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large-scale semigeostrophic equations
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Abstract

We prove existence and uniqueness of global classical solutions to the
generalized large-scale semigeostrophic equations with periodic boundary
conditions. This family of Hamiltonian balance models for rapidly rotating
shallow water includes the L1 model derived by R. Salmon in 1985 and
its 2006 generalization by the second author. The results are, under the
physical restriction that the initial potential vorticity is positive, as strong
as those available for the Euler equations of ideal fluid flow in two dimen-
sions. Moreover, we identify a special case in which the velocity field is two
derivatives smoother in Sobolev space as compared to the general case.

Our results are based on careful estimates which show that, although the
potential vorticity inversion is nonlinear, bounds on the potential vorticity
inversion operator remain linear in derivatives of the potential vorticity.
This permits the adaptation of an argument based on elliptic Lp theory,
proposed by Yudovich in 1963 for proving existence and uniqueness of weak
solutions for the two-dimensional Euler equations, to our particular nonlin-
ear situation.

1. Introduction

We prove the existence of global classical solutions for a family of gener-
alized large scale semigeostrophic (LSG) equations with periodic boundary
conditions in two dimensions. The model can be formulated as an advection
equation for a scalar potential vorticity q = q(x, t) by a two dimensional
velocity field u = u(x, t),

∂tq + u · ∇q = 0 , (1a)
u = K(q) , (1b)
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where K is the nonlinear operator implicitly defined via

(q − σ∆)h = 1 , (2a)(
1− σ (h∆+ 2∇h · ∇)

)
u = ∇⊥

(
h− µ (2h∆h+ |∇h|2)

)
. (2b)

Here, σ > 0 and µ are real parameters, h = h(x, t) is another scalar field,
x ∈ T2, and we write ∇⊥ = (−∂2, ∂1). We remark that the model can be
written in the formally equivalent form

∂th+∇ · (uh) = 0 (3)

augmented by the u-h relationship (2b). This can be verified by direct com-
putation. However, the results in this paper hinge on the material conser-
vation of potential vorticity, so that we only use the vorticity formulation
of the model.

Physically, this model describes the large scale motion of a layer of shal-
low water in a rotating frame of reference in the limit of small Rossby
number and similarly small Burger number, where h represents an approx-
imation to the layer depth. It was first derived by Salmon [18] in two spe-
cial cases, the so-called L1 equations and the large-scale semigeostrophic
equations. Subsequent work [14] generalized Salmon’s approach, effectively
interpreting different choices of µ as approximate near-identity changes of
variables. In fact, σ = ε(λ + 1

2 ) and µ = ελ are convenient abbreviations
for dependence on the physical parameters, the Rossby number ε and the
factor of proportionality of the coordinate distortion which, to leading or-
der, is given by λ− 1

2 . Details of the construction and higher order models
can be found in [14]; the case of a spatially varying Coriolis parameter is
discussed in [17]. Here, we only remark that the generalized LSG equations
are formally valid in the same asymptotic regime in which Hoskins’ semi-
geostrophic equations [12] are valid. The models differ in the higher order
terms which are kept or discarded. Both classic semigeostrophy and the
generalized LSG equations are Hamiltonian models, albeit with a different
Hamiltonian structure.

Mathematically, the generalized LSG equations are interesting for the
following reason. When µ 6= 0, a superficial count of orders of differentia-
tion in (2) indicates that the potential vorticity inversion should gain one
derivative in Sobolev space, hence, the model is expected to behave like the
Euler equations of an ideal fluid in two dimensions. When µ = 0, the in-
version is expected to gain three derivatives in Sobolev space, which would
put this model on par with the so-called Euler-α or Lagrangian averaged
Euler equations which were, in their inviscid form, first derived by Holm et
al. [7] on formal grounds and later justified under certain closure assump-
tions in [6,8]. Here, on the other hand, the additional regularity arises from
terms which appear as part of an asymptotic expansion at the order to
which the model is formally valid. In other words, we have an Euler-α-like
model which has an, at this point formal, first principles derivation from
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the two-dimensional shallow water equations without the need for closure
conditions or averaging.

It is not immediately apparent how to make the analogy with the Euler
or Euler-α equations rigorous—there are notable differences to the standard
global existence theory for two-dimensional inviscid flows. To appreciate
the difficulties which arise, let us recall the essence of the classic argument.
Global existence of Hs class classical solutions ultimately depends on a
global estimate on the Hs norm of q. Thus, we compute

d
dt
‖q‖2Hs ≤

∣∣∣∣∫ ∇ · u |Dsq|2 dx
∣∣∣∣+ additional terms

≤ ‖∇u‖L∞ ‖q‖2Hs + additional terms (4)

Note that we do not assume that u is divergence free; in our model, it is
not. The “additional terms” which appear on the right of (4) can be shown
to satisfy at worst an upper bound of the form already stated. To obtain
a global Hs bound on q, we would need an estimate of ‖∇u‖L∞ in terms
of ‖q‖Hs which makes this differential inequality globally integrable. For
example, when K is the vorticity inversion operator arising from the linear
Biot–Savart law, it is known that

‖Kq‖W 1,∞ ≤ c ‖q‖L∞
(
1 + ln+‖q‖Hs

)
(5)

in two and three dimensions with s = 2, implying global classical solutions
for the two-dimensional Euler equations and the Beale–Kato–Majda crite-
rion [2] for potential blowup of solutions for the three dimensional Euler
equations.

A direct proof of (5) is achieved by careful estimates on the explicit
Green’s kernel of K. When an explicit formula for the kernel is not avail-
able, (5) can still be derived via Lp estimates for finite p provided the
p-dependence of the estimate is essentially of the form

‖u‖W 1,p ≤ c
p2

p− 1
‖q‖Lp (6)

for p ∈ (1,∞). For ideal fluids, an estimate of this form follows from the
general Lp theory of linear second order elliptic equations [20]. Then (5)
follows by an optimal Gagliardo–Nirenberg estimate—this is the essence of
the proof of our main Theorem 3. The idea behind this argument goes back
to the work of Yudovich [21].

Implementing this strategy for the generalized LSG equations is nontriv-
ial, however, as our potential vorticity inversion is nonlinear: even though
(2a) and (2b) are linear in the unknown function, their coefficients depend
on the data, so that their dependence on q and h, respectively, is nonlinear.
Thus, the non-standard part of our argument consists of proving that the
problem is not “too nonlinear” in the following sense.

