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This paper revisits the derivation of the Lagrangian
averaged Euler (LAE), or Euler-α equations in the
light of an intrinsic definition of the averaged flow
map as the geodesic mean on the volume preserv-
ing diffeomorphism group. Under the additional as-
sumption that first-order fluctuations are statistically
isotropic and transported by the mean flow as a vector
field, averaging of the kinetic energy Lagrangian of an
ideal fluid yields the LAE Lagrangian. The derivation
presented here assumes an Euclidean spatial domain
without boundaries.

1. Introduction
The Lagrangian averaged Euler (LAE) equations

∂tv − u× (∇× v) +∇p= 0 , (1.1a)

v= (1− α2∆)u , (1.1b)

∇ · u= 0 , (1.1c)

also known as the Euler-α equations, were introduced
by Holm, Marsden, and Ratiu [15] based on structural
principles, exploring an analogy between the Hamilto-
nian structure of one-dimensional nonlinear wave equa-
tions and that of fluid dynamics. On a domain Ω in
three-dimensional Euclidean space, these equations are
the Euler–Poincaré equations corresponding to the La-
grangian

Lα = 1
2

∫
Ω
|u|2 + α2 |∇u|2 dx . (1.2)

Geometrically, the solutions of (1.1) are geodesics on the
group of Hs-class volume-preserving diffeomorphisms
SDiff(Ω) for s > 5

2 with respect to a right-invariant H1-
metric [22].

The LAE equations subsequently drew attention due
to their possible use in modeling turbulence [1, 6, 11, 19],
though this subject remains controversial and several
authors report unphysical behavior at least in the context
of quasi two-dimensional rotating turbulence [10, 16].
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In parallel, there was a quest quest for a sound, if not rigorous first-principles derivation. The
general approach, Lagrangian averaging, is pursued by several authors. It involves decomposing
the flow into a mean and fluctuating part, making some closure assumption on the evolution of
fluctuations, and finally averaging over the fluctuations in the Lagrange functional which appears
in the Hamilton principle for fluids. The details regarding the precise setup and set of assumptions
differ, but so far no entirely satisfactory derivation has been achieved.

The strategy of Lagrangian averaging was first laid out by Holm [12, 13], who recognized
the close connection between Lagrangian averaging and generalized Lagrangian mean (GLM)
theories [2]. To provide closure, Holm assumes that fluctuations can be characterized by a vector
field which is parallel-transported by the mean flow—an assumption he refers to as a Taylor
hypothesis in analogy with G.I. Taylor’s observation that turbulent fluctuations are correlated
in the downstream direction of a flow [25]. Soward and Roberts [20, 23] argue that a different
variational principle should be used in this setting, resulting in a different set of averaged
equations. Another derivation following Holm’s Taylor hypothesis, with different interpretation,
is given in [21].

Marsden and Shkoller [17] propose a different Taylor hypothesis: They assume that fluctua-
tions are characterized by composition with a perturbation map which can be written as the flow
of a non-autonomous vector field having the perturbation parameter in place of time. At first
order in a small amplitude expansion, fluctuations are assumed to be Lie-transported as a vector
field. This implies that the first non-trivial contribution comes from second order terms. Initially,
Marsden and Shkoller chose a parallel transport closure at second order. As it turns out, however,
this assumption is in conflict with the requirement that fluctuations respect incompressibility.
Thus, the authors subsequently relax the second order assumption to a weaker orthogonality
condition on the parallel transport term [18]; also see [5] for a generalization to compressible
flow.

Gilbert and Vanneste [9] recently revisited GLM theory from the geometric point of view,
writing it out in intrinsic, coordinate-free language. Their work exposes that such theories are
subject to three types of constraints: intrinsic geometric constraints, constraints which depend
on the definition of the mean flow map, and closure assumptions. Intrinsic geometric constraints
arise directly from the mathematical formulation of the problem and are not subject to choice. The
choices for a definition of the mean are also tightly constrained: To be geometrically meaningful,
averaging must be viewed as an operation on flow maps. In addition, the mean flow ought
to transport a point such that it remains a “center” of the scatter-cloud of the corresponding
members of the ensemble as they are transported by each realization of the fluctuating map.
Gilbert and Vanneste discuss four notions of mean flow, the most natural of which is the definition
of mean flow as the minimizer of geodesic distance on the volume preserving diffeomorphism
group with respect to the L2-metric, as this coincides with the sense in which the flow of the
incompressible Euler equations can be interpreted as geodesic flow [3]. I will therefore focus on
this notion of average and only comment on the alternatives briefly.

