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Generalized Lagrangian mean theories are used to analyze the interactions between mean flows and fluctu-
ations, where the decomposition is based on a Lagrangian description of the flow. A systematic geometric
framework was recently developed by Gilbert and Vanneste (J. Fluid Mech., 2018, 839) who cast the decom-
position in terms of intrinsic operations on the group of volume preserving diffeomorphisms or on the full
diffeomorphism group. In this setting, the mean of an ensemble of maps can be defined as the Riemannian
center of mass on either of these groups. We apply this decomposition in the context of Lagrangian averag-
ing where equations of motion for the mean flow arise via a variational principle from a mean Lagrangian,
obtained from the kinetic energy Lagrangian of ideal fluid flow via a small amplitude expansion for the
fluctuations.

We show that the Euler-α equations arise as Lagrangian averaged Euler equations when using the L2-
geodesic mean on the volume preserving diffeomorphism group of a manifold without boundaries, imposing
a “Taylor hypothesis”, which states that first order fluctuations are transported as a vector field by the
mean flow, and assuming that fluctuations are statistically nearly isotropic. Similarly, the EPDiff equations
arise as the Lagrangian averaged Burgers’ equations using the same argument on the full diffeomorphism
group. A serious drawback of this construction is that the assumptions of Lie transport of the fluctuation
vector field and isotropy of fluctuations cannot persist except for an asymptotically vanishing interval of
time. To remedy the problem of persistence of isotropy, we suggest adding strong mean-reverting stochastic
term to the Taylor hypothesis and identify a scaling regime in which the inclusion of the stochastic term
leads to the same averaged equations up to a constant.

Keywords: Geodesic flow, flow on manifolds, groups of diffeomorphisms, Lagrangian averaging, geodesic
mean, Euler-α equations, EPDiff equations

1. Introduction

Averaging, in particular the description of the time evolution of averaged quantities, is a
perennial theme in fluid dynamics. The motivation derives from two initially disconnected
themes: first, the necessity to model turbulent flows in terms of Reynolds averaging or large-
eddy simulation (see, e.g., Alfonsi 2009 and Sagaut 2006 for surveys and detailed references)
and second, the study of wave-mean flow interactions (see, e.g., Bühler 2014, and references
therein).

While much of the theory and simulation of turbulence uses a decomposition into mean
and fluctuations (or coarse scale and fine scale structure) in the Eulerian description of the
flow, the wave-mean flow community has looked at the problem from a Lagrangian point of
view for a long time. In particular, Andrews and McIntyre (1978a) formulated a framework,
the Generalized Lagrangian Mean (GLM), which leads to nonlinear equations of motion for
a suitably defined Lagrangian mean of an ensemble of flows. It has since become a central
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ingredient for the theory of wave-mean flow interactions.
The idea of employing a Reynolds-type decomposition into mean flow and turbulent fluc-

tuations in the Lagrangian description of the fluid was initially developed by Holm (1999)
and Marsden and Shkoller (2001, 2003) who, under certain closure assumptions, obtain the
Euler-α (also known as the Lagrangian averaged Euler) equations as the resulting mean flow
model. Soward and Roberts (2008), also see Roberts and Soward (2009), obtain a similar, but
not identical set of equations using a different variational principle.

A recent paper by Gilbert and Vanneste (2018) clarifies two crucial aspects about Lagrangian
mean theories. First, such theories can only be fully consistent when they are written in
geometrically intrinsic terms: as noted by McIntyre (1988), the Andrews and McIntyre (1978a)
generalized Lagrangian mean of a divergence free vector field is generally not divergence free.
Thus, GLM theories should be formulated intrinsically. (We note that this has been done in
the work of Holm as well as Marsden and Shkoller, without spelling out the general framework
explicitly.) Second, and most crucially, Gilbert and Vanneste point out that once the notion
of averaged map is specified, for example as the Riemannian center of mass of an ensemble of
maps, the fluctuations of an ensemble of maps are fully determined by an ensemble of vector
fields; the maps can be reconstructed by integration along geodesics on the group of maps.
This observation let Oliver (2017) reconsider the derivation of the Euler-α equations and find
that, for flows in Euclidean space, it can be based on the following minimal set of assumptions:

(a) The averaged map is the minimizer of L2-geodesic distance,
(b) first order fluctuations are statistically nearly isotropic, and
(c) first order fluctuations are transported by the mean flow as a vector field.

Hypothesis (c) was already used by Marsden and Shkoller (2001, 2003) who refer to it as the
“generalized Taylor hypothesis”. The second order closure stated by Marsden and Shkoller
(2003) is not assumed, but arises as a necessary consequence of the geometric notion of aver-
aged map (a) together with (b) and (c). Therefore, only the assumption of isotropy of fluctu-
ations (b) and the first order closure (c) are modeling hypotheses which requires theoretical
or empirical verification.

In this paper, we show that these ideas extend to flows on manifolds without boundaries and
can be formulated in fully intrinsic terms. We also show that the same concept extends to the
derivation of the EPDiff equations as the Lagrangian averaged Burgers’ equations. The term
“EPDiff equations” was introduced by Holm and Marsden (2005); the system is also known as
averaged template matching equations (Hirani et al. 2001) and n-dimensional Camassa–Holm
equations (Gay-Balmaz 2009). In both cases, the key ingredient leading to a fully intrinsic
derivation is the correct interpretation of isotropy in the context of a non-flat manifold. It
turns out that setting the fluctuation covariance tensor to be a multiple of the inverse metric
tensor results in all curvature-induced terms in the average Lagrangian combine into the Ricci
Laplacian.

An important issue for the derivation is the question of mutual consistency of assumptions
(a)–(c). It turns out that Lie transport of the fluctuation vector field by the mean flow is
compatible with the assumption of isotropy only over short time intervals: initially isotropic
fluctuations will develop an anisotropic component at a rate proportional to the deforma-
tion tensor of a mean flow velocity. In all of the references mentioned above, restoration of
isotropy is assumed to happen by some process outside of the modeling framework, or is
simply not discussed. Following a suggestion by J. Vanneste (personal communication), we
show that restoration of isotropy can be included into formulation of the “Taylor hypothesis”
as a mean-reverting stochastic term akin to an Ornstein–Uhlenbeck process. We identify the
correct scaling so that the mean reversion is sufficiently strong, yet introduces only another
copy of the deterministic second-order term to the averaged Lagrangian. In other words, the
stochastic modification changes only a numerical coefficient in the final result, yet ensures a
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fully consistent set of assumptions for as long as the mean flow remains uniformly smooth.
The significance of our results is twofold. First, nontrivial manifolds such as the sphere

or spherical shells naturally arise in geophysical fluid dynamics. Second, it shows that the
result of Oliver (2017) is structurally robust and not tied to special properties of Euclidean
geometry. Thus, for the first time, we have achieved a fully intrinsic derivation of the Euler-
α equations on non-Euclidean manifolds and have identified a possible self-consistent set of
modeling assumptions.

We make no claim about the validity of the deterministic or stochastic Taylor hypothesis
and about the usefulness of the Euler-α equations as a momentum closure for turbulence. Our
intent here is to clarify the minimal ingredients necessary to achieve a consistent derivation.
Within this framework, a computational verification of these ingredients appears feasible since
only the dynamics of first order fluctuations would need to be tracked. We note that in the
deterministic version of the Taylor hypothesis the ensemble and ensemble mean are not defined
a priori and still need to be specified before any such verification, whereas in the stochastic
version the required specification is already made.

