
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2011.31.827
DYNAMICAL SYSTEMS
Volume 31, Number 3, November 2011 pp. 827–846

HAMILTONIAN FORMALISM FOR MODELS OF ROTATING

SHALLOW WATER IN SEMIGEOSTROPHIC SCALING

Marcel Oliver and Sergiy Vasylkevych

School of Engineering and Science
Jacobs University

28759 Bremen, Germany

(Communicated by Sergei Kuksin)

Abstract. This paper presents a first rigorous study of the so-called large-

scale semigeostrophic equations which were first introduced by R. Salmon in

1985 and later generalized by the first author. We show that these models are
Hamiltonian on the group of Hs diffeomorphisms for s > 2. Notably, in the

Hamiltonian setting an apparent topological restriction on the Coriolis param-

eter disappears. We then derive the corresponding Hamiltonian formulation
in Eulerian variables via Poisson reduction and give a simple argument for the

existence of Hs solutions locally in time.

1. Introduction. The study of so-called balance models which describe approxi-
mate slow manifolds in Hamiltonian systems with strong gyroscopic forces in the
limit of vanishing inertia is a recurring theme in geophysical fluid dynamics. This
regime is known as the semi-geostrophic limit, the small parameter is known as the
Rossby number [22]. It is typical for mid-latitude large-scales flows in atmosphere
and ocean, particularly for the dynamics of strong fronts.

It is well known that the equations of motion of the parent dynamics, in the
simplest and most typical case the rotating shallow water equations, can be derived
as the Euler–Lagrange equations from a Hamilton principle. We study approximate
equations for the dynamics on the slow time scale which, formally, preserve this
structure. One classical example of such structure preserving models for the slow
dynamics are the semigeostrophic equations [10, 11] which, using a transformation
proposed by Hoskins [12], can be transformed into a coordinate system in which
they can be solved by simple advection of the scalar potential vorticity coupled with
a nonlinear elliptic equation for the velocity in terms of the potential vorticity. The
Hoskins transformation can be interpreted as a Legendre transform; this observation
is the key to the proof of well-posedness [4, 7].

While the derivation of the semigeostrophic equations as a structure-preserving
approximation was historically incidental, Salmon [20, 21] pioneered the point of
view that such reduced models can be derived systematically by performing all
approximations on the variational principle. If the symmetries of the Lagrangian—
here the time translation invariance and the particle relabeling symmetry—are
preserved, the resulting equations of motion will have analogs of the appropriate
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physical conservation laws—here the conservation of energy and the advection of
potential vorticity.

In his 1985 paper [20], Salmon suggested two models for semigeostrophic flow, the
so-called L1 and the LSG model. The former is obtained by constraining the shallow
water Hamilton principle to geostrophic balance, the latter differs by a near-identity
change of coordinates with higher order terms dropped. While the L1 model is well
posed (in fact, its local well-posedness is a special case of our results in Section 7),
the LSG model, though formally distinguished by its canonical symplectic structure,
appears to be ill posed.

Based on the observation that all these existing reduced models have an affine
Lagrangian (a Lagrangian which is linear in the velocities and thus degenerate), a
reinterpretation of Salmon’s method was proposed in [16]. The two steps of Salmon’s
procedure—constraining the phase space followed by an approximate near-identity
change of coordinates—can be reversed. Namely, a natural first step is to choose a
near-identity change into new coordinates such that the perturbation expansion in
the Rossby number of the transformed Lagrangian degenerates when consistently
truncated to a chosen order. A degenerate Lagrangian will subsequently imply
so-called Dirac constraints. Thus, the constraints arise as a consequence of the
dropping of higher order terms, not as an a priori assumption.

This new point of view has three advantages. First, there is only one approxi-
mation step—the truncation of a single asymptotic series—which is conceptionally
cleaner and potentially more amenable to rigorous analysis. Second, it is more
general. There are entire classes of near-identity transformations which render the
truncated transformed Lagrangian degenerate. In particular, there are distinguished
cases which have not been noted before. Third, all classical nearly geostrophic mod-
els can be expressed in this framework and can therefore be consistently compared.

As in [20], we use the rotating shallow water equations in semigeostrophic scaling
as a model setting. The derivation of first order approximate models via the trans-
formational approach is carried out in [16] for constant Coriolis parameter f and
in [17] for a spatially varying Coriolis parameter. We call the resulting models gen-
eralized LSG equations (GLSG). They can be formulated as an advection equation

∂tq + u · ∇q = 0 (1a)

for the potential vorticity

q =
f + ε (λ+ 1

2 ) ∆h

h
. (1b)

The system is closed via a relation which expresses the advecting velocity field u in
terms of the layer depth h,[

f − ε (λ+ 1
2 ) (h∆ + 2∇h · ∇)

]
u = ∇⊥

[
h− ε λ (2h∆h+ |∇h|2)

]
. (1c)

In the above, λ is a free parameter which determines the choice of coordinates for
the balance model. There are several distinct values: λ = 1

2 yields Salmon’s L1

dynamics, λ = − 1
2 yields Salmon’s LSG equations, both proposed in [20]. The

remaining choices of λ are unexplored. We remark that when λ = 0, by an elliptic
regularity argument, the q-u inversion gains three derivatives; it gains one derivative
at best for all other choices of λ.

We note that the generalized LSG equations are different from the classical semi-
geostrophic equations [12], although they apply in the same asymptotic limit. De-
spite the remarkable structure of the latter [4, 7], there are at least two reasons to
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look at alternatives. First, the semigeostrophic equations become unwieldy for non-
constant Coriolis parameter (structure persists in so-called vorticity coordinates,
but explicit formulas and invertibility criteria are hard to come by, see the discus-
sion in [19, 17]). Further, second order semigeostrophic models are hard to derive
and we do not know about any structural or analytically rigorous results. The gen-
eralized LSG framework appears to be principally suited for a systematic study of
higher order models, although they get complicated so quickly that this possibility
may not be of practical concern [16].

All the results quoted above are purely formal. In this paper, we make a first
step toward a rigorous understanding of the generalized LSG equations. First, we
present a geometric framework for the reduced system. A typical fluid dynamical
system is Hamiltonian on the cotangent bundle of a diffeomorphism group. In the
reduced case, the phase space is the group of Hs diffeomorphisms itself. Though this
is not particularly surprising in the light of the observed reduction in the degrees of
freedom of the system, we are then able to give sufficient conditions which ensure
that the symplectic form is non-degenerate.

Our results, in particular, clarify the following issue that was left open in [16].
The Lagrangian formulation of the rotating shallow water equations as well as the
derivation of nearly geostrophic approximations via variational asymptotics neces-
sarily require that the Coriolis parameter is exact (i.e., that it can be written as the
curl of a vector potential). We show here that the Hamiltonian form of the equa-
tions is valid, however, without unphysical topological restrictions on the Coriolis
parameter. The resolution is based on the observation that GLSG symplectic form
on the torus does not arise from variational principle as a pullback of the canonical
symplectic form via Legendre transform. Instead, it is a sum of two closed two-
forms subordinate to the decomposition of the Coriolis parameter into zero-mean
and constant parts, respectively. The first of these summands is, in fact, a pull-back
form, while the other is a symplectic form specific to the diffeomorphism group of
the two-torus.