In this framework, there is only one remaining choice that can be made on the basis of physical
modeling or empirical studies: the specification of an equation for the evolution of first order
fluctuations in a small amplitude expansion of the fluctuating map. In particular, the first order
Taylor hypothesis of Marsden and Shkoller is such a choice while second and higher order closure
conditions are not—they are slaved to the first order condition through the definition the average
for maps.

In this paper, I explore the consequences of this geometric view on the derivation of the
LAE equations. Specifically, I will show that the LAE equations can be derived by Lagrangian
averaging under the following minimal set of assumptions:

(i) The averaged map is the minimizer of geodesic distance,
(ii) first order fluctuations are statistically isotropic, and

(iii) first order fluctuations are transported by the mean flow as a vector field.
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Here, assumption (i) fixes the notion of average for maps, assumption (ii) is an assumption on the
ensemble statistics, and assumption (iii) is the dynamical closure.

Assumptions (ii) and (iii) coincide with the assumptions of Marsden and Shkoller [17]. The set
of all three assumptions can be shown to imply the second order Taylor hypothesis of [18]. Thus,
the main message of this paper can be rephrased as follows: Geometric GLM theory provides an
intrinsic justification for Marsden and Shkoller’s second order hypothesis which, by itself, does
not have an such an intrinsic geometric interpretation and has the drawback of being difficult to
justify on physical grounds or by computational studies.

The derivation presented here is entirely formal. Averaging, as is common in the context of
GLM theories, is considered in the ensemble sense. The precise definition of the ensemble is
not important so long as spatial-temporal isotropy of the fluctuations can be assumed. Further,
I assume that Ω is a domain without boundaries and that functions and their derivatives decay
sufficiently so that integration by parts is freely permitted. In contrast to [9], physical space-time is
Euclidean. The geometry of SDiff(Ω) is always non-Euclidean, though, and fully treated as such.
It remains open whether the same derivation can be written intrinsically when physical space is
a general manifold.

The paper is structured as follows. Section 2 introduces Lagrangian averaging. Section 3
reviews the closure assumptions of Marsden and Shkoller in the notation used here. Section 4
introduces the geodesic mean of an ensemble of flow maps. The main result, the derivation of the
LAE Lagrangian under the assumptions stated above, is presented in Section 5. The paper closes
with a brief discussion.

2. Lagrangian averaging
In this paper, I will follow the setup of Marsden and Shkoller [17, 18] with only minor changes.

Let uε = uε(x, t) denote the velocity field corresponding to a single realization from an en-
semble of turbulent ideal incompressible flows. This velocity field generates a volume preserving
flow ηε = ηε(x, t) via

η̇ε = uε ◦ ηε . (2.1)

The symbol “◦” denotes the composition of maps (with respect to the spatial argument). Now
suppose that the flow can be decomposed into a averaged flow η and a fluctuating part ξε via

ηε = ξε ◦ η , (2.2)

where ξε|ε=0 = id, and ξε = ξε(x, t) and η= η(x, t) are again volume preserving time-dependent
maps. Suppose further that η is generated by a mean velocity field u= u(x, t) via

η̇= u ◦ η (2.3)

with initial condition η|t=0 = id so that ηε|t=0 = ξε|t=0. In this setting, we think of ε as the
amplitude of the fluctuations which we assume to be small.

So far, this construction is entirely general and we have not specified how the average is
defined. As the maps ηε do not live in a linear space, we cannot average them directly. Rather,
we work with a small amplitude expansion of (2.2) and use an abstract averaging operator 〈 · 〉
which acts on vector fields. The details of the averaging operator are not important in the context
of this note; we will only need minimal assumptions which we specify later.

