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Abstract. We study the following generalization of the classical non-negative

matrix factorization (NMF) problem: Given a non-negative matrix V , i.e., a
matrix with non-negative elements, find a low rank approximation V ≈ CWH

where all right hand factors are non-negative, C is a given generally non-

invertable “feature map,” and V and H are low rank factors to be determined
by best-approximation in a weighted Frobenius norm. We shall refer to this set-

ting as the FFNMF problem. In this paper, we propose a non-multiplicatively

regularized gradient descent algorithm for the FFNMF problem, prove its con-
sistency, and show that a stationary or a limit point of the algorithm is a

stationary point for the cost functional except possibly at the boundary of the

admissible region, where the cost is then locally increasing when moving away
from the boundary.

1. Introduction

Non-negative matrix factorization (NMF) seeks to approximate a non-negative
m×n matrix V (in this context, a matrix is called non-negative if all of its elements
are non-negative) by a product

V ≈WH (1)

of non-negative matrices W and H of dimensions m × k and k × n, respectively,
with a given and typically low maximal rank k. It forms the basis of unsupervised
learning and data reduction algorithms with applications to image recognition [8],
environmental monitoring [2, 4, 12], speech recognition [5], and data mining and
collaborative filtering [19].

The NMF problem is typically cast as the minimization of V −WH with respect
to the Frobenius norm [11], the Kullback–Leibler divergence [7, 19, 3, 5], or, more
generally, Bregman divergences [3]. In all cases, the problem is that of non-convex
constrained optimization. In this paper, we restrict ourselves to the Frobenius norm
setting.

The factorization (1) can be interpreted as an approximation of V in terms of
“basis elements” or “features” given by the columns of W with non-negative ex-
pansion coefficients. In some applications, however, the features have an additional
pre-determined structure which should be encoded into the factorization. In this
paper, we specifically look at what we call the factorizable feature matrix NMF
(FFNMF) problem, which is of the form

V ≈ CWH . (2)

The matrix C is a known non-negative feature map which can be interpreted as a
mapping from the logical degrees of freedom encoded in the columns of W to the
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observable degrees of freedom. In other words, we impose a factorization of the
feature matrix CW into a known and an unknown factor; as in (1), the task of
FFNMF is to determine the non-negative matrices W and H.

For example, in an application to environmental monitoring similar to that re-
ported in [2], the feature map C may map chemicals into outputs of measuring
devices, decompose complex chemicals into more elementary components, or aggre-
gate compounds into broader classes relevant for further analysis. In the context
of collaborative filtering, the feature map may encode existing knowledge, such as
users’ demographic and social data, or items’ genre information.

Interest in this problem is not new. Guillamet, Bressan, and Vitrià [6] considered
the closely related problem V ≈ WHC, albeit only for C square. Dhillon and Sra
[3, 15] discuss a general class of “weighted non-negative matrix approximation”
problems which encompasses the former.1 Their setting is clearly general enough
to derive multiplicative update rules for solving the FFNMF problem as stated;
however, the weights introduced in their explicit examples are different from the
ones we are using in this paper, and the authors do not consider regularizations as
shall be explained below.

Multiplicative update rules go back to the seminal paper by Lee and Seung [7].
They remain popular as they are simple to implement and typically give good
results. From the theoretical point of view, however, the situation is not entirely
satisfactory as convergence is not guaranteed and, moreover, convergence does not
imply that the limit point is a local minimizer of the cost functional [1, 9, 10]. A
second issue is that basic multiplicative updates may become singular when the
sequence of iterates approaches the boundary of the admissible region.

In practice, therefore, the update rules need to be regularized near the boundary
of the admissible region. Lin [10] uses a regularization of the generating auxiliary
function for the classical Lee and Seung [7] update and shows that the resulting
algorithm preserves monotonicity. In this paper, we provide another such regular-
ization which is similar, but not identical to Lin’s. We show that that a stationary
or a limit point of the algorithm is necessarily a stationary point for the cost func-
tional except possibly at the boundary of the admissible region so long as the cost
is locally decreasing toward the boundary.

The purpose of our paper is three-fold. First, we explicitly state a regularized
algorithm for a weighted variant of FFNMF, to be introduced in Section 2 below,
which we developed in a particular industrial context and which should be more
widely applicable in a variety of modeling scenarios. Second, we show that this
algorithm can be analyzed in the spirit of previous work on algorithms for scaled
gradient-descent algorithms for NMF-type problems. Third, we clarify the results
of this analysis since the respective statements are not always sufficiently precise in
the NMF literature.

