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In this paper, we derive and study approximate balance models for nearly geostrophic shallow water flow
where the Coriolis parameter is permitted to vary across the domain so long as it remains nondegenerate.
This situation includes, for example, the β-plane approximation to the shallow water equations at mid-
latitudes. Our approach is based on changing configuration space coordinates in the underlying variational
principle in such a way that that consistent asymptotics in the transformed Lagrangian leads to a degenerate
Lagrangian structure. In this article, we restrict our attention to first order models. We show that the
resulting models can be formulated in terms of an advected potential vorticity with a nonlinear vorticity
inversion relation. We study the associated solvability conditions and identify a subfamily of models for
which these conditions are satisfied without additional restrictions on the data. Finally, we provide the link
between our framework and the theory of constrained Hamiltonian systems.
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1. Introduction

Large-scale flow in mid-latitude atmosphere and ocean dynamics is characterized by smallness
of the Rossby number, which measures the relative importance of inertial vs. Coriolis forces.
To leading order in Rossby number, such flow is in geostrophic balance—the pressure gradient
balances the Coriolis force exactly, and the flow is stationary. A balance model then describes
the slow dynamics of small departures from a balanced state. In the simplest case, when the
full flow is described by the rotating shallow water equations as we assume throughout this
paper, there are two classical balance models, the semigeostrophic and the quasigeostrophic
equations (see, e.g., the text book expositions of Pedlosky 1987 and Salmon 1998), which differ
in the assumed scaling of a second parameter, the Burger number, and in the scaling of the
surface height variations. In this paper, we shall only be concerned with the semigeostrophic
limit where Burger and Rossby numbers are of the same order and there are no restrictions
on the magnitude of surface height variations except for a natural positivity condition on the
layer depth.
Salmon (1985) pioneered the derivation of balance models via the variational formulation

of the fluid system and introduced two new models, the so-called L1 model and the large-
scale semigeostrophic (LSG) equations. (The term “large-scale semigeostrophic equations” was
coined in Salmon (1996), where the author implements similar ideas for a stratified flow.) His
ideas were subsequently extended in a number of ways (see Shutts 1989, Holm 1996, Purser
1999, Wunderer 2001, McIntyre and Roulstone 2002, Vanneste and Bokhove 2002, Oliver 2006,
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and references therein). In this paper, we revisit the approach of Oliver (2006), who introduced
a general framework based on writing the variational principle in a new coordinate system
which is chosen precisely so that, when consistently truncated to a certain order in the Rossby
number, the variational structure degenerates, thereby providing an implicit constraint on the
dynamics.
When the Coriolis parameter is constant, this approach yields a one-parameter family of

balance models, the generalized LSG equations. As a function of the model parameter, they
“interpolate” between Salmon’s L1 model and the LSG equations. For a fixed value of the
model parameter, an instance of the generalized LSG equations is, in many respects, simi-
lar to Hoskins’ semigeostrophic equations. Both sets of equations are Hamiltonian (for the
semigeostrophic equations, see Salmon 1985, for the generalized LSG equations, see Oliver
and Vasylkevych 2011), both coincide up to terms of order one in Rossby number, and, in
the case of constant Coriolis parameter, both can be formulated as an advection equation for
the potential vorticity in a transformed coordinate system coupled with a nonlinear potential
vorticity inversion. In the semigeostrophic case, the transformation has been introduced by
Hoskins (1975) and is now known by his name; the associated potential vorticity inversion law
is a nonlinear elliptic Monge–Ampère equation. Generalized LSG theory also employs sepa-
rate computational coordinate system, in which advected potential vorticity is coupled to the
velocity by the system of elliptic PDEs. The key difference is that the Hoskins transformation
into semigeostrophic coordinates is explicit in the physical coordinate system and implicit
in the new semigeostrophic coordinates. For the generalized LSG equations, the situation is
reversed, which has an obvious benefit for the numerical implementation of the model. Advec-
tion of potential vorticity was used to prove well-posedness for the semigeostrophic equations
(Benamou and Brenier 1998) and for the generalized LSG equations (Çalik, Oliver and Va-
sylkevych 2012). Finally, for a constant Coriolis parameter, the semigeostrophic equations
also possess a materially conserved potential vorticity in physical coordinates. We remark
that there are other classes of balance models, e.g. the quasigeostrophic equations and higher
order extensions, which can also be formulated in terms of potential vorticity advection and
inversion (see Vallis 2006, and references therein).
When the Coriolis parameter is spatially varying, there is no known conserved potential