The paper is organized as follows. Section 2 reviews notation and basic concepts
from the theory of diffeomorphism groups and how it applies to fluid flow. Section 3
introduces the class of models we are studying and sketches their derivation. In
Section 4, we derive the Hamiltonian formulation of these models in the Lagrangian
representation. In Section 5, we derive the corresponding Hamiltonian formulation
in Eulerian variables via Poisson reduction.

All the above results presume that solutions in Sobolev spaces Hs with s > 2 ex-
ist. Thus, in the final Sections 6 and 7 we provide a simple argument that our family
of models indeed possesses such solutions locally in time provided that the initial
potential vorticity is a sufficiently small Hs-perturbation of unity. Consequently,
our family of models is not only formally Hamiltonian, but is also well-posed as a
Cauchy problem. This result contains, as a special case, the first proof of local well-
posedness for Salmon’s L1 model [20] that we know of. In a subsequent paper [5],
we shall show by using more subtle, but also more involved estimates, that we can
extend the existence of solutions globally in time under the weaker and physically
motivated restriction that the initial potential vorticity is strictly positive.

2. Diffeomorphism groups. Diffeomorphism groups arise naturally as configura-
tion manifolds in various fluid models. In this section, we fix notation and recall the
necessary known facts from the theory of diffeomorphism groups following [9, 18, 8].
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Let D denote a compact connected oriented two-dimensional Riemannian mani-
fold without boundary, and let Hs(D,N) denote the space of mappings of Sobolev
class s from D into another manifold without boundary N ; we abbreviate Hs(D,D)
≡ Hs(D) and use ‖ · ‖s to denote the Hs norm. Similarly, let Ck(D,N) denote
the space of k times continuously differentiable maps from D to N , again with
Ck(D,D) ≡ Ck(D). The Sobolev embedding theorem ensures that there is a dense
continuous inclusion Hs(D) ⊂ Ck(D) for s > 1 + k. Finally, we write Jη to denote
the Jacobian of the map η.

For s > 2, we define the diffeomorphism group

Ds = {η ∈ Hs(D) | η is bijective and Jη 6= 0} . (2)

It is well known that that Ds is a smooth infinite dimensional manifold [9]. It is
also a topological group with the group operation being the composition of maps.
For fixed ξ ∈ Ds, composition on the right, i.e. η 7→ η ◦ ξ, is a smooth map, while
composition on the left, i.e. η 7→ ξ ◦ η and inversion η 7→ η−1 are merely continuous
as maps from Ds to itself and Ck as maps from Ds+k to Ds. The group of volume
preserving diffeomorphisms,

Dsvol = {η ∈ Ds | Jη = 1} , (3)

is a closed submanifold and a topological subgroup of Ds.
The tangent space TηDs at η is the space Xs(D) of Hs vector fields over η; the

tangent space TηDsvol at η is the corresponding subspace of divergence free vector
fields.

When s > 1 and and ηt is a C1 curve in Ds through the identity, it is the flow
of the possibly time dependent vector field u via

d
dtηt = u ◦ ηt . (4)

In the general case, i.e. when η0 is not necessarily the identity map, we call ηt
satisfying (4) a shifted flow of u. Conversely, if u is a time-continuous Hs vector
field on D and s > n/2 + 2, then the flow ηt of u is a C1 curve in Ds with η0 = id
and (4) holds.

For u ∈ Xs(D), define û : Ds → TDs via η 7→ u ◦ η. Then

[û, v̂] = [̂u, v] , (5)

where the left hand bracket denotes the Lie bracket of vector fields on Ds while the
right hand bracket denotes the Lie bracket of vector fields on D.

Finally, let h : Ds → Hs−1(D,R) be defined via h(η) = Jη−1 , the Jacobian of the
inverse of η. When η is a flow of u, possibly shifted, the transport theorem and the
change of coordinates formula imply that h satisfies the continuity equation

∂th+ div(hu) = 0 . (6)

Here and in the remainder of this paper, we make a number of purely notational
simplifications. When no confusion can occur, we suppress the reference point and
write h in place of h(η). Moreover, we will sometimes suppress the t-subscript, iden-
tifying η(x, t) ≡ ηt(x). For further reference, we note that the change of variables
formula then reads ∫

D

φ ◦ η =

∫
D

φh (7)

for any integrable function φ on D.
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3. Models of semigeostrophic shallow water. We are now in a position to
sketch the derivation of the LSG-type models for semigeostrophic shallow water
as introduced in [16]. We assume that D is a flat two-dimensional manifold or a
domain in R2; everything in this section is entirely formal.

Our starting point are the two-dimensional shallow water equation which can be
written in semigeostrophic scaling as

ε (∂t + u · ∇)u+ f u⊥ +∇h = 0 , (8a)

∂th+ div(uh) = 0 , (8b)

where u is the two-dimensional vector of horizontal fluid velocity, h is a fluid depth,
u⊥ = (−u2, u1), f is the scaled Coriolis parameter, and ε the Rossby number which
is assumed to be small.

We first remark that the classical semigeostrophic equations arise via the so-called
geostrophic momentum approximation, where the advected, but not the advecting
velocities in (8) are replaced by their geostrophic values. We use a different con-
struction, first proposed in [16]. Let R denote a vector potential for the Coriolis
parameter f , i.e. f = curlR. Then (8a) arises as the Euler–Lagrange equation of
the Lagrangian

Lε(u ◦ η) =

∫
D

[
R · u+ 1

2 ε |u|
2 − 1

2 h
]
◦ η , (9)

defined on the tangent bundle of the diffeomorphism group of D, where h(η) =
Jη−1 . We favor the more compact notation (9) over the traditional Lε(η, η̇) with
u and η̇ related by (4) throughout this paper. We apply a near-identity change of
configuration variables which, to first order in ε, is generated by

v = 1
2 u
⊥ + λ∇h . (10)

Then, dropping terms of order ε2 and higher in (9), we obtained the one-parameter
family of affine Lagrangians

Lλ(u ◦ η) =

∫
D

(R · u− 1
2 h) ◦ η + ε

∫
D

[
(λ+ 1

2 )∇⊥h · u− λ |∇h|2
]
◦ η (11)

The corresponding Euler–Lagrange equations are then found to be precisely the
u-h relation (1c). Equations (1c) and (8b) comprise the GLSG system. Since the
Lagrangian (11) is invariant under particle relabellings, the Noether theorem yields
the potential vorticity (1b) as a Lagrangian invariant. We conclude that equations
(1a–c) form a closed system for the reduced dynamics, which provides a formally
equivalent formulation of the GLSG equations. In Section 7 we shall show that the
GLSG equations are indeed well posed as an initial value problem.

4. Hamiltonian formalism in Lagrangian representation. Let us first recall
the following construction [14]. Given a Lagrangian L : TQ → R on a manifold Q
with tangent bundle TQ, its Legendre transform FL : TQ → T ∗Q is the fiber and
base point preserving map given by

〈FL(v), u〉 =
d

dt t=0
L(v + tu) for all u, v ∈ TqQ , (12)

where 〈·, ·〉 denotes pairing between T ∗Q and TQ. Provided FL is a diffeomorphism,
we can define the symplectic form

ΩL = FL∗(Ω) = −d FL∗Θ (13)
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on TQ as the pullback of the canonical symplectic form Ω ≡ −dΘ on T ∗Q, where
Θ denotes the canonical 1-form on T ∗Q. Then, a vector field XE is Hamiltonian
with energy E = 〈FL(v), v〉 −L with respect to the symplectic form ΩL if and only
if its integral curves satisfy the Euler–Lagrange equations for L.