First, an estimate of the form (6) holds true for the generalized LSG
potential vorticity inversion with, however, a q-dependent constant c. In
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other words, its right hand side is now nonlinear in the potential vorticity,
but we shall observe that this nonlinear dependence involves only upper
and lower bounds on q which are constants of the motion. Second, when
translating this estimate up the Sobolev scale as is necessary for estimating
the “additional terms” in (4), all nonlinear dependence remains a function of
constants of the motion. Third, in the higher rung translates of this estimate,
the dependence on p becomes superlinear as p→∞; fortunately though, a
careful look at the problem reveals that we can avoid taking this limit for all
but the lowest rung estimate where the constant is indeed asymptotically
linear in p.

We remark that a general theory for linear potential vorticity operators
was formulated in [15], which also contains a review of the classic theory for
ideal fluids in two dimensions. Further, in [16] we derive the Hamiltonian
formulation of the generalized LSG equations and prove existence of local
classical solutions. The proof given there is short and simple as it uses the
topological algebra property of Hs for s > 1, but requires physically unrea-
sonable smallness assumptions on the data and yields a priori bounds that
blow up in a finite time. Here, for the first time, we have proof that Salmon’s
L1 model and its generalizations, under the condition that the initial poten-
tial vorticity is positive, possess existence and regularity results as strong
as those available for two dimensional ideal fluid flow. More precisely, the
result, which is stated as Theorem 3 in the final section of this paper, is this:
Suppose m ≥ 3 and the initial potential vorticity qin ∈ Hm(T2) is strictly
positive. Then the generalized LSG equations (1) possess a global classical
solution q ∈ Ck([0,∞);Hm−k(T2)) for every k = 0, . . . ,m − 2. The asso-
ciated velocity field satisfies u ∈ Ck([0,∞);Hm−k+1(T2)) when µ 6= 0 and
Ck([0,∞);Hm−k+3(T2)) when µ = 0 for k = 0, . . . ,m−2. The restriction to
positive potential vorticities is consistent with the assumed physical scaling
in the derivation of the balance models, hence, is expected and reasonable.
The generalized LSG equations also support weak solutions, but only under
additional restrictions on the initial potential vorticity [3].

The article is structured as follows. In the next section we introduce our
notation and conventions. In Section 3 we prove the main kinematic esti-
mates which characterize our nonlinear potential vorticity operator K; the
results are summarized in Theorem 1. Section 4 proves short-time existence
and uniqueness of classical solutions for the generalized LSG equations. Fi-
nally, in Section 5 we extend the local classical solutions globally in time.

2. Notation and preliminaries

For f ∈ L∞(T2), we define

f− = ess inf
x∈T2

f(x) and f+ = ess sup
x∈T2

f(x) . (7)

Throughout this article, we assume that 0 < σ ≤ 1. The upper bound is non-
essential. We carry out kinematic estimates assuming the potential vorticity
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is continuous with q > 0, so that q ∈ [q−, q+] with q− and q+ being finite
and positive. Furthermore, in the class of solutions we are considering, q−
and q+ are constants of motion due to the advection of potential vorticity.
Therefore, without loss of generality, we can assume that q+ − 1 = 1 − q−
and write q ≡ 1 + q̃ with ‖q̃‖L∞ < 1. To see this, define in the general case
Q = (q− + q+)/2, replace q by q/Q, h by hQ, ε by ε/Q, u by uQ, and t by
t/Q, and note that the generalized LSG equations are invariant under this
rescaling.

For m ∈ N0 and 1 ≤ p ≤ ∞, we write Wm,p(T2) to denote the Sobolev
space of Lebesgue measurable functions whose weak derivatives up to order
m belong to Lp(T2), endowed with the norm

‖f‖Wm,p =
∑
|α|≤m

‖Dαf‖Lp , (8)

where we employ the usual multi-index notation. We abbreviate Hm =
Wm,2; it is a Hilbert space with inner product

〈f, g〉m =
∑
|α|≤m

〈Dαf,Dαg〉L2 . (9)

In one instance, we need to refer to the space Hs with a non-integer expo-
nent. In this case, we take, for convenience, the equivalent Fourier charac-
terization where

‖f‖2Hs =
∑
k∈Z2

(1 + |k|2)s |f̂k|2 (10)

with f̂k denoting the Fourier coefficients of f .
The space Wm,p(T2) is a topological algebra when mp > 2. I.e., there

exists a constant c = c(m, p) such that

‖wv‖Wm,p ≤ c ‖w‖Wm,p‖v‖Wm,p (11)

for all w, v ∈Wm,p. In particular, Hs is a topological algebra for s > 1.
Form ∈ N and p ∈ (1,∞) with Hölder conjugate p′, we setW−m,p(T2) =

(Wm,p′(T2))′, endowed with the dual norm

‖f‖W−m,p = sup
φ∈Wm,p′

φ 6=0

〈φ, f〉
‖φ‖

Wm,p′
. (12)

We remark that this definition coincides with the usual definition of W−m,p

as the dual of Wm,p′

0 (see, e.g., [1]), because on the torus the spaces Wm,p′

and Wm,p′

0 coincide.
Finally, we define potential vorticity “balls,” on which the estimates we

will derive are uniform, as

Am,p(r,R) = {q̃ ∈Wm,p(T2) : ‖q̃‖L∞ < r and ‖q̃‖Wm,p < R} (13)

for R > 0 and 0 ≤ r < 1; we abbreviate Am ≡ Am,2.
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We adopt the following convention on the naming of constants. Con-
stants that might depend on parameters only are denoted by c; constants
that may also depend on the data or the bounds r and R of the vorticity balls
are denoted C. Different subscripts indicate a change in the constant from
step to step within a single computation; however, we make no attempt at
a unique naming of constants across different sections of the paper. Nonuni-
form dependence on p ∈ (1,∞) is always indicated explicitly; nonuniform
dependence on σ, where, for simplicity, we always assume σ ≤ 1, is only
tracked in Section 3.

3. Kinematic estimates

In this section we establish sufficient conditions under which the operator
K is well defined and derive kinematic estimates for later use. This task
naturally splits in three parts: we first study the second order differential
operator from (2a), which we abbreviate

Lq = q − σ∆ . (14)

Second, we look at the second order differential operator on the left hand
side of (2b), which we abbreviate

Λh = 1− σ (h∆+ 2∇h · ∇) (15)

supposing that h is already given as a solution of (2a). Finally, we include
the right hand side of (2b), thereby completing the estimates for the full
potential vorticity inversion. The final result is stated as Theorem 1 toward
the end of this section.