vorticity for the semigeostrophic equations in physical coordinates (Roulstone and Sewell
1996). A conserved potential vorticity does exist in so-called vorticity coordinates (Schubert
and Magnusdottir 1994, Roulstone and Sewell 1996, 1997), but computing the transformation
to vorticity coordinates requires another prognostic equation (Schubert and Magnusdottir
1994). More recently, Cullen et al. (2005) use the theory of optimal transport to give a formal
argument that the semigeostrophic equations on a sphere can be written in terms of potential
vorticity advection and inversion, but in order to obtain a practical solution procedure, they
continue to work in physical coordinates. Moreover, to our knowledge there are no known
results on the mathematical well-posedness of the semigeostrophic equations in this general
case.
In this paper, we extend the strategy of Oliver (2006) to the case of the rotating shallow

water equations with spatially varying Coriolis parameter. We assume that the Coriolis pa-
rameter f is a smooth function and that it remains bounded away from zero; however, no
further restrictions are made. In our setting, the difficulties to semigeostrophic theory posed
by spatial variations of f largely disappear. We find that the equations of motion can be
derived in much the same way as for nonvarying f , and that they can be formulated as an
advection equation for a transformed potential vorticity (PV) coupled with a nonlinear po-
tential vorticity inversion relation. The transformation back to physical coordinates is explicit
in the new coordinates and can be readily computed.
Invertibility of the potential vorticity relation across the family of generalized LSG models is

guaranteed if either the Rossby number or the gradient of the Coriolis parameter is sufficiently
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small. With certain particular choices of the parameters of the transformation (which, however,
do not include a case analogous to Salmon’s L1 model for nonconstant f), invertibility hinges
only on the positivity of the Coriolis parameter and of the initial potential vorticity. This
condition is already necessary in the case of non-varying Coriolis parameter (Çalik, Oliver and
Vasylkevych 2012) and appears to be both sharp and physically reasonable. It unconditionally
includes the β-plane approximation to the shallow water equations at mid-latitudes. However,
we cannot deal with the degeneracy of the Coriolis parameter for the spherical shallow water
equations at the equator—a fundamental difficulty for balance models in general.
The paper is structured as follows. Section 2 introduces the shallow water equations, the

semigeostrophic scaling, and the variational formulation. Section 3 recalls the results from
Oliver (2006) on the degenerate variational setting for the balance models. In Section 4,
we derive general first order balance models with non-constant Coriolis parameter via the
transformational approach. Section 5 looks at the vorticity formulation of the resulting models
and discusses solvability of the PV inversion. In section 6, we point out two distinct families
of generalized LSG models and discuss the solvability of their PV inversion and their relation
to the L1 and the basic LSG model. Section 7 gives a brief reinterpretation of our method as
a constrained Hamiltonian system in the spirit of Salmon. Short concluding remarks comprise
the final section of this paper.

2. Shallow water equations and scaling

The parent model from which our balance models are derived and to which they must be
compared is the system of rotating shallow water equations (Pedlosky 1987, Salmon 1998),
which describe the vertically averaged motion of a shallow layer of an inviscid homogeneous
fluid on a rotating plane. In non-dimensionalized form, they read

ε (∂t + u ·∇)u+ f u⊥ + ε−1B∇(h− b) = 0 , (1a)

∂th+∇ · (hu) = 0 , (1b)

where u = u(x, t) is the horizontal fluid velocity, h = h(x, t) the total depth of the layer, b =
b(x) ≥ bmin > 0 the depth at equilibrium, and f = f(x) ≥ fmin > 0 the non-dimensionalized
Coriolis parameter. We write u = (u1, u2), u

⊥ = (−u2, u1), x = (x1, x2), ∇ = (∂1, ∂2), and
∇

⊥ = (−∂2, ∂1).
The asymptotic regime is governed by two non-dimensional quantities, the Rossby number

ε and the Burger number B, defined by

ε =
U0

f0 L0
and B =

g H0

f20 L
2
0

, (2)

where g is the constant of gravity and H0, L0, U0, and f0 denote a characteristic fluid depth,
horizontal length, horizontal fluid velocity, and Coriolis parameter, respectively. So, for ex-
ample, f(x) = fph(x)/f0, where fph denotes the Coriolis parameter in physical, unscaled
variables, and f0 denotes a suitable defined average.
In this paper, we study the semigeostrophic regime, where ε is small and B = O(ε), while

fluctuations of the fluid depth may be comparable to the layer depth. We also consider the
fluid to be stationary at infinity, so that u vanishes and h = b = b0 are constant outside some
unspecified compact subdomain. For simplicity, we set B ≡ ε and h0 ≡ 1. Then, the velocity
to leading order in ε is given by the geostrophic balance relation

uG = f−1
∇

⊥h̃ , (3)

where h̃ = h− b denotes the surface elevation.
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The rotating shallow water equations (1) can be derived from a variational principle as
follows. We write a to denote particle labels and η to denote the flow of u. Then, the fluid
particle initially at location a is found at location x = η(a, t) at time t, and η( · , t) is the
diffeomorphism satisfying