This standard construction does not apply here as the LSG Lagrangians (11) are
affine in u so that the Legendre transforms they define are constant on each fiber.
Indeed, direct computation of the exact form ΩLλ via (13) confirms its degeneracy;
see Proposition 2 below. In other words, the tangent bundle of the diffeomorphism
group is too large as a phase space for the Hamiltonian formulation of the reduced
model equations.

The formal structure of the reduced system explained in Section 3 suggests the
diffeomorphism group itself as a candidate phase space. Thus, we must pull back
the two-form ΩLλ and the energy E to the diffeomorphism group by the inclusion of
the diffeomorphism group into the zero section of its tangent bundle, in the following
denoted i. By direct computation, the pullback ωLλ = i∗ΩLλ is an exact two-form
on Ds given by

ωLλ(η)(û, ŵ) =

∫
D

[
w⊥ ·

(
curlR− ε (λ+ 1

2 )(h∆ + 2∇h · ∇)
)
u
]
◦ η . (14)

Similarly, setting H = i∗E, we obtain an expression for the energy,

H(η) = 1
2

∫
D

h2 + 2ελ h |∇h|2 . (15)

The necessary computations are subtle and will be detailed below.
There is, however, a second problem which is topological. On a compact ori-

entable manifold D without boundary, a vector potential of f exists only if f has
zero mean. The physical requirement for the validity of nearly geostrophic approx-
imations, on the other hand, is that the Coriolis parameter f has no zeros. To
resolve this incompatibility, we notice that, while the vector potential R appears
explicitly in the Lagrangian (11), ωLλ can be written without referencing the vector
potential; in this case, however, we must must verify the closedness of the resulting
two-form explicitly.

This idea is implemented as follows. On a compact connected orientable manifold
without boundary, an arbitrary f ∈ C1(D,R) can be written f = C + curlR for
some constant C and vector field R. In Proposition 1 below we verify by direct
computation that the two-form

ωC(η)(û, ŵ) = C

∫
D

[
w⊥ · u

]
◦ η (16)

is closed. Hence, ωf,λ = ωC + ωLλ is closed. As we shall show in Proposition 5,
under certain physically reasonable conditions, ωf,λ is non-degenerate on an open
neighborhood of the group of volume preserving diffeomorphisms in the full diffeo-
morphism group, hence it is a symplectic form on that neighborhood and we find
that the the weak form of the u-h inversion (1c) reads

ωf,λ(û, ŵ) = dH · ŵ (17)

for all Hs vector fields w on D. This exposes the Hamiltonian structure.
We remark that equation (17) is understood in the sense of an infinite dimensional

Hamiltonian systems [6]. In particular, the Hamiltonian vector field XH(η) = u ◦ η
defined by (17) is unbounded in the Hs topology. To proceed, we assume that its
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integral curves are differentiable as maps Hs+k 7→ Hs for some k > 0, postponing
the existence issue until Section 7.

We present the details of the argument under the assumption that D is a double
periodic domain. This assumption simplifies calculations, but is not essential to
the problem. The same technique leads to the results for an arbitrary compact
connected orientable two dimensional manifold D provided one replaces differential
operations in Cartesian coordinates with their invariant analogues. We further
assume that s > 2.

Proposition 1. The form ωC defined by (16) is a closed two-form on Ds.

Proof. As u · v⊥ = −u⊥ · v, ωC is skew, thus a two-form. Without loss of generality
we may take C = 1. Let u, v, and w be arbitrary Hs vector fields on D. Then,

dω1(û, v̂, ŵ) = 1
3

(
û · ω1(v̂, ŵ)− v̂ · ω1(û, ŵ) + ŵ · ω1(û, v̂)

− ω1([v̂, ŵ], û) + ω1([û, ŵ], v̂)− ω1([û, v̂], ŵ)
)
, (18)

where û ·ω1(v̂, ŵ) denotes differentiation of the function ω1(v̂, ŵ) by the vector field
û.

Now fix η ∈ Ds and let ηt be an integral curve of û through η, i.e. d
dt t=0

ηt =
û(η) = u ◦ η. Then, using the change of variables formula (7) and the continuity
equation (6), we obtain

(û · ω1(v̂, ŵ))(η) =
d

dt t=0
ω1(ηt)(v̂, ŵ) =

d

dt t=0

∫
D

(v · w⊥)ht

= −
∫
D

(v · w⊥) div(hu) =

∫
D

h (w⊥ · ∇uv − v⊥ · ∇uw) . (19)

Recall that, due to (5), for arbitrary vector fields u, v on D,

[û, v̂] = [̂u, v] = (∇uv −∇vu) ◦ η . (20)

Substituting identities (19) and (20) with corresponding permutations of their ar-
guments into (18), we readily obtain that dω1(η)(û, v̂, ŵ) = 0.

Let Lλ : TDs → R be the Lagrangian given by formula (11). Then, the definition
of the Legendre transform (12) directly yields

〈FLλ(v ◦ η), u ◦ η〉 =

∫
D

(R · u) ◦ η + ε (λ+ 1
2 )

∫
D

(∇⊥h · u) ◦ η . (21)

Note that, as Lλ is affine, the right hand side of (21) does not depend on v.

Proposition 2. Let Ω be the canonical symplectic form on T ∗Ds. Then its pullback
to TDs, ΩLλ = FL∗λ Ω, is given by

ΩLλ(v ◦ η)(U,W ) =

∫
D

([
curlR − ε (λ + 1

2 ) (h∆ + 2∇h · ∇)
]
u1 · w⊥1

)
◦ η , (22)

where v is an Hs vector field on D; U,W ∈ Tv◦ηTDs are arbitrary; u1 ◦ η = TτU
and w1 ◦ η = TτW with τ : TDs → Ds denoting the canonical projection and T
denoting the tangent map.

Proof. As is customary, we identify the tangent space TηDs with a dense subset of
the cotangent space T ∗ηDs via the L2 metric

〈u ◦ η, v ◦ η〉 =

∫
D

(u · v) ◦ η , (23)
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where u and v are arbitrary Hs vector field on D and 〈·, ·〉 denotes a pairing between
T ∗Ds and TDs. With such an identification in place, formula (21) reads

FLλ(v ◦ η) =
(
R+ ε (λ+ 1

2 )∇⊥h
)
◦ η . (24)

The rest is a long calculation via the usual formula for pullbacks,

φ∗Ω(q)(U,W ) = Ω(φ(q))(Tφ · U, Tφ ·W ) , (25)

with q = v ◦ η and φ = FLλ. Let vt ◦ ηt be a curve in TDs through v ◦ η with
velocity U . Then, d

dt t=0
ηt = u1 ◦ η. Calculating in a chart about η, using (24) and

the continuity equation (6),

T FLλ(v ◦ η)U =
d

dt t=0
FLλ(vt ◦ ηt) =

d

dt t=0

(
R+ ε (λ+ 1

2 )∇⊥ht
))
◦ ηt

=
(
u1, u1 · ∇R+ ε (λ+ 1

2 )
[
u1 · ∇∇⊥h−∇⊥ div(hu1)