The strategy is now the following. Take a Lagrangian corresponding to a single realization of
an exact Euler flow,

Lε = 1
2

∫
Ω
|uε|2 dx , (2.4)

and expand the velocity field

uε = u+ ε u′ + 1
2 ε

2 u′′ +O(ε3) (2.5)
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in powers of ε. Here and in the following, the prime denotes a derivative with respect to ε and
omission of the ε-subscript always denotes evaluation at ε= 0. Then,

Lε = 1
2

∫
Ω
|u|2 + 2 ε u · u′ + ε2 (|u′|2 + u · u′′) dx+O(ε3)

≡L0 + εL1 + 1
2 ε

2 L2 +O(ε3) . (2.6)

We now consider an ensemble of Lagrangians Lε where the mean flow velocity u, by definition,
is deterministic and the random fields u′, u′′, etc., encode the ensemble statistics. Truncating the
series and formally applying the averaging operator, we define the averaged Lagrangian

L= 1
2

〈∫
Ω
|u|2 + 2 ε u · u′ + ε2

(
|u′|2 + u · u′′

)
dx

〉
= 1

2

∫
Ω
|u|2 + 2 ε u · 〈u′〉+ ε2

(
〈|u′|2〉+ u · 〈u′′〉

)
dx . (2.7)

The task is now to define closure assumptions on u′ and on the respective averages so that the
final averaged Lagrangian depends on the mean flow velocity u only, thereby giving rise to new
equations for the mean flow via Hamilton’s principle.

It is useful to formulate the problem in terms of purely Eulerian quantities. To do so, we
consider ξε as a flow with respect to ε, which we think of as an artificial time parameter, and
define a corresponding vector field wε via

ξ′ε =wε ◦ ξε . (2.8)

Due to (2.2), we can also write

η′ε =wε ◦ ηε . (2.9)

Differentiating (2.9) with respect to t, and (2.1) with respect to ε, we obtain

u′ε = ẇε +∇wε uε −∇uε wε ≡ ẇε + Luε wε , (2.10)

where ∇u is read as the matrix (∇u)ij = ∂jui so that (∇uw)i =
∑
j wj ∂jui, and Lu w expresses

the Lie derivative of the vector field w in the direction of u. Setting (2.10) and its ε-derivative to
zero, we obtain the following expressions for the coefficients of the uε-expansion in terms of an
expansion of the fluctuation vector field wε:

u′ = ẇ + Lu w , (2.11a)

u′′ = ẇ′ + Lu w′ + Lu′ w . (2.11b)

3. The Marsden–Shkoller–Taylor hypotheses
In the following, we give a brief account of Marsden and Shkoller’s [18] derivation of the
isotropic LAE equations. They express their closure in terms of the quantities ξ′ and ξ′′ which are
Lagrangian rates of change with respect to amplitude parameter ε. To translate to the expansion
coefficients of the Eulerian fluctuation vector field wε, we evaluate various mixed derivatives of
(2.8) at ε= 0 and note that ξ̇ = 0:

ξ′ =w , (3.1a)

ξ̇′ = ẇ , (3.1b)

ξ′′ =w′ +∇ww , (3.1c)

ξ̇′′ = ẇ′ +∇ẇ w +∇w ẇ . (3.1d)
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Then, the expansion coefficients (2.11) take the form

u′ = ξ̇′ +∇ξ′ u−∇u ξ′ , (3.2a)

u′′ = ξ̇′′ +∇ξ′′ u− 2∇u′ ξ′ −∇∇u : ξ′ ⊗ ξ′ −∇u ξ′′ . (3.2b)

Marsden and Shkoller now make the closure assumptions or “generalized Taylor hypotheses”

ξ̇′ +∇ξ′ u−∇u ξ′ = 0 , (3.3a)

〈ξ̇′′ +∇ξ′′ u〉 ⊥ u . (3.3b)

Assumption (3.3a) states that the first order fluctuations w= ξ′ are Lie-advected as a vector field.
It implies that u′ = 0 in (3.2). Then, inserting (3.2) and (3.3) into (2.7), we obtain

L= 1
2

∫
Ω
|u|2 − ε2 u ·

(
∇∇u : 〈ξ′ ⊗ ξ′〉+∇u 〈ξ′′〉

)
dx

= 1
2

∫
Ω
|u|2 + ε2 (∇u)T ∇u : F + 1

2 ε
2 |u|2 〈∇ · ξ′′〉dx , (3.4)

where F is the symmetric 2-tensor

F = 〈ξ′ ⊗ ξ′〉= 〈w ⊗ w〉 . (3.5)

To eliminate ξ′′, take the divergence of (3.1c) and note that w′ is divergence-free by construction,
so that

∇ · ξ′′ =∇wT :∇w . (3.6)

Integrating by parts again, we obtain

L= 1
2

∫
Ω
|u|2 + ε2

(
(∇u)T ∇u+ 1

2 ∇∇|u|
2) : F dx . (3.7)

Finally, assuming that the first-order fluctuations are statistically isotropic so that, normalizing to
F = I , we obtain

L= 1
2

∫
Ω
|u|2 + ε2 |∇u| dx . (3.8)

Thus, we have obtained the LAE Lagrangian (1.2).