η̇ = u ◦ η with η( · , 0) = Id . (4)

Here, the dot denotes the time derivative and u ◦ η is a shorthand for u(η(a, t), t). The layer
depth h is related to the flow via

h =
1

Jη
◦ η−1 , (5)

where Jη ≡ det∇η is the Jacobian of η. Then, h satisfies the continuity equation (1b) by
Liouville’s theorem, and the momentum equation (1a) is equivalent to stationarity of the
action

SRSW =

∫ t2

t1

LRSW(η, η̇) dt (6)

with respect to variations of the flow map η which vanish at the temporal end points, and
where the rotating shallow water Lagrangian is given by

LRSW =

∫

R2

R ◦ η · η̇ +
ε

2
|η̇|2 −

1

2h
h̃2 ◦ η da

=

∫

R2

h

(

R · u+
ε

2
|u|2

)

−
1

2
h̃2 dx . (7)

Here, the vector field R is a vector potential for the Coriolis parameter, i.e., ∇⊥ · R = f .
Variational principles for fluids go back to Herivel (1955); in this form, including the variable
bottom topography term, it appears already in Allen and Holm (1996).
Using Euler–Poincaré reduction, the variational principle can be stated purely in terms of

the Eulerian quantities u and h whose variations δu and δh are related to variations of the
flow map

δη ≡ w ◦ η (8)

by the Lin constraints (Bretherton 1970)

δu = ẇ +∇wu−∇uw = ẇ + [u,w] , (9a)

δh+∇ · (hw) = 0 . (9b)

(We read vector fields as column vectors and ∇w as the matrix (∂jwi)ij , so that by the usual
rules of matrix multiplication, (∇wu)i =

∑

j ∂jwi uj .) These relations express how variations
in u and h relate to variations in the flow map as they appear in a general statement of
Hamilton’s principle for continuum mechanics. The first Lin constraint is obtained by equating
δη̇ calculated from (4) and (8), respectively; the second is obtained by taking the variation in
(5) and applying Liouville’s theorem.
The invariance of the Lagrangian under time translations implies conservation of the energy

HRSW =
1

2

∫

R2

ε h |u|2 + h̃2 dx , (10)

while the invariance of the Lagrangian under particle relabeling implies the conservation of
potential vorticity

q =
f + ε∇⊥ · u

h
(11)

along particle trajectories.
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3. Variational principle for balance models

In the semigeostrophic regime, balance models filter inertia-gravity waves by replacing the
momentum equation (1a) with a kinematic dependence of the fluid velocity on the mass con-
figuration. Such a kinematic dependence can only arise via a Hamilton variational principle
if the Lagrangian is affine in the velocity. (We use the term “affine” rather than “linear”
to emphasize that a nonzero velocity-independent additive contribution must be part of the
Lagrangian to obtain nontrivial Euler–Lagrange equations.) We further demand of any rea-
sonable balance model that its Lagrangian is invariant under particle relabeling so that the
model possesses, by the Noether theorem, an advected potential vorticity. This requirement
is automatically satisfied by any function of the Eulerian velocity u and layer depth h. These
two considerations lead us to seek balance model Lagrangians of the form

LBM(u, h) =

∫

R2

h
(

F (h) · u−G(h)
)

dx , (12)

where F ◦η and G◦η are the canonical Lagrangian momentum and energy density, respectively.
In the following, they will be given by formal power series in ε. Any Lagrangian of the form
(12) is invariant under the particle relabeling transformation η 7→ η◦ξ, where ξ is an arbitrary
volume preserving diffeomorphism, as h in (5) remains unchanged under this transformation.
Before deriving concrete first order balance models in section 4, we state the Euler–Lagrange

equations associated with LBM for general F and G. These are defined as the stationary points
of the action

SBM(u, h) =

∫ t2

t1

LBM(u, h) dt (13)

with respect to variations δu and δh subject to the Lin constraints (9) which vanish at the
temporal end points. A somewhat lengthy routine calculation using (9), the details of which
can be found in Oliver (2006), yields