Our stochastic Taylor hypotheses even provides an explicit notion of an ensemble mean, for
the deterministic version, the ensemble is not defined a priori, so that further specifics would
need to be determined.

The remainder of the paper is organized as follows. In section 2, we recall some basic notions
from differential geometry and the variational framework leading to the Euler, the Euler-
α, Burgers’, the EPDiff, and the Camassa–Holm equations. Section 3 defines the geodesic
mean of an ensemble of maps. In section 4, we explain the concept of Lagrangian averaging,
largely following the setup of Marsden and Shkoller (2001). The main closure assumption,
the generalized Taylor hypothesis, is introduced and applied to the variational principle in
section 5. The following section 6 shows that this closure, under the assumption of statistical
near-isotropy and using the L2-geodesic mean on the full diffeomorphism group, implies the
Euler-α or EPDiff equations when considering, respectively, the group of volume preserving
diffeomorphisms (which we will often shorten to “volumorphisms”) or the full diffeomorphism
group as underlying configuration manifold. For the Euler-α equations, it is arguably more
natural to use the geodesic mean with respect to volume preserving geodesics, consistent
with its underlying configuration manifold. This constraint introduces an additional fictitious
pressure term. In section 7, we demonstrate that this additional term does not contribute to
the final averaged Lagrangian. For the sake of completeness, section 8 recalls the derivation
of the Euler-α and the EPDiff equations as the Euler–Poincaré equations of the averaged
Lagrangian. In section 9, we discuss mutual consistency of the closure assumptions and show
that the deterministic version of the Taylor hypothesis does not preserve isotropy over order-
one times. A possible fix via a stochastic modification of the Taylor hypothesis is proposed in
section 10. We show that this modification only changes a numerical factor in the resulting
equations of motion and discuss the relaxation time scale in comparison with turbulent eddy
lifetimes. In section 11, we reformulate the closure in terms of pseudomomentum. Finally, in
section 12, we briefly discuss complications arising from boundaries.

2. Notation and preliminaries

Let Ω denote n-dimensional Euclidean space or a compact n-dimensional Riemannian mani-
fold without boundary, let g be a metric tensor on Ω with inverse g−1 whose components in
a coordinate frame are written gij and gij , respectively, and let µ =

√
|g|dx be the volume

form on Ω induced by the metric.
Let d and δ denote, respectively, the exterior derivative and the co-differential associated

with g. We write∇ for the Levi–Civita connection on (Ω, g) and∇v for the covariant derivative
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in the direction of the vector field v. Our conventions for the Riemannian and Ricci curvature
tensors, correspondingly R and Ric, are

R(u, v)w ≡ ∇u∇vw −∇v∇uw −∇[u,v]w , (1a)

Ric(v, w) = Tr(u 7→ R(u, v)w) (1b)

for arbitrary vector fields u, v, and w on Ω, or, expressed in charts,

[R(u, v)w]i = Rijklu
jvkwl , (1c)

Rickl = Riikl , (1d)

where summation on repeated indices is implied in accordance with Einstein’s convention and
Tr denotes the trace operator.

In the manifold context, it is necessary to distinguish between different Laplace operators.
Our reference here is Chow et al. (2006). The rough Laplacian ∆̃ = −∇∗∇, where ∇∗ is the
L2 adjoint of ∇, takes the form

∆̃T = gij (∇ei∇ej −∇∇eiej )T (2)

for an arbitrary tensor T . The Hodge Laplacian on vector fields is given by

∆u = [−(dδ + δd)u[]] , (3)

where [ is a natural isomorphism between vector fields and 1-forms associate to g and ] = [−1.
We recall that, by the Weitzenböck formula (Petersen 2016, Gay-Balmaz and Ratiu 2005),

g(∆u, v) = g(∆̃u, v)− Ric(u, v) . (4)

Finally, we write ∆R to denote the Ricci Laplacian,

g(∆Ru, v) = g(∆̃u, v) + Ric(u, v) . (5)

We remark that in Euclidean space, the differences between ∆̃, ∆, and ∆R vanish. The impact
of different choices of the Laplacian for modeling viscous fluid flow on manifolds is discussed
in Gilbert et al. (2014).

We write D(Ω) to denote the group of Hs-class diffeomorphisms of Ω and Dµ(Ω) its volume
preserving subgroup. We recall that a map is of Sobolev class Hs whenever all of its partial
derivatives up to order s are square integrable, so that

D(Ω) = {η ∈ Hs(Ω,Ω) : η is bijective, η−1 ∈ Hs(Ω,Ω)} . (6)

For s > n/2 + 1, these groups are smooth infinite dimensional manifolds in the Hs-topology
(Palais 1968, Ebin and Marsden 1970) with tangent spaces at the identity

V = {u ∈ Hs(Ω, TΩ) : u(x) ∈ TxΩ for x ∈ Ω} , (7a)

Vdiv = {u ∈ V : div u = 0} . (7b)

We write η = η(x, t) to denote the flow of a time-dependent vector field u(t, · ) ∈ V , so that

∂tη(x, t) = u(η(x, t), t) (8)

or η̇ = u ◦ η for short. In this setting, the equations of motions for many continuum theories
can be viewed as geodesic motion on one of the diffeomorphism groups with respect to a
particular choice of metric. In other words, u is a solution whenever its associated flow η is a
stationary point of the action

S =

∫ t2

t1

L(η̇, η) dt (9)
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with respect to variations δη that are fixed at the temporal end points. In the context of this
paper, we discuss the following four cases.

As pointed out by Arnold (1966), the Euler equations for the motion of an ideal incom-
pressible fluid,

u̇+∇uu+∇p = 0 , (10a)

div u = 0 , (10b)

where ∇p ≡ dp], are the equations for geodesic flow on Dµ with respect to the L2-metric

(u ◦ η, v ◦ η)0 =

∫
Ω
g(u, v)µ(x) . (11)

I.e., u is a solution of (10) whenever η is a stationary point of the action (9) with Lagrangian

L(η̇, η) = 1
2

∫
Ω
g(u, u)µ(x) ≡ 1

2

∫
Ω
|u|2 µ(x) , (12)

where u ⊂ Vdiv and η̇ ⊂ TDµ are related by (8).
Similarly, Burgers’ equations

u̇+∇uu+ (∇u)T · u+ udiv u = 0 , (13)

where the (1, 1)-tensor (∇u)T is defined as the adjoint of ∇u via

g((∇u)T · v, w) ≡ g(∇wu, v) (14)

for vector fields u, v, w ∈ V , is equivalent to the same variational problem with Lagrangian
(12), albeit with configuration space D rather than Dµ; see Vizman (2008).