Proposition 1. Suppose f ∈ Lp(T2) with 1 < p <∞ and q̃ ∈ L∞(T2) with
‖q̃‖L∞ ≤ r < 1. Then the equation

Lqh = f (16)

has a unique solution h ∈W 2,p with

‖h‖Lp ≤
1

1− r
‖f‖Lp (17a)

and, for some c > 0,

‖h‖W 2,p ≤
c

σ

p2

p− 1
1

1− r
‖f‖Lp . (17b)

If, in addition, f, q ∈ Wm,p(T2) with m ∈ N, then h ∈ Wm+2,p and there
exists a constant C depending on r and on all parameters such that

‖h‖Wm+2,p ≤ C
(
1 + ‖q̃‖Wm,p

)
‖f‖Wm,p . (18)
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In both cases above, the map q 7→ L−1
q f is uniformly continuous on q̃ ∈

Am,p(r,R) for every r ∈ [0, 1) and R > 0 as a map from Wm,p to Wm+2,p.
Specifically, there exists a constant C depending on all parameters as well
as r, R, and ‖f‖Wm,p such that

‖L−1
q2 f − L

−1
q1 f‖Wm+2,p ≤ C ‖q2 − q1‖Wm,p (19)

for all q̃1, q̃2 ∈ Am,p(r,R).

Proof. Since ‖q̃‖L∞ < 1, the second order operator Lq is uniformly elliptic
and coercive. Hence, existence and uniqueness of a solution in W 2,p follow
directly from standard elliptic Lp theory. To proceed, we write (16) in fixed
point form, namely,

h = (1− σ∆)−1(f − q̃ h) . (20)
Hence,

‖h‖Lp ≤ ‖(1− σ∆)−1‖Lp→Lp
(
‖f‖Lp + ‖q̃‖L∞ ‖h‖Lp

)
. (21)

Since the inverse Helmholtz operator has unit norm on Lp, as can be seen
from its explicit integral representation, estimate (17a) follows immediately.
Moreover, elliptic Lp regularity [20,4,10] provides that there exists a con-
stant c such that

‖(1− σ∆)−1‖Lp→W 2,p ≤
c

σ

p2

p− 1
. (22)

Hence, considering the inverse Helmholtz operator as a map from Lp to
W 2,p in (21) yields (17b).

Higher regularity with corresponding estimates in Wm,p is proved by an
induction argument: suppose the statement is already proved up to some
integer m ≥ 0 and let α be a multi-index with |α| = m+ 1. Then

Dαh = (1− σ∆)−1

(
Dαf −

∑
β≤α

(
α

β

)
Dα−β q̃Dβh

)
. (23)

To estimate the Lp norm of each of the terms in the right hand sum, we
apply Hölder inequalities with conjugate exponents

s =
|α|
|α− β|

and s′ =
|α|
|β|

, (24)

use the induction assumption (in combination with (17b) and the Sobolev
embedding W 2,p(T2) ⊂ L∞(T2) in the case β = 0), and apply Gagliardo–
Nirenberg inequalities [9,13] with dimension independent exponents on each
norm of q̃ and a Sobolev embedding on the norm of f , to obtain

‖Dα−β q̃Dβh‖Lp ≤ ‖Dα−β q̃‖Lps ‖Dβh‖
Lps′

≤ ‖Dα−β q̃‖Lps C1

(
1 + ‖q̃‖

W |β|,ps′
)
‖f‖

W |β|,ps′

≤ C2 ‖D|α|q̃‖
1
s
Lp ‖q̃‖

1− 1
s

L∞

[
1 + ‖q̃‖

1
s′

W |α|,p
‖q̃‖

1− 1
s′

L∞

]
‖f‖W |α|,p

≤ C3

(
1 + ‖q̃‖W |α|,p

)
‖f‖W |α|,p . (25)
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We remark that the p-dependence of the Gagliardo–Nirenberg constants is
nontrivial. It could be tracked down via integration by parts and Hölder
inequalities; the details do not matter for our purposes when m ≥ 1.

Inserting (25) into a W 2,p estimate of (23), we find that

‖Dαh‖W 2,p ≤ ‖(1− σ∆)−1‖Lp→W 2,p

·
[
‖Dαf‖Lp + C4

(
1 + ‖q̃‖W |α|,p

)
‖f‖W |α|,p

]
. (26)

Estimate (18) is an immediate consequence.
Finally, to prove uniform continuity, suppose under the respective as-

sumptions on m and p that q̃i ∈ Am,p(r,R) and Lqihi = f for i = 1, 2.
Then

h2 − h1 = L−1
q2 [h1 (q1 − q2)] (27)

so that, due to (17b) or (18), respectively,

‖h2 − h1‖Wm+2,p ≤ C(p, σ, r, R) ‖h1 (q2 − q1)‖Wm,p . (28)

The claim then follows by noting that, in two dimensions, the norm on
the right can always be estimated by the product of ‖q2 − q1‖Wm,p and
‖h1‖Wm+2,p . ut

Remark 1. When f ∈ L∞(T2)∩Wm,p(T2), a similar induction argument,
where the term where α = β in the Leibniz expansion is moved onto the
left hand side of the estimate, yields a bound with optimal dependence in
σ which is, moreover, linear in derivatives of the data. Namely, there is a
constant C which depends only on m, p, and ‖q̃‖L∞ such that

‖h‖Wm,p ≤ C
(
‖f‖Wm,p + ‖f‖L∞ ‖q̃‖Wm,p

)
(29)

and

‖h‖Wm+2,p ≤
C

σ

(
‖f‖Wm,p + ‖f‖L∞ ‖q̃‖Wm,p

)
(30)

For m = 1, the condition that f ∈ L∞ may be dropped with ‖f‖L∞ replaced
by ‖h‖L∞ .

Proposition 2. Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ < 1 and let h be the
solution to Lqh = 1 given by Proposition 1. Then

1
q+
≤ h ≤ 1

q−
. (31)

Proof. We rewrite the equation Lqh = 1 in the form

Lq

(
h− 1

q+

)
= 1− q

q+
≥ 0 . (32)
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First, suppose that q ∈ C(T2) and h ∈ C2(T2). Since Lq is uniformly elliptic,
the classical strong maximum principle [11,10] then implies

h− 1
q+
≥ 0 . (33)

The upper bound on h follows from the corresponding argument for h−1/q−.
The general case when q̃ ∈ L∞(T2) follows by a standard mollification
argument. ut

We now turn to studying the operator Λh defined in (15). We begin
by stating a result on weak solutions of a linear second order equation in
W 1,p which is a direct consequence of the well-known Lp theory for elliptic
operators [4,10,20].