])
◦ η . (26)

The canonical symplectic form Ω on T ∗Ds is given in charts by

Ω(αη)((u ◦ η, β1), (w ◦ η, β2)) = 〈β2, u ◦ η〉 − 〈β1, w ◦ η〉 , (27)

where αη, β1, β2 ∈ T ∗ηDs and u ◦ η, w ◦ η ∈ TηDs. Combining (24), (26), and (27),
we obtain

ΩLλ(v ◦ η)(U,W ) =

∫
D

(
u1 · (w1 · ∇R)− w1 · (u1 · ∇R)

]
◦ η

+ ε (λ+ 1
2 )

∫
D

[
u1 · (w1 · ∇∇⊥h)− w1 · (u1 · ∇∇⊥h)

]
◦ η

+ ε (λ+ 1
2 )

∫
D

[
w1 · ∇⊥ div(hu1)− u1 · ∇⊥ div(hw1)

]
◦ η . (28)

The following identities hold for arbitrary vector fields u, w, and R, and scalar field
h:

u · (w · ∇R)− w · (u · ∇R) = u · w⊥ curlR , (29a)∫
D

(
w · ∇⊥ div(hu)

)
◦ η = −

∫
D

(
u · ∇ div(hw⊥)

)
◦ η , (29b)

∇div(hu⊥) +∇⊥ div(hu) = ∆hu⊥ + 2∇h · ∇u⊥ + h∆u⊥ . (29c)

These identities now directly imply the equivalence of (28) and (22).

Let i(η) = 0 ◦ η be the embedding of the diffeomorphism group Ds into the zero
section of its tangent bundle TDs.

Proposition 3. The 2-form ωLλ = i∗ΩLλ on Ds is exact. It is given by

ωLλ(û, ŵ) =

∫
D

([
curlR− ε (λ+ 1

2 ) (h∆ + 2∇h · ∇)
]
u · w⊥

)
◦ η . (30)

Proof. Recall that τ : TDs → Ds denotes the canonical projection, so that τ ◦ i
is the identity map on Ds and, therefore, TτT i(u ◦ η) = u ◦ η. Combining this
with (25) and (22), we obtain the claimed expression for ωLλ . Moreover, since the
canonical symplectic form Ω = −dΘ is exact and ωLλ is its pullback,

ωLλ = i∗ FL∗λ Ω = −i∗ FL∗λ dΘ = −di∗ FL∗λ Θ . (31)

Thus, ωLλ is exact.
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Proposition 4. For all f ∈ C1(D,R) and λ ∈ R,

ωf,λ(û, ŵ) =

∫
D

([
f − ε (λ+ 1

2 ) (h∆ + 2∇h · ∇)
]
u · w⊥

)
◦ η (32)

is a closed 2-form on Ds. Moreover, if
∫
D
f = 0, it is a pullback of the canonical

symplectic form on T ∗Ds.
Proof. On a compact connected orientable 2-dimensional manifold without bound-
ary the second de Rahm cohomology group is free, generated by a volume form.
Therefore, there exist a constant C and a vector field R such that

f = C + curlR . (33)

Then, ωf,λ = ωC + ωLλ is closed by Propositions 1 and 3.
Since

∫
D

curlR = 0, the identity
∫
D
f = 0 forces C = 0 in (33). Hence, in that

case, ωf,λ is a pullback of canonical symplectic form on T ∗Ds by Proposition 3.

By Proposition 4, wf,λ is always closed. Therefore, it is a symplectic form if
and only if it is non-degenerate. The degeneracy of wf,λ at η is equivalent to the
existence of non-trivial solutions to the linear partial differential equation

Λhu ≡ f u− σ (h∆u+ 2∇h · ∇u) = 0 , (34)

where σ = ε (λ+ 1
2 ). In the following, we give a sufficient condition for the injectivity

of Λh via a simple variational argument. For each s ≥ 0, we write ‖ · ‖s to denote a
norm on Hs. The particular choice of norm does not matter as it will change only
the constants in the estimates, but we assume that the family is such that the norm
of the embedding of Hs+t into Hs for t > 0 equals one.

Proposition 5. Suppose f > 0 is continuous and 0 ≤ σ ≤ 1. Then, there exists
a constant C = C(D, f) such that for all h with ‖h− 1‖s−1 < C, the trivial vector
field u = 0 is the only solution of (34) in H1.

Proof. Let m = minx∈D f(x). We take the scalar product of (34) with u and
integrate over D. After integration by parts, we obtain∫

D

f |u|2 − σ
∫
D

u · (∇h · ∇u) + σ

∫
D

h |∇u|2 = 0 . (35)

When σ = 0, we have

0 =

∫
D

f |u|2 ≥ m ‖u‖20 . (36)

Therefore, u = 0 almost everywhere while C > 0 may be chosen arbitrarily.
Now suppose σ > 0. Without loss of generality we may assume that 2 < s < 3.

By the Sobolev embedding theorem, the inclusions Hs−1 ⊂ W 1,p, Hs−1 ⊂ L∞,
and H1 ⊂ Lq are continuous with p = 2/(3 − s) and q = 2/(s − 2). Thus, writing

h = 1 + h̃ in (35) and rearranging terms, applying the Hölder inequality, recalling
that σ ≤ 1, and using the continuity of the above embeddings, we estimate

0 =
1

σ

∫
D

f |u|2 + ‖∇u‖20 −
∫
D

u · (∇h̃ · ∇u) +

∫
D

h̃ |∇u|2

≥ m ‖u‖20 + ‖∇u‖20 − ‖∇h̃‖Lp ‖u‖Lq ‖∇u‖0 − ‖h̃‖L∞ ‖∇u‖20
≥ m ‖u‖20 + ‖∇u‖20 − C1 ‖h̃‖s−1 ‖u‖1 ‖∇u‖0 − C2 ‖h̃‖s−1 ‖∇u‖20 (37)

with constants C1 and C2 supplied by Sobolev’s inequalities. Now, clearly there
exists some C = C(C1, C2,m) such that the right hand side of (37) is nonnegative

whenever ‖h̃‖s−1 ≤ C.
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We remark that this result is not sharp, but it is the simplest and most direct
estimate possible. More sophisticated estimates will be provided in the context of
an L∞ theory which is the subject of our forthcoming paper [5].

Theorem 4.1. Suppose f ∈ C1(D,R), f > 0, and 0 ≤ ε (λ + 1
2 ) ≤ 1. Then

there exists an open set O in the diffeomorphism group Ds such that ωf,λ is a weak
symplectic form on O. Moreover, Dsvol ⊂ O.

Proof. By Proposition 4, ωf,λ is an exact 2-form on Ds. Proposition 5 with σ =
ε (λ+ 1

2 ) implies that ωf,λ is non-degenerate on O = {η ∈ Ds | ‖h(η)− 1‖s−1 < C},
hence a weak symplectic form on O.

The map η 7→ Jη is smooth as a map Ds → Hs−1. Indeed, one easily verifies
smoothness in charts since the expression for the Jacobian involves only taking
first order derivatives of an Hs function as well as addition and multiplication of
Hs−1 functions, all of which are smooth operations as long as Hs−1 is a topological
algebra.