4. Geodesic mean
Gilbert and Vanneste [9] make the point that the mean map η should in some sense be close to
the ensemble average of the maps ηε. Moreover, the notion of closeness should be consistent with
the geometry of the Euler equations themselves. This singles out the Riemannian center of mass
with respect to the right-invariant L2-metric on the volume-preserving diffeomorphism group
SDiff(Ω). In this setting, the geodesic distance between two maps φ, ψ ∈ SDiff(Ω) is given by

d2(φ, ψ) = inf
γs : [0,1]→SDiff(Ω)

γ0=φ,γ1=ψ

∫1

0

∫
Ω
|γ̇s|2 dxds , (4.1)

see, e.g., [4]. Then the associated Riemannian center of mass is the map

η= arg min
φ∈SDiff(Ω)

〈d2(φ, ηε)〉 . (4.2)

Gilbert and Vanneste show that single realizations ηε are reached from η by integrating the Euler
equations in fictitious time ε,

w′ε +∇wε wε +∇φε = 0 , (4.3a)

∇ · wε = 0 , (4.3b)
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together with a constraint on the initial condition

〈w〉= 0 (4.3c)

where, as before, we write w≡wε|ε=0. Once this notion of average is imposed, we retain the
freedom to choose w( · , t) subject to the constraint (4.3c). In the next section, we will do so by
imposing an evolution equation for w as our closure condition.

5. Lagrangian averaging as a geodesic GLM closure
In the following, I will re-derive the LAE Lagrangian (3.8) keeping the first order Shkoller–
Marsden–Taylor hypothesis (3.3a) and the assumption of isotropy, but replacing the ad hoc second
order closure (3.3b) by the fluctuation constraint (4.3) implied by the concept of geodesic mean.

Written in terms of the first order fluctuation vector field, hypothesis (3.3a) reads

ẇ + Lu w= 0 . (5.1)

When w satisfies 〈w〉= 0 initially, it will also satisfy this constraint for all later times. As before,
using (2.11), the first and second order fluctuations of the velocity field reduce to

u′ = 0 , (5.2a)

u′′ = ẇ′ + Lu w′ . (5.2b)

Once (5.1) is imposed, the geodesic mean condition (4.3a) determines the evolution of fluctuations
to any order in ε. Evaluating (4.3a) at ε= 0, inserting this expression into (5.2b), and eliminating
time derivatives of w via (5.1), we obtain

u′′ =∇(Lu w)w +∇w Lu w −∇φ̇− Lu(∇ww +∇φ) . (5.3)

This means that the first non-zero contribution to the perturbation series for Lε reads

L2 =

∫
Ω
u · u′′ dx

=

∫
Ω
u ·
(
∇(Lu w)w +∇w Lu w − Lu(∇ww +∇φ)

)
dx

=

∫
Ω
∇uw · ∇uw −∇uw · ∇wu+ u · ∇w∇wu− u · ∇w∇uw dx

+

∫
Ω
∇uu · ∇ww + u · ∇u∇ww +∇uu · ∇φ+ u · ∇u∇φ dx (5.4)

where, in the second equality, we have used that u is divergence free, thus L2-orthogonal to
gradients, and in the third equality we have integrated by parts in the first, second, fifth, and
seventh term. The potential φ is determined by the “pressure equation” for (4.3),

∇wT :∇w + ∆φ= 0 . (5.5)

Further, by integrating each term by parts, we can show that∫
Ω
∇uu · ∇ww −∇uw · ∇wu+ u · ∇w∇wu− u · ∇w∇uw dx= 0 . (5.6)

Removing these terms from the right hand side of (5.4) and further integrating by parts, we find