Lemma 1. Suppose f ∈W−1,p(T2) with 2 ≤ p <∞. Then the equation

(1− σ∆)v = f (34)

has a unique weak solution v ∈ W 1,p(T2) and there exists a constant c
independent of p and σ such that

‖v‖W 1,p ≤
c p

σ
‖f‖W−1,p . (35)

Proof. Since H−1 ⊃W−1,p, existence of a unique weak solution v ∈ H1 is
elementary. To show that v ∈ W 1,p, it suffices to prove (35) for f ∈ W 1,p

and to by density. Indeed, due to (22),

‖v‖Lp = sup
φ∈Lp

′

φ6=0

〈φ, v〉L2

‖φ‖Lp′
≤ c

σ

(p′)2

p′ − 1
sup

ψ∈W 2,p′

ψ 6=0

〈(1− σ∆)ψ, v〉L2

‖ψ‖W 2,p′

≤ 2 c p
σ
‖f‖W−2,p . (36)

Since (1− σ∆)∂iv = ∂if for i = 1, 2, this estimate also yields

‖∂iv‖Lp ≤
2 c p
σ
‖∂if‖W−2,p ≤

2 c p
σ
‖f‖W−1,p . (37)

Estimates (36) and (37) finally imply (35). ut

We now establish a corresponding result for weak solutions of Λhu = g.
As usual, a weak solution is a function u ∈ H1(T2) which satisfies

B(u, v) = 〈g, v〉 (38)

for every v ∈ H1(T2), where the bilinear form B reads

B(u, v) =
∫

T2

(
u · v + σ h∇u : ∇v − σ∇h · (∇u)T v

)
dx , (39)

the colon denoting summation of componentwise products over both indices.
We can then prove the following.
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Proposition 3. Suppose q̃ ∈ L∞(T2) with ‖q̃‖L∞ ≤ r < 1 and let h be the
solution to Lqh = 1 given by Proposition 1. Further, let g ∈W−1,p(T2) with
2 ≤ p <∞. Then the problem

Λhu = g (40)

has a unique weak solution u ∈ W 1,p(T2) and there exists a constant c
independent of p such that

‖u‖W 1,p ≤
c p

σ2

1
1− r

‖g‖W−1,p . (41)

In particular, when g denotes the right hand side of the generalized LSG
momentum equation (2b), then there exists a constant C1 independent of p
but dependent on all other parameters as well as on r such that

‖u‖W 1,p ≤ C1 p . (42)

Finally, when g ∈ Lp(T2) for any p ∈ (1,∞), there exists a constant C2

depending on p, r, and on all other parameters such that

‖u‖W 2,p ≤ C2 ‖g‖Lp . (43)

Remark 2. The prefactor 1/σ2 in (41) is not optimal. For p = 2, our proof
below shows that the constant scales like 1/σ for σ → 0. In general, one
could trade extra dependence of the constant in p for an improvement in
the dependence on σ; this, however, is not relevant for the purposes of our
work here.

Proof. We first assume p ≥ 2 so that g ∈ H−1(T2). As in the proof of
Lemma 1, we establish existence of a unique weak solution u ∈ H1(T2) by
the Lax–Milgram theorem. Continuity of the bilinear form (39) is immedi-
ate. To prove coercivity, we write

B(u, u) =
∫

T2

(
|u|2 + σ h |∇u|2 − 1

2 σ∇h · ∇|u|
2
)

dx

=
∫

T2

(
|u|2 + σ h |∇u|2 + 1

2 σ∆h |u|
2
)

dx

=
∫

T2

(
1
2 (1 + qh) |u|2 + σ h |∇u|2

)
dx

≥ min{ 1
2 , σh−} ‖u‖

2
H1 . (44)

Since, by Proposition 2, h− ≥ 1/q+ > 1/2, and σ ≤ 1 throughout, the Lax–
Milgram theorem asserts existence of a unique weak solution u ∈ H1(T2)
with

‖u‖H1 ≤
2
σ
‖g‖H−1 . (45)

To prove W 1,p regularity, we write 1/h = 1+ b̃. We recall from Proposition 2
that 1 + q̃− ≤ 1/h ≤ 1 + q̃+, so that

‖b̃‖L∞ ≤ ‖q̃‖L∞ . (46)
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Then (40) can be written as

(1− σ∆)u =
g

h
− b̃ u+

2σ
h
∇h · ∇u . (47)

So, to prove the claim, it suffices to find appropriate estimates in W−1,p for
each of the terms on the right.

To begin, continuity of the embedding W 1,4(T2) ⊂ L∞(T2) and esti-
mate (17b) applied with fixed p = 4 imply that there exists a constant c1
independent of p such that

‖∇h‖L∞ ≤
c1
σ

1
1− r

. (48)

Using Proposition 2, we then find that for every φ ∈W 1,p′(T2),

‖φ/h‖
W 1,p′ ≤

c2
σ

1
1− r

‖φ‖
W 1,p′ . (49)

Hence, when g ∈ L2(T2),

‖g/h‖W−1,p ≤
c2
σ

1
1− r

sup
φ∈W 1,p′

φ6=0

〈φ/h, g〉L2

‖φ/h‖W 1,p′
=
c2
σ

1
1− r

‖g‖W−1,p . (50)

This inequality extends to all g ∈W−1,p(T2) by density. Next,

‖b̃u‖W−1,p ≤ c3 ‖b̃u‖L2 ≤
c4
σ
‖q̃‖L∞ ‖g‖W−1,p , (51)

where the second inequality is due to the Sobolev embedding theorem, (45),
and (46). Using (48), in addition, we finally obtain

‖h−1∇h · ∇u‖W−1,p ≤ c3 ‖h−1‖L∞ ‖∇h‖L∞ ‖∇u‖L2 ≤
c5
σ2

1
1− r

‖g‖W−1,p .

(52)
This concludes the proof of (41).

To prove (42), we note that when g is given by the right hand side of
(2b),

‖g‖W−1,p ≤ ‖h− µ (2h∆h+ |∇h|2)‖Lp . (53)

Since (2a) implies ∆h = (qh− 1)/σ and h is bounded in L∞ due to Propo-
sition 2, the first two terms inside the Lp norm in (53) are bounded in L∞,
hence in all Lp uniformly in p. The last term is bounded in L∞ due to (48).
The claim then follows from (41).