The map η 7→ η−1 is continuous on Ds, therefore, η 7→ h(η)−1 is continuous as a
mapDs → Hs−1. Thus, O is open inDs. If η is a volume preserving diffeomorphism,
h(η) ≡ 1, hence η ∈ O.

Remark 1. Proposition 5 guarantees, in particular, that the set O in Theorem 4.1
can be chosen independent of σ. Thus, one can study the asymptotic behavior as
ε→ 0 in the Hamiltonian framework presented here without shrinking the domains
of definitions of the symplectic forms.

Let us now turn to computing the Hamiltonian via the same formalism. First,
using expression (21) for the Legendre transform, the action A ≡ 〈FL(v), v〉 reads

A(u ◦ η) =

∫
D

(R · u) ◦ η + ε (λ+ 1
2 )

∫
D

(∇⊥h · u) ◦ η , (38)

so that

E(u ◦ η) = 1
2

∫
D

(
h+ 2ελ |∇h|2

)
◦ η = 1

2

∫
D

h2 + 2ελ h |∇h|2 . (39)

Identifying H(η) = i∗(E) = E(i(η)) = E(0 ◦ η), we recover (15).
Next, to calculate the differential dH, let ηt be a curve through η with initial

velocity w ◦ η and ht = h(ηt). Then, using the continuity equation (8b), the change
of variables formula (7), and the identity div(h∇h) = h∆h + |∇h|2, we obtain for
an arbitrary Hs vector field w,

dH(η) · (w ◦ η) =
1

2

d

dt t=0

∫
D

h2t + 2ελ ht |∇ht|2

= −
∫
D

hdiv(wh) + ελ
(
div(wh) |∇h|2 + 2h∇h · ∇ div(wh)

)
=

∫
D

(
∇⊥
[
h+ ελ |∇h|2 − 2ελ div(h∇h)

]
· w⊥

)
◦ η . (40)

Next, we show that an everywhere positive fluid depth of mean one (where the
latter can always be achieved by an appropriate choice of scales) can be expressed
as a Jacobian of a diffeomorphism of D.

Proposition 6. Suppose h0 > 0 and
∫
D
h0 = vol(D), where vol(D) is the area of D.

Then there exists η0 in Ds such that h0 = Jη−1
0

. Furthermore, if ‖h0 − 1‖s−1 < C,

then η0 ∈ O, where C and O are defined as in Theorem 4.1 and its proof.
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Proof. Without loss of generality, let D = {(x, y) | 0 ≤ x, y < 1} so that vol(D) = 1.
Then, setting

ξ(x, y) =

(∫ 1

0

∫ x

0

h0(x1, y) dx1 dy,

∫ y
0
h0(x, y1) dy1∫ 1

0
h0(x, y) dy

)
, (41)

η0 = ξ−1 possesses the stated properties.

We summarize our findings by stating that the generalized LSG equations coin-
cide with Hamilton’s equations on the diffeomorphism group Ds.

Theorem 4.2. Under the assumptions of Theorem 4.1, let O ⊃ Dsvol be the open
neighborhood provided therein. Suppose XH is a Hamiltonian vector field of (15)
on O with respect to the symplectic form (32), η ≡ ηt ⊂ O an integral curve of
XH , h = Jη−1 , and d

dtη = u ◦ η. Then h and u are classical solutions of the the
generalized LSG equations (1).

Conversely, suppose u and h > 0 are classical solutions of the generalized LSG
equations (1) with u ∈ C([0, T ),Xs) for some s > 3 and ht(x) ≡ h(t, x) satisfies
‖ht − 1‖s−1 < C for all 0 ≤ t < T with C as in Proposition 5. Then there is an
integral curve ηt of XH in O such that ht = Jη−1

t
.

Proof. Let η be an integral curve of XH . As explained in Section 2, the continuity
equation (8b) is satisfied since η is a flow of u. Therefore it suffices to verify that
equation (1c) holds.

By definition, XH is Hamiltonian with respect to the symplectic form ωf,λ if
ωf,λ(η)(XH , ŵ) = dH(η) · ŵ. On the other hand, XH(η) = u ◦ η, so that

ωf,λ(η)(u ◦ η, ŵ) = dH(η) · ŵ (42)

for all w ∈ Xs(D). Substituting in expressions (32) and (40) for the left hand
and right hand sides, respectively, we obtain the u-h inversion equation (1c). Fi-
nally, note that (1a–c) are equivalent to (1c) and (8b), as can be shown by direct
computation, see [16].

Conversely, suppose that u and h are classical solutions of the generalized LSG
equations (1c) and (8b) satisfying the conditions of the theorem. By Proposition 6,
there is ζ ∈ Ds such that h0 = Jζ−1 . Recall from Section 2 that u generates a flow

ξt such that ξt is a C1 curve in Ds with ξ0 = id. Set ηt = ξt ◦ ζ and ĥt = Jη−1
t

.

Differentiating ηt, we obtain

d

dt
ηt =

d

dt
ξt ◦ ζ = u ◦ ξt ◦ ζ = u ◦ ηt . (43)

Thus, ηt is a shifted flow of u and ĥt satisfies the continuity equation (8b) with

the initial condition ĥ0 = Jζ−1 = h0. However, for a given Hs vector field u, the
solution of the Cauchy problem for the linear continuity equation (8b) is unique in

L2(D). This follows from a a direct estimate on h̃ = h− ĥ, namely

1

2

d

dt
‖h̃‖2L2 ≤

∫
D

div(uh̃) h̃ ≤ 1

2
‖div u‖L∞‖h̃‖2L2 . (44)

Therefore, ĥ = h. Moreover, u satisfies (1c) so that u ◦ ηt = XH(ηt), whence (43)
implies that ηt is a flow of XH .

As is readily seen from Theorem 4.2 and Proposition 6, the existence of integral
curves of the Hamiltonian vector field XH on O implies the existence of solutions
to the generalized LSG equations for nearly constant initial data. In particular, if
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one could show that XH is a C1 vector field, well-posedness of the equations would
immediately follow from the theory of ODEs on Banach manifolds. Results of this
type have been established, e.g., for the incompressible Euler equations [9] and for
the Euler-α equations [23]. However, verifying the differentiability of the vector field
XH in our context appears to be difficult. These difficulties mostly vanish when
studying well-posedness of the generalized LSG equations using more traditional
techniques from PDE theory. This will be detailed in the final two sections of this
paper.

5. Hamiltonian formalism in Eulerian representation. Despite the appear-
ance of Eulerian quantities in the expressions for H and ωf,λ, the fundamental
object in the Hamiltonian description developed in Section 4 is the flow map η
rather than the Eulerian velocity u and layer depth h; therefore, this formalism is
Lagrangian in nature. At the same time, the Euler equations of ideal fluid flow are
Hamiltonian in the Eulerian as well as in the Lagrangian representation [2, 3, 9].
Hence, it is natural to expect that a similar duality holds for the generalized LSG
equations.

Recall that the link between the Lagrangian and Eulerian Hamiltonian formalism
for the Euler equation is established via Lie–Poisson reduction based on the particle
relabeling symmetry [14, 25]. In contrast to the setting for the Euler equations, the
phase space for the generalized LSG equations in the Lagrangian representation is
not a tangent bundle of a Lie group, but the group itself. This necessitates the
use of Poisson rather than Lie–Poisson reduction, while the symmetry remains the
particle relabeling symmetry. This will be detailed in the following.