The Euler-α equations

ṁ+∇um+ (∇u)T ·m+∇p = 0 , (15a)

m = u− ε2 ∆Ru , (15b)

div u = 0 (15c)

are the equations for geodesic flow on the volume-preserving diffeomorphism group Dµ with
respect to a right-invariant H1-metric. Their solutions are extremizers of the action S upon
replacing the L2-Lagrangian (12) by

L = 1
2

∫
Ω

(
|u|2 + 2 ε2 |Def u|2

)
µ(x) , (16)

where Def u is the deformation tensor

Def u = 1
2(∇u+∇uT ) (17)

and |Def u|2 = g(Def u,Def u) is defined by extending metric g to arbitrary (1, 1)-tensors S
and R via

g(S,R) ≡ Tr(ST ·R) = gij g
kl Sik R

j
l , (18)

where [X · Y ]ij = Xi
k Y

k
j denotes the contraction of tensors X and Y . The Euler-α equations

appeared first in Holm et al. (1998) and, in their viscous form, in Chen et al. (1999).
Finally, the EPDiff equations

ṁ+∇um+ (∇u)T ·m+m div u = 0 , (19a)

m = u− ε2 ∆Ru , (19b)



6

first introduced in Hirani et al. (2001), describe geodesic flow on the full diffeomorphism group
D with respect to the right-invariant H1-metric

(u ◦ η, v ◦ η)1 =

∫
Ω

[
|u|2 + ε2 (|∇u|2 − Ric(u, u))

]
µ(x) . (20)

Thus, solutions to (19) are extremizers of the action S corresponding to the Lagrangian

L(η̇, η) = 1
2

∫
Ω

[
|u|2 + ε2 (|∇u|2 − Ric(u, u))

]
µ(x) (21)

on D. For the sake of completeness, we sketch the derivation of Euler-Poincaré equations (15)
and (19) from their respective Lagrangians in section 8. For missing details, we refer the reader
to Holm et al. (1998), Shkoller (2002), and Gay-Balmaz and Ratiu (2005). A comprehensive
overview of variational principles in fluid mechanics is contained in Holm et al. (2009) and
Badin and Crisciani (2018).

We note that Green’s formulae for vector fields u, v ∈ V , in the absence of boundaries, read

2

∫
Ω
g(Def u,Def v)µ(x) = −

∫
Ω
g(∆Ru+∇ div u, v)µ(x) (22a)

and ∫
Ω
g(∇u,∇v)µ(x) = −

∫
Ω
g(∆̃u, v)µ(x) (22b)

(see, for example, Gay-Balmaz and Ratiu 2005). Combining these identities with (5), we see
that the Euler-α Lagrangian (16) and the EPDiff Lagrangian (21) take the common form

L = 1
2

∫
Ω
g(u− ε2 ∆Ru, u)µ(x) , (23)

the difference being that u ∈ Vdiv for the Euler-α equations and u ∈ V for EPDiff. In section 8,
we sketch the derivation of the Euler-α and the EPDiff equations from the Lagrangian in the
form (23).

On manifolds with boundaries, the two Lagrangians differ and the expressions stated repre-
sent their most common form, for the Euler-α equations, e.g., in Marsden and Shkoller (2001),
and for the EPDiff equations in Hirani et al. (2001) and Gay-Balmaz (2009).

We finally remark that the EPDiff equations on S1 or R reduce to the peakon version of
the Camassa–Holm equation (see, e.g., Camassa and Holm 1993),

ut − ε2 uxxt = −3uux + 2 ε2 ux uxx + ε2 uuxxx . (24)

3. Geodesic mean

Let {β} be an abstract set indexing the realizations in an ensemble of fluid flows on Ω, ε be
a small parameter, and uβ,ε = uβ,ε(x, t) denote the velocity field corresponding to a single
realization from the ensemble. It generates a flow ηβ,ε = ηβ,ε(x, t) via

η̇β,ε = uβ,ε ◦ ηβ,ε (25)

with initial condition ηβ,ε|t=0 = id. Now suppose that the realizations can be decomposed into
a averaged flow η and a fluctuating part ξβ,ε via

ηβ,ε = ξβ,ε ◦ η , (26)

Both ξβ,ε = ξβ,ε(x, t) and η = η(x, t) are again time-dependent maps. Note that all quantities
in (26), and any quantities derived from them, also depend on the small parameter ε. In this
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notation, which follows Marsden and Shkoller (2001), ε is double-used as a formal expansion
parameter only on the quantities which carry ε as a subscript. Consistency is ensured by
requiring that (26) be satisfied, which generally implies an implicit ε-dependence of η. In the
following, we suppose that η is generated by a mean velocity field u = u(x, t) via

η̇ = u ◦ η (27)

where η|t=0 = id. When uβ,ε ∈ V , then ηβ,ε ∈ D and η ∈ D. When uβ,ε ∈ Vdiv, then ηβ,ε ∈ Dµ.
In this case, we seek mean flows η ∈ Dµ that are also volume preserving.

Gilbert and Vanneste (2018) point out that flow maps ηβ,ε are points on the infinite dimen-
sional group D(Ω) or Dµ(Ω), hence it is possible to define the average map η intrinsically, by
utilizing the underlying geometric structure on the group. They discuss several constructions
for defining such averages. Referring to them, we will use the umbrella term geometric GLM.
From among them, we select two that remain fully within the variational framework laid out
in section 2: the Riemannian center of mass, also known as the Fréchet mean, of {ηβ,ε} on
D(Ω) or Dµ(Ω). We recall the details of the construction below.

Suppose that we have a procedure 〈 · 〉 for averaging scalar quantities over the set β which
commutes with spatial integration. The precise definition does not matter so long as the closure
assumptions, which we will introduce in the following sections, are satisfied with respect to
the induced notion of the mean. Then, the mean map η on D(Ω) is defined as the Fréchet
mean

η = arg min
φ∈D(Ω)

〈d2
ε(φ, ηβ,ε)〉 , (28a)

where dε is a Riemannian distance function. In principle, the choice of metric is not unique.
However, we use the L2-metric for the reason that it corresponds to the setting in which
the Euler equations and Burgers’ equations, respectively, describe geodesic flow. Thus, the
geodesic distance between two maps φ, ψ ∈ D(Ω) is given by

d2
ε(φ, ψ) = inf

γs : [0,ε]→D
γ0=φ ,γ1=ψ

∫ ε

0

∫
Ω
g(γ′s, γ

′
s)µ(x) ds . (28b)

Here and in the following, the prime symbol denotes a derivative with respect to s, which we
think of as an arclength-like parameter. Thus, the scaling introduced into (28b) indicates that
we will consider small fluctuations lying on a sphere of Riemannian radius O(ε) about the
mean. In the terminology introduced by Gilbert and Vanneste (2018), this notion of mean is
called extended GLM. They show that a single realizations ηβ,ε is reached from η by integrating
the transport equation

w′β,s +∇wβ,swβ,s = 0 , (29a)

in fictitious time s from s = 0 to s = ε, together with a constraint on the initial condition,

〈wβ,s〉
∣∣
s=0

= 0 . (29b)

The geodesic ηβ,s connecting η and ηβ,ε then is the curve in D(Ω) satisfying

η′β,s = wβ,s ◦ ηβ,s (30)

with the initial condition ηβ,s|s=0 = η.
When the configuration space is the volumorphism group Dµ(Ω) ⊂ D(Ω), there are two

options to define the mean. We can either use the Fréchet mean with the Riemannian distance
inherited from D,

η = arg min
φ∈Dµ(Ω)

〈d2
ε(φ, ηβ,ε)〉 , (31)
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or use Riemannian distance intrinsic to Dµ, so that

η = arg min
φ∈Dµ(Ω)