The article is structured as follows. In Section 2, we introduce basic notation
and state our regularized FFNMF algorithm. In Section 3, we prove some auxiliary
results on the non-negative least square problem which can be used to analyze
the NNMF updates; their application to the full FFNMF problem is discussed in

1Dhillon and Sra advocate the term non-negative matrix approximation (NNMA) in place of
non-negative matrix factorization (NMF). However, for the better or worse, the latter remains

overwhelmingly used in the literature.
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Section 4. In Section 5, we discuss simplified update rules and compare them to
the literature. The paper concludes with a short discussion of the results.

2. An algorithm for weighted FFNMF

In the following, we write Mat+ to denote the set of matrices with non-negative
real elements, Matm,n to denote the space of real m×n matrices, and set Mat+

m,n ≡
Matm,n ∩Mat+. Further, for matrices A and B, we write A � B, A/B, and

√
A

to denote element-wise multiplication, division, and square root; standard matrix
multiplication is written AB as usual. In complex formulas, standard matrix multi-
plication takes precedence over element-wise operators. Finally, 1 denotes a matrix
with all entries equal to one with implicitly defined dimension, and Σ(A) denotes
the sum of all elements of A.

Then, if D : Mat+
m,n×Mat+

m,n → R+ is some measure of distortion, V ∈ Mat+
m,n,

and k is a fixed desired rank of the approximation, the task is to minimize

F (W,H) ≡ D(V,WH) (3)

over all matrices W ∈ Mat+
m,k and H ∈ Mat+

k,n. The choice of D is dictated by the

application. We note that Dhillon and Sra [3] set up a general framework in which
D can be any so-called Bregman divergence. Here, however, we restrict ourselves
to cost functions that arise via a Frobenius norm. The classical choice

D(A,B) = 1
2 ‖A−B‖

2 ≡ 1
2

∑
i,j

|Aij −Bij |2 (4)

for the NMF problem (1) has been suggested in [11, 13]; Lee and Seung [7] proposed
a simple iterative algorithm with multiplicative update rules for this minimization
problem. A natural slight generalization is weighted NMF where, for a prescribed
weight matrix M ∈ Mat+,

D(A,B) = 1
2 ‖
√
M � (A−B)‖2 . (5)

Extensions of Lee and Seung’s method to weighted NMF can be found in [3, 6, 19].
For FFNMF, we set F (W,H) = D(V,CWH) and take the weighted Frobe-

nius squared distance function (5), so that the FFNMF problem for given M,V ∈
Mat+

m,n and C ∈ Mat+
m,l reads: minimize

F (W,H) ≡ 1
2 ‖
√
M � (V − CWH)‖2 (6)

where the minimum is taken over all W ∈ Mat+
l,k and H ∈ Mat+

k,n. Clearly, when
C = I, the problem reduces to weighted NMF; if further M = 1, it reduces to the
classical NMF problem. We emphasize that C is not assumed to be invertable or
even square. Typically, in applications k � m, l, n, however, we do not require this
explicitly. The efficient choice of the approximation rank k is a problem which is
still not completely solved, for a discussion, we refer to [18].

The technical advantage of using the Frobenius norm is that it comes from an
inner product of the form

〈A,B〉 = Σ(A�B) =
∑
i,j

Aij Bij . (7)

We note, as shall become useful when computing gradient descent directions for
(6), that

〈AB,C〉 = 〈B,ATC〉 = 〈A,CBT 〉 (8)
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for all matrices A,B,C with compatible dimensions.
Let ε > 0 be a regularization parameter which is fixed. For matrices X,A, and

B of same dimension, we define define the matrix Xε(A,B) by

[Xε(A,B)]ij =

{
ε

Σ(A)+1 if Xij <
ε

Σ(A)+1 and Aij −Bij < 0 ,

Xij otherwise .
(9)

We propose the iterative algorithm for solving the minimization problem (6) defined
by the update rules

AW = CT (M � CWH)HT , BW = CT (M � V )HT , (10a)

W new = W −Wε +
(ε1 +BW )�Wε

AW + ε1
, (10b)

AH = WTCT (M � CWH) , BH = WTCT (M � V ) , (10c)

Hnew = H −Hε +
(ε1 +BH)�Hε

AH + ε1
, (10d)

where Wε ≡ Wε(AW , BW ) and Hε ≡ Hε(AH , BH), and (W new, Hnew) is the one
step update of (W,H). The order in which the update is performed is non-essential,
however, the new value of the first updated component must be used in the rule
for the second one.