Consider the right action of the group of volume preserving diffeomorphisms on
the full diffeomorphism group Ds given by Φξη = η ◦ ξ, where ξ ∈ Dsvol and η ∈ Ds.
Since

J(η◦ξ)−1 = Jη−1 , (45)

it is readily seen from the definitions that the symplectic form ωf,λ, its domain O,
and the energy H are invariant with respect to this action, i.e.,

ΦξO = O , Φ∗ξωf,λ = ωf,λ , and H(Φξη) = H(η) . (46)

The symplectic form ωf,λ defines a Poisson bracket on O via

{F,G}O = ωf,λ(XF , XG) (47)

for smooth functions F,G on O. Let π : O → O/Dsvol be the projection onto the
orbit space; in this context, it is called a reduction map. Invariances (46) imply
that a Poisson bracket on the orbit space is given by

{F,G}(h) = ωf,λ(π−1h)(XF◦π, XG◦π) . (48)

The construction of the orbit space as a quotient manifold Ds/Dsvol is, in general,
technically challenging (see [1] for the finite dimensional construction and [8, 13] for
infinite-dimensional examples). Here, however, this difficulty disappears when one
notices that π defined by π(η) ≡ h(η) = Jη−1 is a readily available reduction map.
Indeed, denote

Hs−1
+ = {h ∈ Hs−1(D,R) | h > 0} , (49a)

Hs−1
a = {h ∈ Hs−1(D,R) |

∫
D

h = a} , (49b)

Hs−1
J = Hs−1

+ ∩Hs−1
vol(D) . (49c)
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Then the map π : Ds → Hs−1
J is surjective by Proposition 6 and, due to (45), it

collapses each orbit Oη = {Φξη | ξ ∈ Dsvol} into the single point π(Oη) = Jη−1 . To

characterize the manifold structure of Hs−1
J , notice that Hs−1

+ is an open set and

Hs−1
vol(D) is an affine hyperplane in the Hilbert space Hs−1(D,R). Therefore, Hs−1

J

is diffeomorphic to an open set of the Hilbert space Hs−1
0 and its tangent bundle is

trivial, i.e., for any h ∈ Hs−1
J ,

ThH
s−1
J = Hs−1

0 = {z ∈ Hs−1(D,R) |
∫
D

z = 0} . (50)

To complete the construction of the Poisson bracket by formula (48), we must
clear two technical hurdles. First, we must differentiate π on the right of (48)
which is merely continuous as a map from Ds to Hs−1

J . Note, however, that π ∈
C1(Ds, Hs−2

J ). Indeed, differentiating π along the curve ηt with initial velocity
v ◦ η ∈ TηDs and using continuity equation (6), we obtain

Tπ · (v ◦ η) =
d

dt t=0
Jη−1

t
= −div(hv) ∈ Hs−2

J . (51)

Second, ωf,λ is merely a weak symplectic form. Hence, not every smooth func-
tion F may have an associated Hamiltonian vector field XF . The solution is to
restrict the bracket to a large enough subset of smooth functions that do have as-
sociated Hamiltonian vector fields and ensure that non-degeneracy of the bracket
still holds on the chosen subset. We refer the reader to [25] for an example of such
a construction.

We write Õ to denote the image of the restriction of π to O, so that

Õ ≡ π(O) = {h ∈ Hs−1
J | ‖h− 1‖s−1 < C} (52)

with C as in Proposition 5. Clearly, Õ is an open subset of Hs−1
J . Define

F = {F ∈ C∞(Õ,R) | dF (h) ∈ Hs−1(D,R) for every h ∈ Õ} , (53)

where we identify Hs−1(D,R) with a subspace of T ∗hH
s−1
J via the L2 inner product.

Let F,G ∈ F , w ◦ η ∈ TηDs, and ηt be a curve through η with initial velocity w ◦ η.
Then, using equation (51),

d(F ◦ π) · (w ◦ η) = −
∫
D

dF (h) · div(wh) =

∫
D

(∇dF (h) · w) ◦ η . (54)

Comparing (54) with (32), we find that the Hamiltonian vector field XF◦π is given
by

XF◦π(η) = Λ−1h ∇
⊥dF (πη) , (55)

with Λh defined by (34). The invertibility of Λh will be discussed in Section 6. Here

we remark that if s > 3, the constant C in the definition of Õ can be chosen so that
conditions of Proposition 8 hold; hence, the Hamiltonian vector field XF◦π is well
defined. The expression (48) for the reduced bracket becomes

{F,G}(h) = −
∫
D

dF (h) div(hΛ−1h ∇
⊥dG(h)) . (56)

The reduced Hamiltonian H̃ : Õ → R is given by the the formula

H̃(h) = H(π−1h) =
1

2

∫
D

(
h2 + 2ελ h |∇h|2

)
. (57)



840 MARCEL OLIVER AND SERGIY VASYLKEVYCH

To proceed, we note that Õ is open in Hs−1
J with trivial tangent bundle, i.e.,

TÕ = Õ ×Hs−1
0 . Differentiating (57) in the direction z ∈ Hs−1

0 , we obtain

dH̃(h) · z =

∫
D

(
h− ελ (2h∆h+ |∇h|2)

)
z . (58)

The Hamiltonian vector field XH̃ with respect to the bracket (56) satisfies

{F, H̃}(h) = dF (h) ·XH̃(h) =

∫
D

dF (h)XH̃(h) (59)

for any F ∈ F . Comparing (59) with (56) and substituting expression (58) for dH̃,
we obtain

XH̃(h) = −div
[
hΛ−1h ∇

⊥(h− ελ (2h∆h+ |∇h|2)
)]
. (60)

It is now easy to verify that (60) implies the generalized LSG equations. Indeed,
suppose that ht is an integral curve of XH̃ . Setting u = Λ−1h ∇⊥

(
h − ελ(2h∆h +

|∇h|2)
)
, which is precisely the u-h inversion equation (1c), we find that d

dtht = XH̃

becomes the continuity equation (8b).
We remark that even when λ = 0, the Eulerian Hamiltonian vector field XH̃ re-

mains unbounded on Hs−1
J . On the other hand, its Lagrangian analogue XH(η) =

(Λ−1h ∇⊥h) ◦ η is at least continuous in the Hs topology. This behavior is expected
due to non-differentiability of the reduction map and is typical for fluids. It is
encountered in various other models of fluid motion such as, for example, incom-
pressible and averaged Euler equations [9, 23].

6. Kinematic estimates. In the final two sections, we prove local well-posedness
of the generalized LSG equations in their vorticity formulation (1). In this for-
mulation, all problem-specific details are contained in the nonlinear kinematic re-
lationship between the potential q and the velocity u expressed by (1c) and (1b).
In this section, we state the necessary estimates on the problem of inverting these
equations to obtain the velocity u in terms of a given potential vorticity q. The
dynamic potential vorticity advection equation (1a) shall be discussed in Section 7.