〈d2
ε,µ(φ, ηβ,ε)〉 (32a)

with

d2
ε,µ(φ, ψ) = inf

γs : [0,ε]→Dµ
γ0=φ ,γ1=ψ

∫ ε

0

∫
Ω
g(γ′s, γ

′
s)µ(x) dt . (32b)

In the first case, optimal transport in the terminology of Gilbert and Vanneste (2018), the
fluctuation vector fields wβ,s satisfy the same transport equation (29a) together with the
constraint on the initial condition

〈wβ,s〉|s=0 = ∇ψ (33)

for some scalar function ψ. In the second case, termed geodesic, the fluctuation vector fields
satisfy an incompressible Euler equation in fictitious time s,

w′β,s +∇wβ,swβ,s +∇φβ,s = 0 , (34a)

divwβ,s = 0 , (34b)

with initial conditions constrained by (29b). As we shall demonstrate, both choices lead to
the same averaged Lagrangian. This is consistent with the findings of Gilbert and Vanneste
(2018) who showed, using a direct asymptotic expansion, that optimal transport and geodesic
averaging lead to identical mean velocity fields up to the second order.

4. Lagrangian averaging of geodesic flows on diffeomorphism groups

The advantage of using geometric GLM as the definition of mean flow is that the averaged
equations inherit material conservation laws from the underlying system, while retaining ge-
ometric constraints such as incompressibility. Gilbert and Vanneste (2018) derive averaged
equations of motion by using the map ξβ to pull back the momentum one-form to the the
mean flow, then applying averaging. They also show that the averaged equations arise from
an averaged variational principle in the spirit of Salmon (2013b). The resulting equations
still need modeling in the form of a relation between the averaged momentum one-form and
the mean velocity. In this paper, we first average the underlying system Lagrangian over the
set of fluctuations to second order in a small fluctuation expansion and then compute the
Euler–Poincaré equations from the resulting averaged Lagrangian. This approach has been
pioneered by Holm (1999) and Marsden and Shkoller (2001, 2003) without reference to the
concept of geodesic mean. Our approach differs from the earlier works in that we average
the Lagrangian over an ensemble of fluctuations around the Riemannian center of mass while
Marsden and Shkoller average over a set of initial conditions. It should be noted that both
approaches assume an abstract ensemble-dependent averaging procedure, for scalars in the
present article and for vector fields in the treatment of Marsden and Shkoller, the details of
which need to be specified additionally. The stochastic approach in section 10 provides an
example of such a procedure.

We proceed perturbatively, with the amplitude of fluctuations ε as small parameter. It
is convenient to work in the Eulerian representation. Let Lε ≡ L(ηβ,ε, η̇β,ε) denote the L2-
Lagrangian for the Euler equations or Burgers’ equations for a single realization of the flow,
defined, respectively, on Dµ or D. We treat both cases in parallel, pointing out important
differences along the way. We recall the underlying kinetic energy Lagrangian,

Lε = 1
2

∫
Ω
g(uβ,ε, uβ,ε)µ(x) , (35)
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and expand u in powers of ε, writing

uβ,ε = u+ ε u′β + 1
2 ε

2 u′′β + O(ε3) . (36)

Note that, to simplify notation, we read the absence of the index ε as evaluation at ε = 0 so
that, in particular, wβ ≡ wβ,s|s=0 = wβ,ε|ε=0. Then,

Lε = 1
2

∫
Ω

[
|u|2 + 2 ε g(u, u′β) + ε2 (|u′|2 + g(u, u′′β)

]
µ(x) + O(ε3)

≡ L0 + εL1 + 1
2 ε

2 L2 + O(ε3) . (37)

Truncating terms at O(ε2) and taking the average, we introduce an averaged Lagrangian L̄,

L̄ ≡ 1
2

〈∫
Ω

[
|u|2 + 2 ε u · u′β + ε2

(
|u′β|2 + g(u, u′′β)

)]
µ(x)

〉
= 1

2

∫
Ω

[
|u|2 + 2 εg(u, 〈u′β〉) + ε2

(
〈|u′β|2〉+ g(u, 〈u′′β〉)

)]
µ(x) . (38)

This form of the averaged Lagrangian needs closure, i.e., we need to express the averaged
quantities in terms of mean quantities. To so so, we first note that s-derivatives of uβ,s are
not independent of the perturbation vector fields wβ,s. Indeed, recall that

η̇β,s = uβ,s ◦ ηβ,s (39)

with the initial condition ηβ,s|t=0 = id. Differentiating (30) with respect to t, (39) with respect
to s and equating the resulting mixed partial derivatives, we obtain

u′β,s = ẇβ,s +∇uβ,swβ −∇wβ,suβ,s = ẇβ,s + Luβ,swβ,s , (40)

where we write Luw to denote the Lie derivative of the vector field w in the direction of
u. Differentiating (40) and evaluating at ε = 0, we obtain the following expressions for the
coefficients of the uβ,ε-expansion in terms of the fluctuation vector fields wβ:

u′β = ẇβ + Luwβ , (41a)

u′′β = ẇ′β + Luw′β + Lu′wβ . (41b)

These relations show that once a notion of mean map is imposed, represented by (28), (31),
or (32), the problem remains in need of a single closure condition: we are still free to choose
an evolution equation for the first order fluctuation vector field wβ. This will be discussed in
the next section.

5. Generalized Taylor hypothesis

We choose a closure condition in the form

ẇβ + Luwβ = 0 . (42)

The expressions for the first and second order fluctuations of the velocity field (41) then reduce
to

u′β = 0 , (43a)

u′′β = ẇ′β + Luw′β . (43b)

Up until this point the procedure for Euler and Burgers’ equation was completely identical
and it did not matter whether the map averaging is defined by (28), (31), or (32). In all
cases, the average Lagrangian is given by (38) and the expansion vector fields are expressed
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in terms of fluctuations by (43). In the following, we make a choice that allows for further
simultaneous treatment of the Euler equations and Burgers’ equations. Below, we only assume
that the fluctuation vector fields satisfy the transport equation (29a). This is compatible with
both definitions of the mean map, equations (28) and (31). The case when the mean map is
defined by (32) is considered in section 7.

To simplify notation, we drop the β indexes from now on, writing e.g. u′ for u′β and w for

wβ, as no confusion can result from such simplification. Further, differentiating (29a) in time,
setting ε = 0, and substituting for ẇ from (42), we can eliminate ẇ′ from (43b) to obtain

u′′ = ∇w(Luw) +∇Luww − Lu(∇ww) . (44)

Regrouping terms and recalling the standard geometric identity

Luw ≡ [u,w] = ∇uw −∇wu , (45)

we further simplify (44) as follows:

u′′ = −R(u,w)w +∇∇wwu−∇w∇wu . (46)

Then, substituting (43a) and (46) into (38), we obtain

L̄ = 1
2

∫
Ω

[
|u|2 + ε2 g

(
〈−R(u,w)w +∇∇wwu−∇w∇wu〉, u

)]
µ(x)

≡ L0 + 1
2 ε

2 L2 . (47)

6. Isotropy of fluctuations

The final simplification of the averaged Lagrangian L2 comes from the near-isotropy assump-
tion. Let {ei = ∂/∂xi} be a set of coordinate vector fields and write

w = wiei . (48)

Statistical near-isotropy of fluctuations shall be expressed by the condition

〈wiwj〉 = gij + O(εa) , (49)

where gij are the components of the inverse metric tensor and a > 0. It is important to
emphasize that while the inclusion of order εa term in (49) does not affect the O(ε2) averaged
Lagrangian L̄, it is crucial for the consistency of closure assumptions: As we shall show in
section 9, strict isotropy where 〈wiwj〉 = gij coupled with the generalized Taylor hypothesis
leads to unphysical restrictions on the mean flow. Therefore, the isotropy condition in previous
works utilizing these two assumptions (e.g. Marsden and Shkoller 2003, Oliver 2017) must also
be interpreted as near-isotropy in the sense of (49).