Rewriting the update rule additively, we can interpret the algorithm as a scaled
gradient descent for (6):

W new = W − γW �∇WF , (11a)

Hnew = H − γH �∇HF , (11b)

where

∇WF = AW −BW , (12a)

∇HF = AH −BH , (12b)

and the scaling coefficients are given by

γW =
Wε

AW + ε1
, (13a)

γH =
Hε

AH + ε1
. (13b)

When C = I and ε = 0, (10) coincides with the WNMF update [19]; if furthermore
M = 1, we reduce to the classical NMF algorithm by Lee and Seung [7].

3. Non-negative least-squares

As commonplace in the NMF literature, we break up the analysis into interleaved
non-negative least-squares (NNLS) problems. Each of these problems is convex,
although the entire FFNMF problem, discussed in Section 4, is not. We use the
technique of auxiliary functions which was introduced to the NMF literature in [7]
and has been used by many authors since.

In the following, we identify matrices Y ∈ Matm,n with vectors y ∈ Rmn ≡ Rd.
The inner product (7) is thus identified with the canonical inner product on Rd, a
linear operator L : Matm,n → Matp,q is identified, without change in notation, with
L ∈ Matmn,pq ≡ Matd,`, and its adjoint L∗ with respect to the inner product (7) is
identified with the corresponding matrix transpose.
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Definition 1. Let D ⊂ Rd and f : D → R. Then G : D × D → R is called an
auxiliary function for f if for all x, x′ ∈ D,

G(x, x′) ≥ f(x) and G(x, x) = f(x) . (14)

Lemma 2 ([7]). Suppose G is an auxiliary function for f . Then f is non-increasing
under the update rule

xnew = arg min
y∈D

G(y, x) . (15)

Moreover, f(xnew) = f(x) if and only if x = arg miny∈D G(y, x).

We now let D = Rd+, i.e., the set of vectors in Rd with non-negative components,

fix y ∈ R`+, and consider the so-called non-negative least squares (NNLS) problem:
minimize

f(x) = 1
2 〈Lx− y, Lx− y〉 = 1

2 ‖Lx− y‖
2 (16)

over all vectors x ∈ D.

Proposition 3. Let K(x) : Rd → Rd be a family of self-adjoint operators such that
K(x)− L∗L is positive semi-definite for every x ∈ D. Then

G(x, x′) = f(x′) + 〈x− x′, L∗(Lx′ − y)〉+ 1
2 〈x− x

′,K(x′)(x− x′)〉 (17)

is an auxiliary function for f .

Proof. Clearly, G(x, x) = f(x). Further, we can rewrite (16) as

f(x) = f(x′) + 〈x− x′, L∗(Lx′ − y)〉+ 1
2 〈x− x

′, L∗L(x− x′)〉 . (18)

Comparing (17) and (18), we obtain

G(x, x′)− f(x) = 1
2 〈x− x

′, [K(x′)− L∗L](x− x′)〉 ≥ 0 . (19)

Thus, K(x′)−L∗L being positive semi-definite is equivalent to G being an auxiliary
function. �

Proposition 4. Assume that L ∈ Mat+. For every x ∈ D, set xε = xε(L
∗Lx,L∗y)

and define the linear operator

K(x)z =
L∗Lx+ ε1

xε
� z (20)

for every z ∈ Rd. Then G given by (17) is an auxiliary function for f .

Proof. Since K(x) acts multiplicatively, it is self-adjoint. Hence, by Proposition 3,
it suffices to check that K(x) − L∗L is positive semi-definite. We begin by noting
that, by assumption, A ≡ L∗L ∈ Mat+

d,d. Thus, for z ∈ Rd and x ∈ Rd+,

〈z � x,Ax� z〉 − 〈z � x,A(z � x)〉 =
∑
α,β

xα z
2
αAαβ xβ − xα zαAαβ xβ zβ

=
∑
α,β

xαAαβ xβ
(

1
2 z

2
α + 1

2 z
2
β − zα zβ

)
=

1

2

∑
α,β

xαAαβ xβ (zα − zβ)2 ≥ 0 , (21)

where the second equality is due to the symmetry of A. Then

〈z � xε, [K(x)− L∗L](z � xε)〉 = 〈z � xε, Axε � z〉 − 〈z � xε, A(z � xε)〉
+ 〈z � xε, (A(x− xε) + ε1)� z〉 . (22)
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The difference of the first two terms on the right is non-negative due to (21), the
last term on the right of (22) is also non-negative due to the definition of xε. �

Proposition 5. Assume that L ∈ Mat+. Then the update

xnew = x− xε +
xε � (ε1 + L∗y)

L∗Lx+ ε1
(23)

maps D into D. Moreover, f is non-increasing under this rule and stationary if
and only if x is a local minimum of f .