For simplicity, we continue to assume a that D is a doubly-periodic domain. Here,
moreover, we take f = 1 and 0 < σ ≤ 1. One can easily establish more general
results with modified constants for non-flat manifolds and non-constant f provided
the non-constant coefficient Helmholtz operator f − σ∆ remains an Hs+1 → Hs−1

isomorphism. This condition is satisfied, for example, if

‖f − 1‖s−1 < 1 . (61)

We will write h ≡ h̃+ 1 and q ≡ q̃ + 1 throughout. Finally, we recall that Hs is
a topological algebra for s > 1, i.e., there is a family of constants Cs, which may be
chosen non-increasing in s, such that

‖wv‖s ≤ Cs ‖w‖s ‖v‖s (62)

for any w, v ∈ Hs.

Proposition 7. Suppose s > 1, q̃ ∈ Hs(D), and Cs ‖q̃‖s < 1. Then there is a
unique h(q̃) ∈ Hs+2(D) satisfying (1b) with

‖h̃‖s ≤
‖q̃‖s

1− Cs ‖q̃‖s
(63)
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and

‖h̃‖s+2 ≤
1

σ

‖q̃‖s
1− Cs ‖q̃‖s

. (64)

Moreover, for any 0 < r < 1, the map q̃ 7→ h(q̃) is uniformly continuous on

Bs(1−r)/Cs ≡ {q̃ ∈ H
s(D) | Cs ‖q̃‖s < 1− r} (65)

as a map from Hs into Hs+2.

Proof. Equation (1b) is equivalent to

h̃ = (1− σ∆)−1(q̃ h̃+ q̃) ≡ Fq(h̃) . (66)

For any s ≥ 0, the inverse Helmholtz operator (1− σ∆)−1 has norm one as a map
Hs → Hs and norm 1/σ as a map Hs → Hs+2. We estimate

‖Fq(h1)− Fq(h2)‖s ≤ Cs ‖q̃‖s ‖h1 − h2‖s < (1− r) ‖h1 − h2‖s (67)

for some r = r(q̃) ∈ (0, 1) and any h1, h2 ∈ Hs(D). Hence, Fq is a contraction on

Hs(D), and, by the contraction mapping principle, has a unique fixed point h̃. A

direct application of (66) shows that, in fact, h̃ ∈ Hs+2.
Passing to the Hs norms on both sides of (66), we obtain

‖h̃‖s ≤ Cs ‖q̃‖s ‖h̃‖s + ‖q̃‖s (68)

which is equivalent to (63). To establish (64), we take the Hs+2 norm of (66) and
use (63), estimating

‖h̃‖s+2 ≤
1

σ

(
Cs ‖h̃‖s ‖q̃‖s + ‖q̃‖s

)
≤ ‖q̃‖s

σ

(
Cs ‖q̃‖s

1− Cs ‖q̃‖s
+ 1

)
. (69)

In order to prove the uniform continuity of q̃ 7→ h(q̃), suppose that pairs (h1, q1)
and (h2, q2) satisfy (1b) with q̃1, q̃2 ∈ Bs(1−r)/Cs . Writing

h̃1 − h̃2 = (1− σ∆)−1
(
q̃1 (h̃1 − h̃2) + (h̃2 + 1) (q̃1 − q̃2)

)
, (70)

passing to the Hs norms, and using (63), we obtain

‖h̃1 − h̃2‖s ≤
1 + Cs ‖h̃2‖s
1− Cs ‖q̃1‖s

‖q̃1 − q̃2‖s ≤
1

r2
‖q̃1 − q̃2‖s . (71)

This establishes the uniform continuity into Hs. Passing to the Hs+2 norms in (70)
and using (71), we obtain uniform continuity into Hs+2.

Proposition 8. Suppose s > 2 and 3Cs−1 ‖h̃‖s < 1. Then Λh defined by (34) is
an isomorphism between Hs+1(D) and Hs−1(D) satisfying

‖Λ−1h ψ‖s+1 ≤
1

σ

‖ψ‖s−1
1− 3Cs−1 ‖h̃‖s

(72)

and

‖(Λ−1h1
− Λ−1h2

)ψ‖s+1 ≤
1

σ

3Cs−1 ‖ψ‖s−1
(1− 3Cs−1 ‖h̃1‖s)(1− 3Cs−1 ‖h̃2‖s)

‖h̃1 − h̃2‖s (73)

for every h1, h2, h ∈ Hs and ψ ∈ Hs−1.
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Proof. We use a fixed point argument as in the previous proposition. The equation
Λhu = ψ is equivalent to

u = (1− σ∆)−1
(
σ h̃∆u+ 2σ∇h̃ · ∇u+ ψ

)
≡ Fh,ψ(u) . (74)

The map Fh,ψ is an Hs+1 contraction since, for u1, u2 ∈ Hs+1,

‖Fh,ψ(u1)− Fh,ψ(u2)‖s+1

≤ 1

σ

(
σ Cs−1 ‖h̃‖s−1 ‖u1 − u2‖s+1 + 2σ Cs−1 ‖h̃‖s ‖u1 − u2‖s

)
≤ 3Cs−1 ‖h̃‖s ‖u1 − u2‖s+1 . (75)

This establishes the invertibility of Λh. Passing to the norms in (74), we obtain
(72). Finally, suppose that u1 = Λ−1h1

ψ and u2 = Λ−1h2
ψ. Then,

u1 − u2 = σ (1− σ∆)−1
(
h̃1 ∆(u1 − u2) + 2∇h̃1 · ∇(u1 − u2)

)
+ σ (1− σ∆)−1

(
(h̃1 − h̃2) ∆u2 + 2∇(h̃1 − h̃2) · ∇u2

)
. (76)

Passing to the norms and estimating ‖u2‖s+1 via (72), we obtain (73).

Proposition 9. Suppose s > 2, h̃ ∈ Hs+2(D), and 3Cs−1 ‖h̃‖s < 1. Then equation
(1c) has a unique solution u ∈ Hs+1(D) satisfying

‖u‖s+1 ≤
1

1− 3Cs−1 ‖h̃‖s

(
‖h̃‖s
σ

+
|λ|

λ+ 1/2
(2 + 3Cs ‖h̃‖s) ‖h̃‖s+2

)
. (77)

For any 0 < r < 1 and R > 0, the map h̃ 7→ u(h̃) is uniformly continuous on
Bs(1−r)/(3Cs−1)

∩Bs+2
R as a map from Hs+2 into Hs+1.

If λ = 0, it is sufficient that h̃ ∈ Hs. Then, h̃ 7→ u(h̃) is uniformly continuous
on Bs(1−r)/(3Cs−1)

as a map from Hs into Hs+1.

Proof. We rewrite (1c) as u = Λ−1h Ψ(h̃) with

Ψ(h̃) = ∇⊥
[
h̃− ε λ (2 (1 + h̃) ∆h̃+ |∇h̃|2)

]
. (78)

A direct estimate, using ‖∇h‖2s ≤ ‖h‖s ‖h‖s+2, shows that

‖Ψ(h̃)‖s−1 ≤ ‖h̃‖s + ε |λ|
(
2 (1 + Cs ‖h̃‖s) ‖h̃‖s+2 + Cs ‖h̃‖s ‖h̃‖s+2

)
. (79)

By Proposition 8, this implies the existence of a unique solution u satisfying (77).

Uniform continuity of h̃ 7→ Ψ(h̃) is similarly checked, and implies uniform continuity

of h̃ 7→ u(h̃) as stated by Proposition 9.