Assuming near-isotropy, we simplify the terms in (47) which contribute to the L2-Lagrangian
as follows. First, using the symmetries of the Riemannian curvature tensor and Bianchi’s
identity, we compute

g(〈R(u,w)w)〉, u) = 〈g(R(w, u)u,w)〉

= 〈gijRiklmwkulumwj〉

= Riilmu
lum + O(εa)

= Ric(u, u) + O(εa) . (50)
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Second, we find by direct computation that

〈∇w∇wu−∇∇wwu〉 = 〈wi∇ei(wj∇eju)− wi∇∇ei (wjej)u〉

= 〈wiwj ∇ei∇eju+ wi (∇eiwj) (∇eju)− wiwj ∇∇eieju− w
i∇(∇eiwj)eju〉

= 〈wiwj〉 (∇ei∇ej −∇∇eiej )u

= ∆̃u+ O(εa) . (51)

Noting that the right hand sides of (50) and (51) in the metric inner product with u add up to
a quadratic form involving the Ricci Laplacian, see (5), we find that the averaged Lagrangian
to second order in ε reads

L̄ = 1
2

∫
Ω

[
|u|2 − ε2 g(∆Ru, u)

]
µ(x) . (52)

This is precisely the Lagrangian (23) of the EPDiff and of the Euler-α equations. The
Camassa–Holm equations are the EPDiff equations on a one-dimensional manifold. For the
latter, it is easier, of course, to verify the passage from (47) to (52) directly in Euclidean
coordinates.

7. Intrinsic derivation of the Euler-α equations

The derivation of Euler-α equations in sections 3–6 uses the notion of mean flow arising from
connecting elements of Dµ(Ω) by curves lying in D(Ω). A more natural definition would
use the notion of distance intrinsic to Dµ(Ω). The argument below shows that this intrinsic
definition of the geodesic mean also leads to the Euler-α equations.

From now on, we assume that η is the Fréchet mean of ηβ,ε in Dµ(Ω) as specified by (32), so
that the fluctuations satisfy the incompressible Euler equation (34) (see Gilbert and Vanneste
2018). The “pressure” field φε is recovered by solving the Poisson equation

∆φε = −div(∇wεwε) in Ω , (53a)

which we will write as φε = −∆−1 div(∇wεwε).
Assuming the Taylor hypothesis (42) and the isotropy of fluctuations (49), the calculation

from sections 3–6 are modified as follows. Fluctuations now satisfy the Euler equations (34a)
rather than the transport equation (29a) so that (44) is replaced by

u′′ = ∇w(Luw) +∇Luww − Lu(∇ww)− Lu∇φ−∇φ̇ . (54)

Therefore, the expression of the L2-Lagrangian derived in section 6 must be augmented with
two extra terms, so that

L2 = −
〈∫

Ω
g
(
∆Ru+ Lu∇φ+∇φ̇, u

)
µ(x)

〉
= −

∫
Ω
g(∆Ru, u)µ(x)−

〈∫
Ω
g(Lu∇φ, u)µ(x)

〉
, (55)

where the last term in the first line vanishes since gradients are L2-orthogonal to divergence
free vector fields.

We compute the last term in (55) by noting that due to the Hodge decomposition, the
operator ∇∆−1 div is L2 symmetric, i.e., for arbitrary sufficiently smooth vector fields v and
w, ∫

Ω
g(∇∆−1 div(v), w)µ(x) =

∫
Ω
g(v,∇∆−1 div(w))µ(x) . (56)
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Since u is necessarily divergence free as a vector field generating η ∈ Dµ(Ω), integrating by
parts, we have∫

Ω
g(Lu∇φ, u)µ(x) =

∫
Ω

[
g(∇u∇φ, u)− g(∇∇φu, u)

]
µ(x)

= −
∫
Ω
g
(
∇φ ,∇uu+ 1

2∇|u|
2
)
µ(x)

=

∫
Ω
g
(
∇ww,∇∆−1 div(∇uu+ 1

2∇|u|
2)
)
µ(x)

= −
∫
Ω
g
(
w,∇w∇∆−1 div(∇uu+ 1

2∇|u|
2)
)
µ(x) . (57)

For an arbitrary vector field v, discarding O(εα) terms,〈∫
Ω
g(w,∇wv)µ(x)

〉
=

∫
Ω
gij 〈wiwk〉

(
∂vj

∂xk
+ Γjksv

s

)
µ(x)

=

∫
Ω

(
∂vj

∂xj
+ Γjjsv

s

)
µ(x)

=

∫
Ω

div v µ(x) , (58)

where the last equality follows from the standard expression for the divergence of a vector
field,

div v =
1
√
g

∂

∂xi

(√
g vi
)
. (59)

Now, combining (57) and (58), we obtain〈∫
Ω
g(Lu∇φ, u)µ(x)

〉
= −

∫
Ω

div(∇uu+ 1
2∇|u|

2)µ(x) = 0 . (60)

Substituting (60) into (55), we obtain

L2 = −
∫
Ω
g(∆Ru, u)µ(x) , (61)

so that the full averaged Lagrangian L̄ coincides with the Euler-α Lagrangian (23).

8. Averaged equations of motion

In this section, we derive Euler-α equations (15) and the EPDiff equations (19) as the Euler–
Poincaré equations for the averaged Lagrangian L̄ on Dµ(Ω) and D(Ω), respectively. To do
so, we must compute the stationary points of the averaged action

S̄ =

∫ t2

t1

L̄(η̇, η) dt (62)

with respect to variations of the flow map δη in the respective configuration spaces which
vanish at the temporal endpoints.

First, we note that variations in the flow map δη = w ◦ η and the fluid velocity u = η̇ ◦ η−1

are related by the Lin constraint (Bretherton 1970)

δu = ẇ + Luw , (63)
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which is proved analogously to (41a). Next, due to the symmetry of the Ricci tensor, the
averaged Lagrangian L̄ is of the form

L̄ = 1
2

∫
Ω
g(Au, u)µ(x) , (64)

where

A = id−ε2∆R (65)

is a linear L2(Ω, g)-self-adjoint operator on vector fields. Therefore,

δL =

∫
Ω
g(Au, δu)µ(x) =

∫
Ω
g(m, δu)µ(x) , (66)

where the circulation velocity m is given by

m = Au = u− ε2∆Ru . (67)

From this point on, while the overall strategy remains similar, the details of computation
depend on the configuration space. Therefore, we will treat both cases separately.

