g(x) dx =

∫
Td
f(x) gper(x) dx . (142)

A.2. Fourier transform on Td. For f ∈ L1(Td), we define the Fourier transform

f̂(β) =
1

(2π)d

∫
Td

e−iβ·x f(x) dx , (143)

where β ∈ Zd. For future reference, we note the orthogonality relation

1
(2π)d

∫
Td

eiβ·x dx = δβ ≡

{
1 for β = 0
0 otherwise ,

(144)
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which implies the Fourier inversion formula

f(x) =
∑
β∈Zd

eiβ·x f̂(β) (145)

and Parseval identity ∫
Td
f(x) g(x) dx = (2π)d

∑
γ∈Zd

f̂(γ) ĝ(γ) (146)

for f, g ∈ L2(Td), where the over-bar denotes the complex conjugate. Further, we
write

(f ∗ g)(x) =
∫

Td
f(y) g(x− y) dy (147)

to denote the convolution of two periodic functions (where, as before, the arguments
are understood as referring to the periodic extension when not in the fundamental
domain), so that

(f ∗ g)̂(β) = (2π)d f̂(β) ĝ(β) (148)
and

(fg)̂(β) =
∑
γ∈Zd

f̂(γ) ĝ(β − γ) . (149)

We recall that differentiation of f transforms into multiplication of its Fourier
transform by iβ, namely

∇f(x) =
∑
β∈Zd

eiβ·x iβ f̂(β) ; (150)

finally, we recall the shift formula

f(· − y)̂(β) = e−iβ·y f̂(β) . (151)

A.3. Discrete Fourier transform. For the finite set of point values (fα)α∈Gd , we
define their discrete Fourier transform

f̃(β) =
1
Kd

∑
α∈Gd

e−iβ·xα fα , (152)

where β ∈ Gd. The corresponding orthogonality relation is

1
Kd

∑
α∈Gd

eiβ·xα = δper
β ≡

{
1 for β = 0 mod K

0 otherwise
, (153)

which implies the inversion formula

fα =
∑
β∈Gd

eiβ·xα f̃(β) (154)

and the discrete Parseval identity

λd
∑
α∈Gd

fα gα = (2π)d
∑
β∈Gd

f̃(β) g̃(β) . (155)

The above relations extend periodically to all α, β ∈ Z. We denote the discrete
convolution of such periodically extended fα and gα by

(f ~ g)α = λd
∑
β∈Gd

fβ gα−β , (156)
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so that
(f ~ g)̃(β) = (2π)d f̃(β) g̃(β) . (157)

Finally, we quote the shift formula for the discrete Fourier transform,

(f·−γ )̃(β) = e−iβ·xγ f̃(β) . (158)

For a function f ∈ C(Td), we can set fα ≡ f(xα). If, moreover, f̂ ∈ `1(Zd),
the Fourier transform and the discrete Fourier transform of f are related via the
Poisson summation formula

f̂(β)− f̃(β) = −
∑

κ∈Zd\{0}

f̂(β + κK) (159)

for every β ∈ Gd.

Appendix B. Sobolev spaces

We write Hs(Td) to denote the Sobolev space of Lebesgue measurable functions
whose weak derivatives up to order s belong to L2(Td) endowed with norm

‖f‖2Hs = (2π)d
∑
β∈Zd

(1 + |β|2)s |f̂(β)|2 . (160)

For our purposes, all functions are real-valued, although we state fundamental
properties like the Parseval identity for the complex-valued case for clarity.

For later reference, we state a simple fact on the accuracy of equidistant quad-
rature for functions in Hs.

Lemma 15. For every s > d/2 there exists a constant c such that for every f ∈
Hs(Td), ∣∣∣∣∫

Td
f(x) dx− λd

∑
α∈Gd

f(xα)
∣∣∣∣ ≤ c λs ‖f‖Hs(Td) . (161)

Proof. By definition, the left side of (161) equals |f̂(0)− f̃(0)|. Using the Poisson
summation formula and the Cauchy–Schwarz inequality, we estimate

|f̂(0)− f̃(0)| ≤
∑

γ∈Zd\{0}

|f̂(Kγ)|

≤
( ∑
γ∈Zd\{0}

(K|γ|)−2s

) 1
2
( ∑
γ∈Zd\{0}

(K|γ|)2s |f̂(Kγ)|2
) 1

2

≤ K−s
( ∑
γ∈Zd\{0}

|γ|−2s

) 1
2
‖f‖

Hs(Td) , (162)

where the right hand sum converges whenever s > d/2. �

A direct consequence of the Poisson summation formula is the following sampling
error estimate.

Lemma 16. For every s > d/2 there exists a constant c such that for every f ∈
Hs(Td),

sup
x∈Td

∣∣∣∣f(x)−
∑
β∈Gd

eiβ·x f̃(β)
∣∣∣∣ ≤ c λs−d/2 ‖f‖Hs(Td) . (163)
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Proof. Due to the Fourier inversion formula (145) in the first step and the Poisson
summation formula (159) in the second step,∣∣∣∣f(x)−

∑
β∈Gd

eiβ·x f̃(β)
∣∣∣∣ ≤ ∑

β∈Gd
|f̂(β)− f̃(β)|+

∑
β∈Zd\Gd

|f̂(β)|

≤ 2
∑

β∈Zd\Gd
|f̂(β)|

≤ 2
( ∑
γ∈Zd\Gd

|γ|−2s

) 1
2
( ∑
γ∈Zd\Gd

|γ|2s |f̂(γ)|2
) 1

2
. (164)

The claim follows by an integral estimate on the first sum on the last line. �
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