δSBM =

∫ t2

t1

∫

R2

hw ·
[

∇(DF ∗(h) · (hu)) + DF (h)∇ · (hu)− u⊥
∇

⊥ · F

−∇(DG∗(h)h) +∇G
]

dx dt = 0 , (14)

where w is an arbitrary vector field associated with the variation of the flow map via (8), DF

and DG denote the functional derivatives of F and G, respectively, and DF ∗ and DG∗ denote
the corresponding formal L2 adjoint operators, defined by

〈DF (h)φ,w〉 = 〈φ,DF ∗(h) ·w〉 and 〈DG(h)φ, ψ〉 = 〈φ,DG∗(h)ψ〉 (15)

for arbitrary φ, ψ, and w in the respective operator domains, where 〈· , ·〉 denotes the inner
product for L2 functions and vector fields, respectively.
Since w in (14) is arbitrary, the term in brackets must vanish pointwise, so that the Euler–

Lagrange equations read

∇(DF ∗(h) · (hu)) + DF (h)∇ · (hu)− u⊥
∇

⊥ · F = ∇(DG∗(h)h) +∇G . (16)

Formally, the continuity equation (1b), being equivalent to the definition of h in (5), and (16)
form a closed system for the resulting dynamics.
Further, it is straightforward to verify that the potential vorticity

q =
∇

⊥ · F (h)

h
(17)

is advected by the velocity field u, i.e.,

∂tq + u ·∇q = 0 , (18)



August 13, 2012 13:22 Geophysical and Astrophysical Fluid Dynamics Oliver-edit

6 M. Oliver and S. Vasylkevych

and that the energy

HBM =

〈

δLBM

δu
,u

〉

− LBM =

∫

R2

hG(h) dx , (19)

where 〈· , ·〉 is the pairing between the space of Eulerian velocities and its dual, is a constant
of the motion. These two conservation laws can be obtained from Noether’s theorem applied
to the particle relabeling symmetry and the invariance under time translation, respectively.
A more direct proof of (18) is obtained by taking the curl of (16), dividing through by h, and
eliminating extra terms via the continuity equation (1b).

4. First order balance models

Our approach to derive balance models is based on finding a near-identity transformation
that renders the formal asymptotic expansion of the shallow water Lagrangian with respect
to Rossby number affine in the velocity. Affine Lagrangians are degenerate and imply a so-
called Dirac constraint on the dynamics. We remark that the method allows for models of
arbitrary accuracy, but the calculations become rather cumbersome already at O(ε2). For this
reason, we restrict our attention to O(ε1) models.
To distinguish physical and transformed coordinates, we use the following convention. Quan-

tities in “old” physical coordinates shall carry a subscript ε, while unadorned quantities denote
their counterparts in the yet-to-be-determined computational coordinate system. Our ansatz
is that the physical and computational flow maps are related by the transformation

ηε = ξε ◦ η , (20)

where the diffeomorphism ξε is generated by a vector field v, i.e.,

ξε(x, t) = x+ εv(x, t) + O(ε2) . (21)

First, we note that

(w1 + εw2 +O(ε2)) ◦ ξ−1
ε = w1 + εw2 − ε∇w1 v +O(ε2) (22)

for arbitrary ε-independent vector fields w1 and w2, which can be proved by differentiating
the left hand side with respect to ε. Then, we compute, using (4), (20), (21), and (22),

uε = η̇ε ◦ η
−1
ε =

(

ξ̇ε +Dξε u
)

◦ η ◦ η−1
ε

=
(

u+ ε v̇ + ε∇v u+O(ε2)
)

◦ ξ−1
ε

= u+ ε (v̇ + [u,v]) + O(ε2) . (23)

The first order term in (23) can be seen as analogous to the Lin constraint (9a) and can be
similarly derived by equating the mixed derivatives ∂ε(∂tηε) and ∂t(∂εηε).
To obtain an expansion for hε, note that, by the chain rule,

Jηε
= Jη (Jξε

◦ η) . (24)

Hence, by (5),

hε =
1

Jηε

◦ η−1
ε =

1

Jη (Jξε
◦ η)

◦ η−1 ◦ ξ−1
ε =

h

Jξε

◦ ξ−1
ε . (25)

Then, taking the Jacobian of (21), substituting the expansion

h

Jξε

=
h

1 + ε∇ · v +O(ε2)
= h− ε h∇ · v +O(ε2) (26)
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into (25), and using (22), we obtain

hε = h− ε∇ · (hv) + O(ε2) . (27)