On D(Ω), w is an arbitrary vector field in V . Using (63), (66), and integration by parts, we
compute

δS̄ =

∫ t2

t1

δL̄dt =

∫ t2

t1

∫
Ω
g(m, δu)µ(x) dt

=

∫ t2

t1

∫
Ω
g(m, ẇ + Luw)µ(x) dt

=

∫ t2

t1

∫
Ω

[
−g(ṁ, w) + g(m,∇uw)− g(m,∇wu)

]
µ(x) dt

= −
∫ t2

t1

∫
Ω

[
g(ṁ, w) + g(∇um,w)−∇ug(m,w) + g((∇u)Tm,w)

]
µ(x) dt

= −
∫ t2

t1

∫
Ω
g(ṁ+∇um+m div u+ (∇u)Tm,w)µ(x) dt ≡ 0 . (68)

Since w is arbitrary, m must satisfy the EPDiff momentum equation (19a).
On Dµ(Ω), w is an arbitrary divergence-free vector field in Vdiv. Moreover, the velocity u is

a curve in Vdiv. Therefore, the computation in (68) implies that∫ t2

t1

∫
Ω
g(ṁ+∇um+ (∇u)Tm,w)µ(x) dt = 0 . (69)

Since, by the Hodge decomposition, the space of vector fields orthogonal to Vdiv in L2(Ω, g)
consists of gradients, the circulation velocity m satisfies the Euler-α momentum equation
(15a).

9. Mutual consistency of closure assumptions

Let us recall that we derived the EPDiff and the Euler-α equations under two closure condi-
tions for first-order fluctuations: the generalized Taylor hypothesis (42) and the near-isotropy
of fluctuation condition (49). A third requirement, which also imposes a restriction on first
order fluctuation, is

〈w〉 = 0 or 〈w〉 = ∇ψ . (70a,b)
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We recall that conditions (70) arise as a natural geometric constraint from the GLM construc-
tion itself, where the first alternative pertains to the Euler-α derived from the metric (32b)
or to the EPDiff equations, while the second alternative pertains to the Euler-α derived from
the metric (28b).

In the following, we show that our Taylor hypothesis is easily consistent with (70), but
not necessarily with persistence of isotropy. Indeed, let Dt ≡ ∂t + ∇u denote the material
derivative associated with the mean flow. Assuming the Taylor hypothesis and supposing that
averaging commutes with Dt, the evolution of 〈w〉 is governed by

Dt〈w〉 = 〈Dtw〉 = ∇〈w〉u , (71)

Hence, condition (70a) persists for all times provided it holds initially. To study consistency
of the alternative condition (70b) with the Taylor hypothesis, note that

∇u∇ψ = ∇(∇uψ)− (∇uT ) · ∇ψ + (∇ug−1)[ · ∇ψ , (72)

which is straightforward to check in charts. Therefore, plugging 〈w〉 = ∇ψ into (71) yields

∇
(
ψ̇ +∇uψ

)
=
[
2 Def u− (∇ug−1)[

]
· ∇ψ , (73)

so that ψ must satisfy the consistency condition

Dtψ = ∆−1 div
(

[2 Def u− (∇ug−1)[] · ∇ψ
)
. (74)

Since (74) has many solutions, it is possible that (70b) is consistent with the Taylor hypothesis.
However, it appears that this is not guaranteed: the Taylor hypothesis alone does not imply
that condition (70b) persists at all times when it holds initially. Instead, the restrictions on
fluctuations imposed by (74) are in addition to those implied by the definition of the mean
flow via (31).

In contrast, the notion of the mean (32), intrinsic to Dµ, leads to no such restrictions. In
this regard, the intrinsic derivation of Euler-α provides a clear conceptual advantage. We note,
however, that the set of fluctuation vector fields satisfying the non-intrinsic geometric mean
conditions (29a), (33), and (74) is not a subset of vector fields satisfying the intrinsic version
(34) and (29b), and vice versa. Thus, none of the two derivations is a special case of the other.

We now turn to discussing consistency of the Taylor hypothesis with the isotropy condition.
Traditionally, the isotropy condition was formulated as an exact equality (see Marsden and
Shkoller 2001 and Oliver 2017), which on a Riemannian manifold reads

〈wiwj〉 = gij . (75)

However, it turns out that a literal interpretation of (75) has undesirable consequences: Ten-
soring the Taylor hypothesis with w on the right and on the left, adding the results and taking
the average, we infer that

〈(∂t + Lu)(w ⊗ w)〉 = 0 . (76)

Now, assuming that ∂t + Lu commutes with averaging, the exact isotropy (75) and the re-
quirement (76) imply that

Lug−1 = 0 , (77)

i.e., u is a Killing field. This condition is clearly too restrictive for any useful model of a mean
flow; for instance, it would preclude any shear flow as a mean flow on a flat manifold.

We remark that in our derivation, we do not assume that averaging and differentiation
commute. In the general case, the Taylor hypothesis and exact isotropy impose the restriction

〈Dt(w ⊗ w)〉 = 2 (Def u)] . (78)
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Indeed,

〈(∂t + Lu)(w ⊗ w)〉 = 〈Dt(w ⊗ w)〉 − 〈∇wu⊗ w + w ⊗∇wu〉 . (79a)

Computing in charts, noting that (∇uT )ik = gkm g
il (∇u)ml , and applying the isotropy condi-

tion (75), we obtain〈
∇wu⊗ w + w ⊗∇wu

〉ij
=
〈
wk (∇u)ik w

j + wi (∇u)jk w
k
〉

= gkj (∇u)ik + gik (∇u)jk

= gkj (∇u)ik + gjk gkm g
il (∇u)ml

= (∇u)] + (∇uT )]

= 2 (Def u)] , (79b)

hence, assuming isotropy, (78) is equivalent to (76).
In principle, it could be possible to satisfy the restriction (78) by choosing a special measure

for the averaging operation. However, it is easy to see that averaging commutes with both
space and time differentiation in the most elementary case when the measure is independent
of space and time. Thus, imposing a non-commuting averaging process is not a reasonable
way out of the inconsistency between the Taylor hypothesis and the isotropy condition.

Using the relaxed version of isotropy, the near-isotropy condition (49), instead of (75),
equation (78) reads

〈Dt(w ⊗ w)〉 = 2 (Def u)] + O(εa) . (80)

In this case, near-isotropy is guaranteed to persist at least on the time scale O(εa). Marsden
and Shkoller (2001, 2003) combine an O(ε) approximate Taylor hypothesis with exact isotropy,
which leads to the same result, which is not completely satisfactory, since the time of con-
sistency reduces to zero when ε → 0. We conclude that interpreting modeling assumptions
approximately without further modifications of the argument cannot resolve the question of
long-time consistency.

In the next section, we propose a stochastic modification of the Taylor hypothesis which
maintains persistence of near-isotropy over arbitrary intervals of time. At the same time, it
imposes minimal changes—no more than a factor 2 in front of the second order averaged
Lagrangian—on the derivation of the Euler-α equation.