Finally, to prove (43), it suffices to obtain an appropriate Lp bound on
the expression on the right of (47). We estimate

‖h−1g‖Lp ≤ ‖h−1‖L∞ ‖g‖Lp , (54)

‖b̃ u‖Lp ≤ c6 ‖q̃‖L∞ ‖u‖L2p ≤ C1 ‖g‖W−1,2p ≤ C2 ‖g‖Lp , (55)
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and

‖h−1∇h · ∇u‖Lp ≤ ‖h−1‖L∞ ‖h‖W 1,2p ‖u‖W 1,2p

≤ C3 ‖g‖W−1,2p ≤ C4 ‖g‖Lp , (56)

where the second inequality is due to Proposition 1 and estimate (41). ut

Having established existence and uniqueness of a weak solution of (2b),
we expect, in analogy with linear elliptic regularity theory, the existence of
a solution u ∈ Wm+1,p(T2) when q ∈ Wm,p(T2). In Theorem 1 we show
that this is indeed the case and that, although the dependence of u on q is
nonlinear, the bounds on ‖u‖Wm+1,p are linear in derivatives of q. We start
by stating a simple fact about the reciprocals of Wm,p functions.

Lemma 2. Suppose h ∈ Wm,p(T2) ∩ L∞(T2) for m ∈ N and p ∈ (1,∞)
with h− > 0. Then h−1 ∈ Wm,p(T2) and there exists a constant C =
C(m, p, h−, h+) such that

‖h−1‖Wm,p ≤ C ‖h‖Wm,p . (57)

Proof. By the multivariate Faà di Bruno formula [5], the terms in a full
expansion of Dαh−1 are all of the form

h−`−1 Dα1
h · · ·Dα`h , (58)

where α1 + · · ·+α` = α is a partition of the multi-index α into ` parts. We
estimate

‖h−`−1 Dα1
h · · ·Dα`h‖Lp ≤ ‖h−1‖`+1

L∞

∏̀
i=1

‖Dαih‖Lpsi

≤ c ‖h−1‖`+1
L∞

∏̀
i=1

‖D|α|h‖
1
si
Lp ‖h‖

1− 1
si

L∞

≤ C ‖D|α|h‖Lp , (59)

where the first inequality is due to the Hölder inequality with si = |α|/|αi|
and the second inequality employs the dimension independent case of the
Gagliardo–Nirenberg inequality. The claim follows directly. ut

The properties of the full potential vorticity inversion are now stated in
the following theorem.

Theorem 1. Suppose q̃ ∈ Wm,p(T2) ∩ L∞(T2), m ∈ N0, 1 < p < ∞, and
(m + 1)p ≥ 2 with ‖q̃‖L∞ ≤ r < 1. Let h = h(q) denote the solution to
Lqh = 1 given by Proposition 1, let g = g(q) denote the right hand side of
the generalized LSG momentum equation (2b), and let u ≡ K(q) denote the
solution to Λhu = g given by Proposition 3. Then u ∈ Wm+1,p and there
exists a constant C depending on r and on all parameters such that

‖u‖Wm+1,p ≤ C ‖q‖Wm,p . (60)
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In the special case when µ = 0, u ∈Wm+3,p with bound

‖u‖Wm+3,p ≤ C ‖q‖Wm,p . (61)

Finally, for m > 0 and R > 0 fixed, the operator K is uniformly continuous
on the set q̃ ∈ Am,p(r,R) as a map from Wm,p into Wm+1,p in general and
from Wm,p into Wm+3,p when µ = 0.

Proof. Estimate (18) of Proposition 1 already provides the bound

‖h‖Wm+2,p ≤ C1 ‖q‖Wm,p (62)

on the solution of Lqh = 1. So (60) follows provided we can show that there
exists a constant C2, depending on r and on all parameters, such that

‖u‖Wm+1,p ≤ C2 ‖h‖Wm+2,p . (63)

When m = 0 with 2 ≤ p <∞, estimate (63) follows directly from estimate
(42) of Proposition 3. When m = 1 with 1 < p <∞, (63) follows from (43)
of Proposition 3, where we need a bound on ‖g‖Lp . This bound is achieved
by noting that, for arbitrary multi-indexes α and β, dimension independent
Gagliardo–Nirenberg inequalities yield

‖DαhDβh‖Lp ≤ c ‖h‖W |α+β|,p ‖h‖L∞ . (64)

The proof is identical to the proof of Lemma 2. Combining (62) with (64)
and (31) we then obtain for any m ∈ N0 that

‖g(q)‖Wm−1,p ≤ C3 ‖q‖Wm,p . (65)

In the general case, we proceed by induction. Suppose the statement is
already proved up to some m ∈ N and let α be a multi-index with |α| = m.
Differentiating (47), we obtain

(1− σ∆)Dαu = Dα(h−1g)−Dα(b̃ u) + 2σDα(h−1∇h · ∇u) . (66)

Noting that (1 − σ∆)−1 is continuous from Lp to W 2,p, we obtain the
required bound on ‖u‖Wm+2,p via an Lp estimate on the right hand side.
We begin with the last term, estimating

‖Dα(h−1∇h · ∇u)‖Lp

≤ c
∑

α1+α2+α3=α

‖Dα1
h−1‖Lps1 ‖Dα2

∇h‖Lps2 ‖Dα3
∇u‖Lps3

≤ C4

∑
α1+α2+α3=α

‖h‖
W |α

1|,ps1
‖h‖

W |α
2|+1,ps2

‖h‖
W |α

3|+2,ps3

≤ C5 ‖h‖W |α|+3,p ‖h‖2L∞ , (67)

where the first inequality is due to Hölder inequalities with

s1 =
|α|+ 3
|α1|

, s2 =
|α|+ 3
|α2|+ 1

, and s3 =
|α|+ 3
|α3|+ 2

, (68)
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the second inequality in (67) is due to Lemma 2 and the induction hy-
pothesis, and the final inequality in (67) is due to Gagliardo–Nirenberg
inequalities with dimension independent exponents where we note that, as
in the proof of Lemma 2, the exponents always add up to one.

The second term on the right of (66) is of lower order relative to the
third so that it enjoys the same type of upper bound. For the first term,
we insert the explicit form of g from (2b). The term with the highest order
derivative reads ‖Dα∆∇h‖Lp and is, therefore, already of the required form.
The expression further contains multiple terms with the same homogeneity
as those on the second line of (67), as well as lower order contributions
which are easily seen to satisfy the required upper bound. Altogether, this
completes the proof of (63), hence of (60).