Proof. Define K as in Proposition 4. Then the corresponding G is an auxiliary
function for f . Since G is quadratic in its first argument, the global minimum of
G( · , x) is attained at

arg min
x′∈Rd

G(x′, x) = x−K−1(x)L∗(Lx− y) (24)

where
K−1(x)z =

xε
L∗Lx+ ε1

� z . (25)

Rearranging these expressions, we obtain (23). Moreover, by direct calculation,
we verify that the update actually maps into D; by Lemma 2, f is non-increasing
under this rule.

Now suppose that x ∈ D is a stationary point of (23). Then

xε � (L∗Lx− L∗y) = 0 , (26)

which implies, for each α ∈ 1, . . . , d, that either ∂f/∂xα = 0 or, due to the way
that xε = xε(L

∗Lx,L∗y) is defined via (9), xα = 0 and ∂f/∂xα ≥ 0. �

4. Consistency of the regularized FFNMF updates

Returning to the full FFNMF problem, we now consider F (W,H) as function of
one argument with the other held fixed. We write

F (W,H) = 1
2 ‖L1W − Y ‖2 = 1

2 ‖L2H − Y ‖2 (27)

where L1W = L2H ≡
√
M � CWH and Y =

√
M � V . Using (8), we see that

L∗1Z = CT (
√
M � Z)HT and L∗2Z = WTCT (

√
M � Z) . (28a)

Then, identifying matrices and vectors as described in the introduction to Section 3
and substituting L1 and L2 for L into formula (23), we obtain our FFNMF updates
(10b) and (10d), respectively. By Proposition 5, F is non-increasing under such
updates.

As the problem is not jointly convex in W and H, a conclusion as strong as
Proposition 5 does not hold for the joint problem. Now suppose that (W,H) is a
stationary point for the FFNMF update (10). Then, we can still assert that the
equivalent of (26) holds in each variable, i.e.,

Wε �∇WF (W,H) = 0 and Hε �∇HF (W,H) = 0 . (29)

These conditions imply that F is stationary in all its degrees of freedom except
possibly for some on the boundary of the admissible region. If there are any such
directions in which F is non-stationary, it is increasing along the inward normal to
the boundary. For the sake of succinctness and following the implicit trend in the
NMF literature we will call any point satisfying these conditions simply a stationary
point of F . Vice versa, it is easily checked that if F has any stationary point (in
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this sense), it is invariant under update (10). We summarize this discussion in the
following statement.

Theorem 6. The cost function F is non-increasing under the update rules (10).
Moreover, the sequence of updates has a stationary point (W,H) if and only if
(W,H) is a stationary point of F .

A similar conclusion holds if we already know that the algorithm converges.

Theorem 7. Suppose the sequence of updates (10) converges. Then the limit is a
stationary point of F .

Proof. Let (Wn, Hn) denote the sequence of updates under rule (10) with limit
point (W,H). Then, due to (11) and (13),

Wn
ε �∇WF (Wn, Hn)→ 0 and Hn

ε �∇HF (Wn, Hn)→ 0 . (30)

Passing to the limit yields the stationarity condition (29). �

This result expresses that (10) defines a consistent method. However, it does
not guarantee that the sequence of updates converges, nor does it prove that a
limit point, if it exists, is a local, much less global minimizer of F . Note that
due to convexity of the cost function in each of the arguments, a stationary point
(W0, H0) is necessarily a partial local minimum in the following sense. There is a
neighborhood U of (W0, H0) in Mat+ ×Mat+ such that for all (W,H) ∈ U ,

F (W0, H) ≤ F (W,H) and F (W,H0) ≤ F (W,H) . (31)

However, since F is not jointly convex, it is possible that the cost can be further
decreased in a neighborhood of a partial local minimum using a simultaneous up-
date of W and H. Although this result is not completely satisfactory, a proof of
convergence is not available for any method of this type, and the full NMF problem
is considered NP hard [17].