10. Stochastic Taylor hypothesis

In this section, we replace the Taylor hypothesis with a stochastic modification to obtain
an alternative derivation of the Euler-α model. The advantage of this approach is that the
stochastic Taylor hypothesis ensures that near isotropy persists for long time intervals without
imposing additional conditions on fluctuations. Our stochastic Taylor hypothesis assumes
that fluctuations wβ are independently generated realizations of the process w satisfying the
stochastic differential equation

dw + Luw dt = −ε−aw dt+
√

2 ε−a/2 dW , (81)

where 0 < a < 1/2 and W(t) is a time-dependent Wiener process with

E[dW ⊗ dW] = g−1 dt . (82)

Since divergence free vector fields form a Lie algebra with respect to bracket (45), (81) requires,
moreover, that div dW = 0.
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Furthermore, we define 〈·〉 to be the statistical average, so that for arbitrary q = q(w,W),

〈qβ〉 ≡ E[q] . (83)

Note that this notion of averaging commutes both with space and time-differentiation. Hence,
(81) implies persistence of condition (29) under the time evolution.

We now compute the evolution equation governing the covariance tensor

κ = 〈wβ ⊗ wβ〉 = E[w ⊗ w] . (84)

The Itô formula (see, e.g., Jacobs 2010, section 3.8.2) implies

d(w ⊗ w) = dw ⊗ w + w ⊗ dw + dw ⊗ dw , (85a)

where, by (81),

dw ⊗ dw = 2ε−a dW ⊗ dW (85b)

and all other product of infinitesimals are o(dt), as is standard in Itô calculus. Further substi-
tuting dw from (81) into (85), taking the expectation, and abbreviating γ = 2 ε−a, we obtain
altogether

κ̇+ Luκ = γ (g−1 − κ) . (86)

Hence,

κ(t)− g−1 = e−γt (κ(0)− g−1)−
∫ t

0
eγ(s−t) Lu(s)κ(s) ds . (87)

Thus, the near-isotropy condition (49) persists for arbitrary large times so long as the mean
flow u remains uniformly smooth, which we suppose throughout this paper.

To proceed, we abbreviate the right hand side of the stochastic Taylor hypothesis (81) by
dτ , so that

dw = −Luw dt+ dτ , (88)

and insert it into (41) to obtain

u′ dt = dw + Luw dt = dτ , (89a)

u′′ dt = dw′ + Luw′ dt+ Ldτw . (89b)

Thus, the Lin contraint implies that u′ dt and u′′ dt are rough in time, with the smoothness of
a Wiener increment. However, the fluctuation vector field still evolves smoothly in fictitious
time s. Following the intrinsic definition of the geodesic distance, we express w′ via (34a),
differentiate using the Itô formula,

dw′ = −∇dww −∇wdw −∇dwdw −∇dφ

= −∇dww −∇wdw − γ∇dWdW −∇dφ , (90)

and substitute into (89b) to obtain

u′′ dt =
(
∇wLuw +∇Luww − Lu∇ww − Lu∇φ

)
dt−∇dφ

−∇dτw −∇wdτ + Ldτw − γ∇dWdW . (91)

We now consider the averaged Lagrangian, truncated to O(ε2),

dL̄stoch = 1
2

〈∫
Ω

[
|u|2 dt+ 2ε g(u, u′ dt) + ε2

(
|u′|2 dt+ g(u, u′′ dt)

)]
µ(x)

〉
, (92)
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insert the expressions for u′ and u′′ from (89a) and (91), respectively, and observe that the
terms from the first line of (91) combine with the O(1) term to yield the deterministic La-
grangian Ldet by the argument from section 7. We obtain

dL̄stoch = Ldet dt+ εdI1 + 1
2 ε

2 dI2 + 1
2 ε

2 dI3 (93a)

where the contribution from the deterministic terms reads

Ldet = −
∫
Ω
g(∆R, u)µ(x) + O(ε2+a) (93b)

as before, and the stochastic contributions read

dI1 =

∫
Ω
g(u, 〈dτ〉)µ(x) = 0 (93c)

since, by (29), 〈w〉 = 0 so that 〈dτ〉 = 0,

dI2 =

〈∫
Ω
g(dτ,dτ) (dt)−1 µ(x)

〉
=

〈∫
Ω

[
ε−2a |w|2 dt+ 2 ε−a g(dW,dW)(dt)−1

]
µ(x)

〉
(93d)

due to the statistical independence of w and dW, and

dI3 =

〈∫
Ω
g(u,Ldτw −∇dτw −∇wdτ − γ∇dWdW)µ(x)

〉
=

〈∫
Ω

[
−2 g(u,∇wdτ) + γ g(u,dW) div dW + γ g(∇dWu,dW)

]
µ(x)

〉
=

〈∫
Ω

[
γ g(∇wu,w dt)− 2

√
γ g(∇wu,dW)

]
µ(x)

〉
= 0 , (93e)

where we have used that div dW = 0, the statistical independence of w and dW, and that
〈g(∇dWu,dW)〉 and 〈g(∇wu,w)〉 vanish due to (58).

Thus, the only nontrivial stochastic contribution comes from dI2. The second term in (93d)
is infinite, but does not depend on u, so we remove it by renormalizing the Lagrangian. The
first term in (93d) can be rewritten as follows. Integrating (87) by parts, we find that

κ(t)− g−1 = e−γt (κ(0)− g−1)− 1

γ

(
Lu(t)κ(t)− e−γt Lu(0)κ(0)

)
+

∫ t

0

eγ(s−t)

γ

d

ds
Lu(s)κ(s) ds . (94)

Further integration by parts shows that the integral remainder is O(γ−2) so long as u and κ
remain smooth, which we assume throughout. Hence, taking the Lie derivative, we find that

Lu(t)(κ(t)− g−1) = e−γt Lu(t)(κ(0)− g−1)

− 1

γ

(
Lu(t)Lu(t)κ(t)− e−γt Lu(t)Lu(0)κ(0)

)
+ O(γ−2) . (95)

To simplify this expression, note that for any f ∈ C1([0, T ]) with f(0) = 0,

e−γt f(t) = O(γ−1) . (96)

Without loss of generality, we may assume that f > 0. Then, for sufficiently large γ > 0, the
bound

sup
t∈[0,T ]

e−γt f(t) ≤ γ−1 sup
t∈[0,T ]

|ḟ(t)| (97)
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follows by maximizing h(t) = e−γt f(t). Then, using (97) and near-isotropy,

e−γt (Lu(t) − Lu(0)) (κ(0)− g−1) = O(γ−2) . (98)

Further applying (96) to (95) with f(t) = (Lu(t) − Lu(0))Lu(0)κ(0), we obtain

Lu(t)(κ(t)− g−1) = e−γt Lu(0)(κ(0)− g−1)

− 1

γ

(
Lu(t)Lu(t)κ(t)− e−γt Lu(0)Lu(0)κ(0)

)
+ O(γ−2)

= e−γt Lu(0)(κ(0)− g−1)

− 1

γ

(
Lu(t)Lu(t)g

−1 − e−γt Lu(0)Lu(0)g
−1
)

+ O(γ−2) (99)

where, in the second step, we have used near-isotropy in two places. Now, taking the trace of
(87), substituting Lu(t)κ(t) from (99), noting the standard Riemannian geometry identity

TrLug−1 = −2 div u = 0 , (100)

and integrating by parts, we compute

Trκ(t) = Tr g−1 + e−γt Tr(κ(0)− g−1)

−
∫ t

0
eγ(s−t) (TrLu(s)g

−1 + e−γs TrLu(0)(κ(0)− g−1) + O(γ−2)
)

ds

+
1

γ

∫ t

0
eγ(s−t) Tr

(
Lu(s)Lu(s)g

−1 − e−γs Lu(0)Lu(0)g
−1
)

ds

=
1

γ2
TrLu(t)Lu(t)g

−1 +G(t) + O(γ−3) (101)

where G(t) summarizes all terms which only depend on t and on the initial conditions, hence
do not contribute to the variational principle and will be discarded henceforth. Thus, inserting
(101) into the expression (93d) for dI2 and renormalizing, we obtain

dI2 =

〈∫
Ω
ε−2a |w|2 dt µ(x)

〉
= ε−2a

∫
Ω

Trκ(t)µ(x) dt

=

∫
Ω

TrLuLug−1 µ(x) dt+ O(εa)

= 4

∫
Ω
g(Def u,Def u)µ(x) dt+ O(εa) . (102)

The last equality is, once again, a Riemannian geometry identity which is lengthy but straight-
forward to verify in charts; since all the quantities involved are intrinsic, it suffices to verify
this identity in an orthonormal frame.