Let us now turn to the special case when µ = 0 so that g = ∇⊥h. Here,
it suffices to show that for every m ≥ 2 there exists a constant C1, which
may depend on r and on the remaining parameters, such that

‖u‖Wm+1,p ≤ C1 ‖h‖Wm,p . (69)

Due to (62), estimate (61) is an immediate consequence.
To prove (69), we first note that due to estimate (43) of Proposition 3

and the boundedness of h in W 1,∞, for every s ∈ (1,∞) there exists a
constant C2 depending on s, r, and on the remaining parameters such that

‖u‖W 2,s ≤ C2 . (70)

We now proceed inductively. Suppose (69) is already proved up to order
m′ ∈ N, and let α be a multi-index with |α| = m′. Hence, to prove (69) for
m = m′ + 1, we need to estimate the right hand side of (66) in Lp. Here,
g = ∇⊥h so that the first and second terms are of lower order relative to
the third term, and shall not be considered explicitly. To obtain a bound
on the third term, we proceed as in (67), but with exponents

s1 =
|α|+ 1
|α1|

, s2 =
|α|+ 1
|α2|+ 1

, and s3 =
|α|+ 1
|α3|

. (71)

Employing Lemma 2 and using the induction hypothesis when |α3| ≥ 2,
(70) when |α3| = 1, and (70) in combination with a Sobolev embedding
when |α3| = 0, we find

‖Dα(h−1∇h · ∇u)‖Lp

≤ C3

∑
α1+α2+α3=α

‖h‖
W |α

1|,ps1
‖h‖

W |α
2|+1,ps2

‖h‖
W |α

3|,ps3

≤ C4 ‖h‖W |α|+1,p ‖h‖2L∞ , (72)

where, once again, we used dimension independent Gagliardo–Nirenberg
inequalities in the final step. This concludes the proof of (69), hence, of
(61).
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It remains to verify the claim of uniform continuity on Am,p(r,R). We
note that, due to (2a),

Λhu = Lq(hu) . (73)

Suppose q̃1, q̃2 ∈ Am,p(r,R) and set hi = h(qi) and ui = K(qi). Using (73),
we obtain

u1 − u2 =
1

h1h2

[
h2L

−1
q1 (g(q1)− h1L

−1
q2 (g(q2))

]
=
h2 − h1

h1h2
L−1
q1 g(q1) +

L−1
q1 g(q1)− L−1

q2 g(q1)
h2

+
L−1
q2 (g(q1)− g(q2))

h2

(74)

and note that we have uniform bounds on the norms ‖hi‖Wm+2,p due to
(18), on ‖h−1

i ‖Wm+2,p due to Lemma 2, on ‖g(qi)‖Wm−1,p due to (65), and
on ‖L−1

qj g(qi)‖Wm+1,p due to Proposition 1. Further, we have

‖g(q1)− g(q2)‖Wm−1,p ≤ ‖h1 − h2‖Wm,p + 2µ ‖h1∆h1 − h2∆h2‖Wm,p

+ µ ‖∇(h1 − h2) · ∇(h1 + h2)‖Wm,p

≤ C ‖q1 − q2‖Wm,p . (75)

We then obtain uniform continuity of K as an operator from Wm,p to
Wm+1,p by taking the Wm+1,p-norm of (74), noting that Wm+1,p(T2) is a
topological algebra when m ≥ 1, and using (75) in combination with (19).

When µ = 0, the corresponding estimate on (74) gives uniform con-
tinuity of K as an operator from Wm,p to Wm+2,p; this can be used to
achieve uniform continuity into Wm+3,p via (66) with |α| = m + 1, noting
the multilinearity of its right hand side. ut

4. Local classical solutions

Theorem 2. Let m ≥ 3, 0 ≤ r < 1, and R > 0. Then there exists a
time T = T (m, r,R) such that for every initial potential vorticity anomaly
q̃in ∈ Am(r,R) there exists a unique classical solution to the generalized
LSG equations (1) of class

q ∈
m−2⋂
k=0

Ck([0, T );Hm−k(T2)) , (76a)

h ∈
m−2⋂
k=0

Ck([0, T );Hm+2−k(T2)) , (76b)

u ∈
m−2⋂
k=0

Ck([0, T );Hm+1−k(T2)) . (76c)
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Moreover, when µ = 0,

u ∈
m−2⋂
k=0

Ck([0, T );Hm+3−k(T2)) . (77)

Proof. We construct the solution as the limit of a Galerkin approximating
sequence as in [15,19]. We proceed in several steps.

Step 1. Construct a family of approximate solutions {qn}.

Let Pn denote the Hm-orthogonal projector onto the Fourier modes
with wave number less or equal to n in modulus, and set Qn = 1− Pn. We
consider the vorticity equation (1a) restricted to PnHm(T2),

∂tqn + Pn(un · ∇qn) = 0 , (78a)
un = K(qn) , (78b)

qn(0) = qinn ≡ Pnqin . (78c)

As before, we write qn = 1+ q̃n. Since the inclusion Hm(T2) ↪→ C(T2) is
continuous, the convergence qinn → qin in Hm implies that q̃inn ∈ Am( r+1

2 , R)
for n ≥ N with N sufficiently large. Then, by the Picard–Lindelöf theorem
for ordinary differential equations, there exists a time Tn such that (78)
possesses a solution with q̃n(t) ∈ Am( r+3

4 , R) for t ∈ [0, Tn).

Step 2. Show that lim infn→∞ Tn > 0.

Proof. We first note that, unlike in the case of ideal planar flow where
K denotes the two-dimensional Biot–Savart operator, it is not sufficient to
obtain uniform control on the Hm norm of qn. Here, solutions may also
cease to exist once we violate the solvability condition ‖q̃n‖L∞ < 1. We
argue as follows. Let

Tn = sup{T : q̃n(t) ∈ Am( r+3
4 , R) for t ∈ [0, T )} . (79)

Without loss of generality we may assume that Tn ≤ T̂ <∞ for all n ∈ N.
Noting that q̃n also satisfies an equation of the form (78a), multiplying by
q̃p−1
n , and integrating over the torus, we obtain

d
dt
‖q̃n(t)‖Lp ≤ ‖q̃n‖

1−p
Lp

∣∣∣∣1p
∫

T2
un · ∇q̃pn dx−

∫
T2
Qn(un · ∇q̃n) q̃p−1

n dx
∣∣∣∣

≤ 1
p
‖∇un‖L∞ ‖q̃n‖Lp + ‖Qn(un · ∇q̃n)‖L∞ . (80)

Now, by the Sobolev embedding theorem, there exists a constant c1 such
that for every f ∈ H2(T2),

‖Qnf‖L∞ ≤ c1 ‖Qnf‖H3/2 ≤
c1√
n
‖f‖H2 , (81)
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so that

‖Qn(un · ∇q̃n)‖L∞ ≤
c1√
n
‖un · ∇q̃n‖H2 ≤

c2√
n
‖un‖H4 ‖qn‖H3 . (82)