5. Simplified updates for non-degenerate problems

If the FFNMF problem is sufficiently non-degenerate, namely

(i) all elements of M are strictly positive,
(ii) V does not have a zero column or row,
(iii) C does not have a zero column or row, and
(iv) the initial W and H lie strictly in the interior of the admissible region,

then we may use either of the simplified updates

W new =
(ε1 +BW )�W

AW + ε1
, Hnew =

(ε1 +BH)�H
AH + ε1

, (32)

obtained by replacing (Wε, Hε) by (W,H) in (13), or

W new =
BW �W
AW

, Hnew =
BH �H
AH

, (33)

which arises from further setting ε = 0. The non-degeneracy conditions guarantee
that the matrices AW , BW , AH , BH have no zero entries, hence the new iterates
W new and Hnew are well defined and remain strictly inside the admissible region.
Similar non-degeneracy conditions appear in [9].
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The simplified update rules are covered by the framework Section 3 if we replace
K in Proposition 4 by

K1(x)z =
L∗Lx+ ε1

x
� z , (34)

respectively

K2(x)z =
L∗Lx

x
� z . (35)

Noting that

〈x� z, [K1(x)− L∗L]x� z〉 ≥ 〈x� z, [K2(x)− L∗L]x� z〉
= 〈z � x,Ax� z〉 − 〈z � x,A(z � x)〉 , (36)

the proof of Proposition 4 in both cases follows from (21). As in Proposition 5, this
yields the updates

xnew =
x� (ε1 + L∗Y )

L∗Lx+ ε1
, (37)

respectively

xnew =
x� L∗Y
L∗Lx

. (38)

Plugging L1 and L2 into these expressions, we conclude that F is non-increasing
under updates (32) or (33).

We remark that (33) with C = I corresponds to the classical NMF algorithm of
Lee and Seung [7] when M = 1 and the classical multiplicative WNMF updates
discussed, for example, in [3, 19].

Whenever the nondegeneracy conditions do not hold, update (33) can fail for
two reasons. An obvious problem is a zero denominator which, in practice, is often
remedied by an ad hoc modification [14, 16]

W new =
W � V HT

ε1 +WTWH
, Hnew =

H �WTV

ε1 +WTWH
(39)

which is missing one term from (32). However, there does not appear to be a simple
way to prove that the cost function is non-increasing under update (39), whereas
(32) is guaranteed to non-increase F .

The second issue concerns all non-regularized multiplicative updates, including
(32), (33), and the updates considered in [3, 15, 7, 8, 19]. As is easily seen from (33),
whenever Wij = 0 for some indices i, j, it will remain zero (i.e., on the boundary of
the admissible region) for all consecutive updates; similarly for the matrix H. Thus,
even when the cost function is decreasing normal to the boundary, the algorithm
cannot ever get away from the boundary. This issue can arise due to rounding errors
even if the non-degeneracy condition is satisfied. It is also of significant practical
importance since the solutions to the factorization problems are often found on
the boundary of the admissible region and boundary solutions are preferred due to
their sparsity. Therefore, imposing a strictly positive initialization is undesirable.
Furthermore, stationarity of the update only implies

W � ∇WF = 0 and H � ∇HF, (40)

which does not imply that (W,H) is stationary or increasing in components normal
to the boundary—the conclusion of Theorems 6 and 7 does not hold.

In contrast, the FFNMF algorithm (10) robustly handles zero components in the
data or in the intermediate solution. In particular, one does not need to assume
that all elements of the weight matrix M are positive. If M has zero elements,
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ordinary WMNF updates can get stuck on a the boundary hyperplane which they
are unable to leave.

6. Discussion

In the article we consider a slight, but useful generalization of the classical non-
negative matrix factorization problem and study is approximate solution via a reg-
ularized gradient descent algorithm. We find that our updates are consistent, the
best known result for a large class of simple NMF-type solvers. The algorithm has
been successfully used in an application setting for computing very low rank ap-
proximations for moderately sized non-negative matrices with about 104 elements.
In this context, it was found to be trivial to implement, performs adequately fast,
and produces results of seemingly good quality even though we do not have proof
that it finds optimal or near-optimal solutions.

In practice, the simplified update rule (32) also appears attractive, being slightly
faster than (10) and, although we can only prove for the latter that a limit point of
the algorithm is a stationary point of the cost functional, appears to perform well
and is definitely more robust than (33), the direct generalization of the classical
multiplicative NMF solver of Lee and Seung [7].
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