L2 =

∫
Ω
∇uw · ∇uw − 1

2 w ⊗ w :∇∇|u|2 − φ∇uT :∇u− 1
2 ∆φ |u|2 dx

=

∫
Ω
w ⊗ w : (∇ui ⊗∇ui +∇∇∆−1(∇uT :∇u)) dx (5.7)

where we have used (5.5) to eliminate φ and twice integrated by parts, so that the second and
fourth term on the right cancel.
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Finally, taking the average under the assumption of isotropy, i.e.,

〈w ⊗ w〉= I (5.8)

and invoking incompressibility one final time, we find that

〈L2〉=
∫
Ω
|∇u|2 dx (5.9)

so that the averaged Lagrangian to second order in ε reads

L= 1
2

∫
Ω
|u|2 + ε2 |∇u|2 dx . (5.10)

We have obtained, once again, the LAE Lagrangian (1.2).

6. Discussion
I have given a formal derivation of the LAE equations via “Lagrangian averaging” under three
natural assumptions: the mean map is a minimizer of geodesic distance, statistical isotropy, and
first order fluctuations are transported as a vector field.

At the technical level, the derivation and resulting equations are the same as given by Marsden
and Shkoller: It is easy to check that their “second order Taylor hypothesis” (3.3b) is implied by
the set of assumptions proposed here; the proof amounts to replaying the argument why none
but the first term in (5.7) contributes to the averaged Lagrangian. Conceptionally, however, the
new derivation is advantageous as it replaces a hypothesis that used to require independent
physical or empirical justification by a condition which arises from the rigidity of the geometric
framework. It is important to note that (3.3b) is only implied under the assumption of isotropy
of fluctuations (5.8). When the covariance tensor F is considered as a dynamic quantity, our
averaged Lagrangian (5.7) is different from [18, equation 22] and leads to a different evolution
equation for the mean flow.

In this light, it is worth looking at the three alternative definitions of the mean flow suggested
by Gilbert and Vanneste [9]. The—in their terminology—“extended GLM”-average relaxes the
incompressibility constraint on the fluctuation map. Consequently, (4.3) must be replaced by a
pressureless Euler equation. As the fictitious pressure φ, under the assumption of isotropy, does
not contribute to the resulting averaged Lagrangian, the resulting equation for the mean flow will
not be affected by this change. The “optimal transport”-average also drops the incompressibility
constraint for the fluctuation map, but keeps averages of the first order fluctuation vector field
divergence free. As such, it changes the implied assumption on the fluctuation statistics, but
also leads to the same equation for the mean flow. Last, “glm”-averaging, due to Soward and
Roberts [24], has a trivial second order fluctuation field by construction. In the setting here, this
leads to trivial first and second order averaged Lagrangians. In addition, the “glm”-average is not
based on minimizing distance and breaks the conceptual symmetry between the t-flow and the
ε-flow. As a result, I conclude that “glm” is not an appropriate setting for Lagrangian averaging
while the other three definitions lead to the same result with slightly different interpretations
of the assumed fluctuation statistics. Geodesic averaging is arguably the most natural choice as
it considers fluctuations and mean flow both incompressible. Note, however, that the models
resulting from “extended GLM”, “optimal transport”, and “geodesic mean” will differ when the
isotropy assumption is dropped.

The derivation given here does not address the question whether the LAE equations are a
good model for turbulence, but it gives a clearer picture regarding the minimal set of underlying
assumptions. In particular, the first order Taylor hypothesis may be open to computational
verification using highly resolved reference simulations of isotropic turbulence. The derivation
also gives a recipe for deriving averaged equations for systems beyond ideal fluid flow so long
as they possess an underlying variational principle. In this context, the framework of geometric
GLM theory provides additional important constraints on the choice of admissible closures. It
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is an independent question whether the geometric framework itself is necessary or helpful on
physical grounds. Comparisons such as performed by Geurts [8], who sees the α-model as one
instance in a more general class of regularization closures, may shed more light on this question.

On the theoretical side, it is open whether the transport of fluctuation assumption is compatible
with the ergodicity of turbulence hypothesis [7], or whether isotropy is maintained for time
averages. Further, the simplification from (5.4) to (5.7) is surprising and it remains to find a
geometric explanation. Finally, recent work of Holm [14] also uses a vector field interpretation
for the Lagrangian fluctuations, now in a stochastic integral context. It is an obvious question
whether the present view of geometric averaging would also apply in the stochastic context.
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