Further, due to Theorem 1, ‖un‖H4 ≤ C( r+3
4 , R), so that (80) implies

d
dt
‖q̃n(t)‖Lp ≤

C1

p
‖q̃n‖Lp +

C2√
n
. (83)

Integrating this differential inequality in time, we find that for all t ∈ [0, Tn],

‖q̃n(t)‖Lp ≤ ‖q̃inn ‖Lp exp
(C1 t

p

)
+

C2 p

C1
√
n

[
exp
(C1 t

p

)
− 1
]
. (84)

Letting p→∞, we obtain

‖q̃n(t)‖L∞ ≤ ‖q̃inn ‖L∞ +
C2 t√
n
≤ 1 + r

2
+
C2 T̂√
n
. (85)

Thus, forN large enough and for all n ≥ N , we have proved that ‖q̃n(t)‖L∞ <
r+3
4 so long as ‖q̃n(t)‖Hm ≤ R.

We can now proceed with a standard estimate on the Hm norm of q̃n.
First, recall that there are constants c1 and c2 such that for all u, q, ψ ∈
Hm+1(T2),

〈u · ∇q, q〉m ≤ c1 ‖u‖Hm+1 ‖q‖2Hm , (86a)

〈u · ∇q, ψ〉m ≤ c2 ‖u‖Hm+1 ‖q‖Hm ‖ψ‖Hm+1 . (86b)

Taking the Hm inner product of (78a) with q̃n and using estimates (86a)
and (60) yields

d
dt
‖q̃n‖2Hm = −2 〈un · ∇q̃n, q̃n〉m ≤ C(r) ‖q̃n‖3Hm . (87)

Integrating the differential inequality (87) with respect to time and recalling
that ‖q̃inn ‖Hm ≤ ‖q̃in‖Hm , we find that there exists a continuous increasing
function θ independent of n ≥ N with θ(0) = ‖q̃in‖Hm such that

‖q̃n(t)‖Hm ≤ θ(t) (88)

for all t ∈ [0, Tn). The claim follows immediately. ut

Step 3. Show that {qn} is a relatively compact set in C ([0, T ); w-Hm(T2))
for some T > 0.

Proof. We set T = infn≥N Tn. According to the Arzela–Ascoli theorem,
{qn} is a relatively compact set in the space C ([0, T ); w-Hm(T2)), where
w-Hm(T2) denotes Hm endowed with the weak topology, provided the fol-
lowing is true:

1. {qn(t)} is a relatively compact set in w-Hm(T2) for every t ∈ [0, T );
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2. {qn} is equicontinuous in C ([0, T ); w-Hm(T2)), i.e. for every ψ ∈ Hm

the sequence {〈ψ, qn〉m} is equicontinuous in C([0, T )).

The first condition is equivalent to {qn(t)} being bounded in Hm for every
t ∈ [0, T ), hence is a consequence of (88). To show equicontinuity, we first
assume that ψ is smooth. Due to (86b) and (60), we obtain∣∣〈ψ, qn(t2)〉m − 〈ψ, qn(t1)〉m

∣∣ =
∣∣∣∣∫ t2

t1

〈
Pnψ, un · ∇qn

〉
m

dt
∣∣∣∣

≤ C1(r)
∫ t2

t1

‖Pnψ‖Hm+1 ‖qn‖2Hm dt

≤ C2(r,R)
∫ t2

t1

‖ψ‖Hm+1 dt . (89)

The right side has an upper bound which is proportional to |t2 − t1| in-
dependent of n, which implies that the set {〈ψ, qn〉m} is equicontinuous in
C([0, T )). The class of test functions can be extended to ψ ∈ Hm by a
straightforward density argument. ut

Step 4. Pass to the limit.

Step 3 asserts the existence of a subsequence, for convenience still de-
noted {qn}, which has a limit q in the topology of C ([0, T ); w-Hm(T2)). Fur-
thermore, weak semicontinuity of theHm norm and the Rellich–Kondrachov
theorem imply that q̃(t) ∈ Am( r+7

8 , 2R) for all t ∈ [0, T ).
Thus, u = K(q) is well-defined and we can proceed to show that q and

u satisfy the weak vorticity equation

〈ψ, q(t2)〉 − 〈ψ, q(t1)〉 −
∫ t2

t1

〈
∇ · (uψ), q

〉
dt = 0 (90)

for every ψ ∈ C∞(T2). Indeed, since the embedding w-Hm(T2) ↪→ L2(T2)
is continuous,

〈ψ, qn(t)〉 → 〈ψ, q(t)〉 (91)

for every t ≥ 0 as n → ∞. Moreover, this embedding is compact, so that,
using the uniform continuity of K asserted by Theorem 1,∫ t2

t1

(〈
∇ · (unψ), qn

〉
−
〈
∇ · (uψ), q

〉)
dt

≤ ‖∇ψ‖L∞
∫ t2

t1

(
‖un − u‖H1‖qn‖L2 + ‖u‖L2‖qn − q‖L2

)
dt

→ 0 (92)

as n → ∞. To prove that q satisfies the vorticity equation (1a) in the
classical sense, we must first assert more regularity.

Step 5. Show that q ∈ C([0, T );Hm(T2)) and u ∈ C([0, T );Hm+1(T2)).
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Proof. From (88) we have that ‖qn(t)‖Hm is bounded by θ(t), so that the
limiting function must also satisfy ‖q(t)‖Hm ≤ θ(t). This implies

lim sup
t↘0

‖q(t)‖Hm ≤ θ(0) = ‖qin‖Hm . (93)

On the other hand, the weak continuity into Hm implies

lim inf
t↘0

‖q(t)‖Hm ≥ ‖qin‖Hm (94)

and, thus,

lim
t↘0
‖q(t)‖Hm = ‖qin‖Hm . (95)

Continuity of the norm and weak continuity imply strong continuity of q as
a map into Hm at t = 0.

By considering the initial value problem with qin ≡ q(t0), the above
argument readily shows that q is continuous from the right at any t0 ∈ [0, T ).
But since all our estimates are invariant under time reversal, it must also be
continuous from the left. Continuity of u follows from the uniform continuity
of K. Furthermore, u ∈ C([0, T );Hm+3(T2)) if, in addition, µ = 0. ut

Step 6. Show that q ∈ Ck([0, T );Hm−k), h ∈ Ck([0, T );Hm+2−k), and
u ∈ Ck([0, T );Hm+1−k) for 1 ≤ k ≤ m− 2.