Combining propositions 7 and 9, we obtain a simple condition guaranteeing that
both equations (1c) and (1b) can be solved simultaneously, thus defining u as a
function of q.

Corollary 1. Suppose s > 2, q̃ ∈ Hs(D), and 4Cs−1 ‖q̃‖s < 1. Then there exist
unique h ∈ Hs+2(D) and u ≡ K(q) ∈ Hs+1(D) satisfying (1c), (1b), and

‖u‖s+1 ≤
1

σ

‖q̃‖s
1− 4Cs−1 ‖q̃‖s

(
1 +

3 |λ|
λ+ 1/2

)
. (80)

Moreover, for any 0 < r < 1, the map K : q 7→ u is uniformly continuous on
Bs(1−r)/(4Cs−1)

as a map from Hs into Hs+1.
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Proof. Noting that Cs is decreasing in s, Proposition 7 asserts the existence of
h ∈ Hs+2 satisfying (1b) with ‖h̃‖s < (3Cs−1)−1 and ‖h̃‖s+2 < (3σCs−1)−1. Thus,
Proposition 9 applies, asserting the existence and uniform continuity of K. Estimate
(80) is obtained by substituting the appropriate bounds on h̃ into (77).

7. Local classical solutions. In this section, we prove local-in-time existence of
classical solutions to the full time-dependent problem (1).

Theorem 7.1. Let s > 2 and let m ∈ 1, . . . , bs − 1c. Then for every initial
datum q(0) ∈ Hs(D) with ‖q̃(0)‖s < (4Cs−m)−1 there exists a unique local classical
solution to the vorticity equations (1) of class

q ∈
m⋂
k=0

Ck([0, T );Hs−k(D)) , (81a)

h ∈
m⋂
k=0

Ck([0, T );Hs+2−k(D)) , (81b)

and

u ∈
m−1⋂
k=0

Ck([0, T );Hs+1−k(D)) . (81c)

If, in addition, s > 3 and ‖q̃(0)‖s−1 < (4Cs−2)−1, the solution is unique.

We remark that such solutions also satisfy in a classical sense the Hamiltonian
formulations d

dtht = XH̃ of Section 5 and d
dtηt = XH of Theorem 4.2. The condition

on uniqueness is not sharp, but leads to a simple proof. For more refined estimates,
see [5].

Proof. We only sketch the proof by demonstrating the necessary a priori estimates.
To make this argument rigorous, one may construct the solution as the limit of a
Galerkin approximating sequence. This is a lengthy but, as soon as the a priori
estimates are obtained, routine procedure which has been implemented, for example,
for the two-dimensional Euler equations in velocity formulation by Temam [24]
and for a generalized vorticity-streamfunction formulation in [15]. We note that
the formal a priori estimates stated below only refer to the boundedness of the
nonlinear operatorK. When passing to the limits of subsequences, however, uniform
continuity as stated in all the kinematic estimates above is essential.

We write problem (1) in the form

∂tq + u · ∇q = 0 , (82a)

u = K(q) , (82b)

where the operator K is defined in Corollary 1. Further, we note the nonlinear
estimates

〈u · ∇q, q〉s ≤ c1 ‖u‖s+1 ‖q‖2s , (83a)

〈u · ∇q, ψ〉s ≤ c2 ‖u‖s+1 ‖q‖s ‖ψ‖s+1 . (83b)

for any u, q, ψ ∈ Hs+1. Now take the Hs inner product of (82a) with q̃ and use
(80) to obtain

d

dt
‖q̃‖2s = −2 〈u · ∇q̃, q̃〉s ≤ 2 c1 ‖u‖s+1 ‖q̃‖2s ≤ c3

‖q̃‖3s
1− 4Cs−1 ‖q̃‖s

. (84)
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Since the expression on the right is increasing in ‖q̃‖s, this differential inequality
can be directly integrated. Noting that Cs−m ≥ Cs−1, we find that there exists
some T > 0 such that

max
t∈[0,T ]

‖q̃(t)‖s <
1

4Cs−m
(85)

and, for every t∗ ∈ [0, T ),

lim sup
t↘t∗

‖q̃(t)‖s ≤ ‖q̃(t∗)‖s . (86)

Finally, we take the Hs inner product of (82a) with a smooth test function ψ
and integrate in time, so that

〈ψ, q̃(t2)〉s − 〈ψ, q̃(t1)〉s =

∫ t2

t1

〈ψ, u · ∇q̃〉s dt

≤ c2
∫ t2

t1

‖u‖s+1 ‖q̃‖s ‖ψ‖s+1 dt

≤ c4‖ψ‖s+1

∫ t2

t1

‖q̃‖3s
1− 4Cs−m ‖q̃‖s

dt , (87)

where the first inequality is due to (83b) and the second due to (80). Noting the
uniform bound (85), we see that the right hand side can be made arbitrarily small
by making |t2 − t1| sufficiently small. This proves weak continuity of t 7→ q̃(t) as a
map into Hs.

Now we establish (81). Weak continuity and upper semi-continuity of the norm
(86) imply continuity, i.e.,

q ∈ C([0, T ];Hs(D)) . (88)

Then, Corollary 1 implies u ∈ C([0, T );Hs). Since Hs−1 is a topological alge-
bra, q 7→ u · ∇q is continuous as a map from Hs into Hs−1 and (82a) implies
that ∂tq ∈ C([0, T );Hs−1). Moreover, Proposition 7 implies h ∈ C([0, T );Hs+2).
Differentiating (1b) in time, we obtain

∂th = (1− σ∆)−1(1− q̃ ∂th− h ∂tq) . (89)

Hence, the argument in the proof of Proposition 7 applies, requiring only trivial
modification of the contraction map Fq, which proves that h ∈ C1([0, T );Hs+1).
Similarly, differentiating (1c) in time, we obtain

∂tu = Λ−1h ∇
⊥∂t
[
h− ε λ (2h∆h+ |∇h|2)

]
+ σΛ−1h

[
∂th∆u+ 2∇∂th · ∇u

]
. (90)

Thus, by Proposition 8, u ∈ C1([0, T );Hs) provided s > 3. This argument can
be repeated where, to establish bounds on ∂kt q in Hs−k and on ∂kt h in Hs−k+2,
we must require that Hs−k is a topological algebra; to establish a bound on ∂kt u
in Hs−k+1, we need the stronger restriction that Hs−k−1 is a topological algebra.
Altogether, this proves (81).

To prove uniqueness, consider two pairs (u1, q1) and (u2, q2) of solutions of (82)
with the same initial condition q1(0) = q2(0). Taking the Hs−1 inner product of
the equation for q ≡ q1− q2, then using (83), (85), (80), and the uniform continuity
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of K, we find that

1

2

d

dt
‖q‖2s−1 = 〈u2 · ∇q, q〉s−1 + 〈(u2 − u1) · ∇q1, q〉s−1

≤ c4 ‖u2‖s ‖q‖2s−1 + c5 ‖u2 − u1‖s ‖q̃1‖s ‖q‖s−1
≤ c6 ‖q‖2s−1 + c7 ‖q‖2s−1 ≤ c8 ‖q‖2s−1 . (91)

This estimate implies that q ≡ 0 on [0, T ] since it is initially so.
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