Altogether, collecting all contributions to the stochastic variational principle and recalling
the equality between (16) and (23), we obtain

dL̄stoch = 1
2

∫
Ω
g(u− 2 ε2 ∆Ru, u)µ(x) dt . (103)

This expression is identical to the Euler-α Lagrangian (23) up to a scaling factor 2 in front
of the Laplacian. The derivation above, as in the preceding sections of the paper, is formal
and raises questions regarding a rigorous formulation of the Lin constraints (89) under lack
of smoothness in time and the necessary renormalization of the resulting Lagrangian.

Subject to such precautions, we find that the inclusion of a strong mean-reverting term
into the Taylor hypothesis does not change the equations of motion except for modifying the
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constant in front of the second-order α-term. The time scale of decay of perturbations toward
isotropy, Trelax, in the stochastic Taylor hypothesis (81) is solely determined by the coefficient
of the linear deterministic dissipative term, so that

Trelax ≈ εa (104)

where, in order to ensure the assumed ordering of terms in the expansion, a ∈ (0, 1
2).

On the other hand, in standard scaling theories of turbulence, the eddy life time is estimated
as follows (e.g., Foias et al. 2001). The energy of eddies between wave number k and 2k is
given by ∫ 2k

k
E(k) dk ≈ k E(k) , (105)

where E(k) is the energy spectrum of the flow, so that the average velocity of those eddies is
(k E(k))1/2. Assuming that eddies break up in the time it takes to travel the distance of their
linear size, we find that the eddy life time is given by

Teddy ≈ κ−3/2E(κ)−1/2 . (106)

In the inertial range of three-dimensional isotropic turbulence, E(k) ≈ k−5/3, in the enstrophy
range of two-dimensional turbulence, E(k) = k−3. Thus,

Teddy ≈

{
1 for n = 2 ,

k−2/3 for n = 3 .
(107)

Thus, in three-dimensional turbulence, Trelax � Teddy, which is consistent with physical intu-
ition: fluctuations cannot isotropize more rapidly than eddies decay, but they may do so more
slowly. In two-dimensional turbulence, Trelax � Teddy. This appears to be contradicting the
assumptions of our derivation, as fluctuations at scale ε cannot isotropize within the lifetime
for their coherent evolution.

This conclusion is at least consistent with scattered pieces of evidence, e.g. Mohseni et al.
(2003) who report positive results regarding the tracking of the correct energy spectrum by a
particular Navier–Stokes-α model, and Graham and Ringler (2013) who report unphysical en-
strophy pileup at small scales in an analogous model for rotating two-dimensional turbulence.
It is possible that Euler-α-like models may be re-interpreted for two-dimensional turbulence
in a completely different way, namely via consistent tracking of the associated modification
of the pattern of triad-interactions in spectral space (see section 5.2 in Danilov et al. 2019).

We emphasize that the discussion presented here is largely speculative and in need of more
solid physical arguments and careful numerical evidence beyond the scope of this paper.

11. Pseudomomentum

It is customary to formulate GLM closures in terms of pseudomomentum, which measures
the effect of fluctuations on the vortical dynamics (see, e.g., Andrews and McIntyre 1978a,b,
Salmon 2013a, and Bühler 2014). Following Gilbert and Vanneste (2018), pseudomomentum
for geometric GLM theories is given by

−p = ν̄L − u[ , (108)

where ν̄L is the Lagrangian-mean one-form entering the Kelvin circulation theorem.
Since the Kelvin circulation theorem for a Lagrangian L̄(u) on a diffeomorphism group has

a form

d

dt

∮
γt

δL̄

δu
= 0 , (109)
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where γt is a material loop, see, e.g., the Euler–Poincaré theorem for continua in Holm et al.
(1998), it follows that

ν̄L =
δL̄

δu
= m[ , (110)

where m is the circulation velocity defined in section 8. Thus,

p = ε2 (∆Ru)[ (111)

both for the Euler-α and for the EPDiff equations. Remarkably, the idea that the Laplacian
term in the Euler-α equations represents the Lagrangian-mean closure for the pseudomomen-
tum of the turbulent components of the flow was expressed already by Holm et al. (1998), who
derived the Euler-α in flat space as abstract Euler–Poincaré equations on the volumorphism
group.

We finally remark that the expression for the Lagrangian-mean one-form given by Gilbert
and Vanneste (2018) reads ν̄L = 〈ξ∗β,ε νβ,ε〉 with νβ,ε = u[β,ε. In principle, it is feasible to
expand ξ∗β,ε νβ,ε and use that

d

ds
(ξ∗β,s νβ,s) = ξ∗β,s (∂sνβ,s + Luνβ,s) (112)

but this direct computation is substantially more tedious than the indirect approach used
above.

12. Manifolds with boundaries

Our methods are flexible enough to treat manifolds with a boundary. However, it has already
been noted in Marsden and Shkoller (2003) that the no-flux boundary conditions u · n = 0,
where n denotes the outward normal to the boundary ∂Ω, which are the natural boundary
conditions for the Euler equations, are incompatible with isotropy of fluctuations.

Indeed, suppose that the normal n(x) = e3 at a point x ∈ ∂Ω. Then, the no-flux bound-
ary conditions would imply w3(x) = 0 for an arbitrary fluctuation vector field w, so that
〈w3(x)w3(x)〉 = 0, whereas isotropy requires 〈w3(x)w3(x)〉 = 1. A similar problem emerges
for Burgers’ equations with the natural no-slip boundary condition u = 0 on ∂Ω.

Thus, on manifolds with boundary, one must generally consider anisotropic equations, which
are a coupled system of evolution equations for the mean velocity and Taylor diffusivity tensor

κ = 〈w ⊗ w〉 (113)

(see, e.g., Marsden and Shkoller 2003 or Holm 1999).
However, for certain simplified geometries, for instance for a horizontal strip Ω = R2×[0, H],

the rigid lid boundary conditions are compatible with spatial uniformity of the Taylor diffu-
sivity tensor κ. In such cases, one could still derive analogues of isotropic Euler-α equations
on manifolds with boundary by replacing the isotropy with an appropriate form of spatial uni-
formity in the closure hypothesis. We refer the reader to Badin et al. (2018) for the examples
of such a construction.
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Holm, D.D., Marsden, J.E. and Ratiu, T.S., The Euler–Poincaré equations and semidirect products with
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