Proof. First, consider the case k = 1. By assumption, Hm−1 is a topolog-
ical algebra; therefore, q 7→ u · ∇q is continuous as a map from Hm into
Hm−1. Since

∂tq = −u · ∇q , (96)

one has ∂tq ∈ C([0, T );Hm−1). Differentiating (2a) in time, we obtain

∂th = −L−1
q (h ∂tq) . (97)

Hence, h ∈ C1([0, T );Hm+1) by Proposition 1. Finally, differentiating (2b)
in time, we obtain

∂tu = Λ−1
h ∇

⊥∂t
(
h− µ (2h∆h+ |∇h|2)

)
+ σ Λ−1

h

(
∂th∆u+ 2∇∂th · ∇u

)
.

(98)

Thus, by Theorem 1, u ∈ C1([0, T );Hm+2) if µ = 0 and u ∈ C1([0, T );Hm)
in the general case. The cases when k ≥ 2 can be obtained by successive
time differentiation of (96), (97), and (98). The necessary estimates remain
valid so long as Hm−k is a topological algebra. ut

Step 7. Show that the solution is unique.
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Proof. Consider two pairs (u1, q1) and (u2, q2) of solutions to (1) such that
q̃1(t), q̃2(t) ∈ Am(r,R) for t ∈ [0, T ]. Setting q ≡ q1 − q2, we compute

1
2

d
dt
‖q‖2Hm−1 = 〈u2 · ∇q, q〉m−1 + 〈(u2 − u1) · ∇q1, q〉m−1

≤ c1 ‖u2‖Hm ‖q‖2Hm−1 + c2 ‖u2 − u1‖Hm−1 ‖q1‖Hm ‖q‖Hm−1

≤ c3 ‖q‖2Hm−1 , (99)

where the first inequality is due to (86) and the fact that Hm−1 is a topo-
logical algebra, and the second inequality is due to the uniform continuity of
K asserted by Theorem 1. The resulting differential inequality shows that
q ≡ 0 on [0, T ] provided it is initially so. ut

5. Global classical solutions

Lemma 3. Suppose q̃ ∈ Hm+1(T2) with ‖q̃‖L∞ < 1 and let u = K(q). Then
there exists a constant C depending on (1−‖q̃in‖L∞)−1 and the parameters
such that

〈u · ∇q, q〉m ≤ C
(
1 + ‖∇u‖L∞

)
‖q‖2Hm . (100)

Proof. We begin by noting that, for any multi-index α,∣∣∣∣∫
T2
u · ∇(Dαq) Dαq dx

∣∣∣∣ =
∣∣∣∣12
∫

T2
∇ · u (Dαq)2 dx

∣∣∣∣ ≤ 1
2 ‖∇u‖L∞ ‖q‖

2
H|α| .

(101)
Thus, using (101), Hölder inequalities, and estimate (60) on the potential
vorticity inversion, we estimate

〈u · ∇q, q〉m =
∑
|α|≤m

∫
T2
u · ∇(Dαq) Dαq dx

+
∑
|α|≤m

∑
β≤α
|β|=1

∫
T2

Dβu · ∇Dα−βq Dαq dx

+
∑
|α|≤m

∑
β≤α
|β|≥2

∫
T2

Dβu · ∇Dα−βqDαq dx

≤ c1 ‖∇u‖L∞ ‖q‖2Hm + c2

m∑
k=2

‖u‖
Wk,pk−1 ‖q‖Wm−k+1,rk−1 ‖q‖Hm

≤ c1 ‖∇u‖L∞ ‖q‖2Hm + C1

m−1∑
k=1

‖q‖Wk,pk
‖q‖Wm−k,rk ‖q‖Hm

(102)
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where
pk =

2m
k

and rk =
2m
m− k

(103)

so that
1
pk

+
1
rk

+
1
2

= 1 . (104)

Now, applying Gagliardo–Nirenberg inequalities with dimension indepen-
dent exponents µk = k/m and νk = (m− k)/m to each of the W k,p norms
in (102), we obtain

〈u · ∇q, q〉m ≤ c1 ‖∇u‖L∞ ‖q‖2Hm + C2

m−1∑
k=1

‖q‖1+µk+νkHm ‖q‖µk+νkL∞ . (105)

The claim follows immediately.

Theorem 3. Let m ≥ 3. Then for every positive initial potential vorticity
qin ∈ Hm(T2) the generalized LSG equations (1) have a unique classical
solution of class (76) for any T > 0. Moreover,

q+(t) = qin+ and q−(t) = qin− , (106a)

and there exists a constant C depending on the ratio qin+/q
in
−, and the pa-

rameters of the equation such that

‖q(t)/Q‖Hm ≤ ‖qin/Q‖
exp(CQt)
Hm (106b)

with Q ≡ 1
2 (qin+ + qin−) for all t ≥ 0.

Proof. The global pointwise bound (106a) is an immediate consequence
of the advection equation (1a) so long as a classical solution exists. Hence,
it is enough to prove the global Hm bound (106b) under the assumption
that Q = 1 and ‖q̃in‖L∞ < 1 with a dependence of the constant C only on
(1 − ‖q̃‖L∞)−1; the general statement follows from the rescaling argument
given in Section 2.

To do so, notice that (106a) implies that

‖q̃(t)‖L∞ = ‖q̃in‖L∞ . (107)

Now, use a Gagliardo–Nirenberg inequality with exponent θ = 2/(p+ 2) to
estimate

‖∇u‖L∞ ≤ c(p) ‖∇u‖θH2 ‖∇u‖1−θLp ≤ c(p) ‖q‖
θ
H2 (C1 p)1−θ ≤ C2 p ‖q‖

2
p+2
Hm ,
(108)

where the constants C1 and C2 depend only on (1 − ‖q̃‖L∞)−1 and the
parameters. The second inequality in (108) is due to Theorem 1 and estimate
(42) of Proposition 3, and the third inequality follows from the advection
of potential vorticity and the fact that the Gagliardo–Nirenberg constant
satisfies c(p)→ 1 as p→∞.
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Without loss of generality, we may assume that log‖q‖Hm ≥ 2. Then,
setting p = log‖q‖Hm in (108) and noting that

‖q‖
2

2+log‖q‖
Hm

Hm ≤ e2 , (109)

we find that
‖∇u‖L∞ ≤ C4 log‖q‖Hm . (110)

Now, using Lemma 3 and this estimate, we obtain

1
2

d
dt
‖q‖2Hm = −〈u · ∇q, q〉m ≤ C5

(
1 + log‖q‖Hm

)
‖q‖2m . (111)

Integration in time yields (106b).
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