We remark that (27) is nothing but the Lin constraint (9b) with variations parametrized by
ε.
We now insert (23) and (27) into the shallow water Lagrangian (7) to obtain

LRSW =

∫

R2

hε
(

R · uε +
1
2 ε |uε|

2
)

− 1
2 h̃

2
ε dx

=

∫

R2

h
[

R · u+ ε
(

R · v̇ +R · [u,v] + 1
2 |u|

2
)]

dx

+

∫

R2

ε∇ · (hv) (h̃−R · u)− 1
2 h̃

2 dx+O(ε2)

=

∫

R2

hR · u− 1
2 h̃

2 dx+ ε

∫

R2

h
(

f u · v⊥ + 1
2 |u|

2 − v ·∇h̃
)

dx

+ ε
d

dt

∫

R2

hR · v dx+O(ε2) , (28)

where, as before, h denotes the layer depth and h̃ = h− b denotes the surface elevation. The
last equality in (28) is due the continuity equation (1b) and the vector identity

R · [u,v] + v ·∇(R · u)− u ·∇(R · v) = (∇⊥ ·R)u · v⊥ = f u · v⊥ . (29)

The perfect time derivative in (28) does not contribute to the variation of the action and can
thus be discarded. We observe that any choice of the form

v =
1

2f
u⊥ + uF1(u, h,x) + F 2(h,x) (30)

will render LRSW affine to first order. Here, we restrict our attention to the special case

v =
1

2f
u⊥ + ν(x)u+ τ(x)∇h̃+ µ(x)∇⊥h̃ , (31)

i.e., the new terms are proportional or perpendicular-proportional to the first at the order of
geostrophic balance. As we are dealing with spatially varying f , we allow for x-dependence of
the constants of proportionality, though. This choice of v has the advantage that it does not
introduce terms with a different homogeneity from those already present in the shallow water
Lagrangian. We further note that when τ = 1

2 f
−2 and ν = −fµ, the transformation vector

field v vanishes up to terms of O(ε), which give O(ε2) contribution to (28) and, therefore,
can be neglected. We may then interpret the resulting balance model as having been written
directly in physical coordinates.
Substituting (31) into (28) with its perfect time derivative term discarded, we find that the

first order approximation to LRSW reads

L =

∫

R2

h

[(

R+ ε (α∇⊥h̃− β∇h̃)

)

· u− ε τ |∇h̃|2 −
h̃2

2h

]

dx (32)

with

α = fτ +
1

2f
and β = fµ+ ν . (33)

The equations of motion are a special case of the abstract Euler–Lagrange equation (16): in
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the notation of section 3,

F (h) = R+ ε (α∇⊥h̃− β∇h̃) and G(h) =
h̃2

2h
+ ε τ |∇h̃|2 , (34)

so that, for an arbitrary scalar function φ,

DF (h)φ = ε (α∇⊥φ− β∇φ) , (35)

DG(h)φ =

(

h̃

h
−

1

2

h̃2

h2

)

φ+ 2 ε τ∇h̃ ·∇φ , (36)

and, for any vector field w and scalar field ψ,

DF ∗(h) ·w = ε∇ · (αw⊥ + βw) , (37)

DG∗(h)ψ =

(

h̃

h
−

1

2

h̃2

h2

)

ψ − 2 ε∇ · (τψ∇h̃) . (38)

Substituting (34–38) into (16), using the vector identity

∇∇ ·w +∇
⊥
∇

⊥ ·w = ∆w , (39)

and rearranging terms, we obtain

Λhu = ∇
⊥
[

h̃− ε
(

2∇ · (τh∇h̃)− τ |∇h̃|2
)]

, (40)

where

Λhu =
[

f̃ + ε
(

∇ · (α∇h)−∇
⊥β ·∇h

)]

u+ ε (∇α+∇
⊥β)∇ · (hu)

+ ε
(

∇(hu ·∇α)−∇
⊥(hu ·∇β)−∆(αhu)

)

, (41a)

f̃ denotes the effective Coriolis parameter

f̃ = f − ε∇ · (α∇b) + ε∇⊥β ·∇b , (41b)

and h̃ denotes the surface elevation

h̃ = h− b . (41c)

A complete set of equations of motion consists of the momentum equation (40) complemented
with the continuity equation (1b). Note that one recovers the expression for the geostrophic
velocity (3) as the zero order balance in (40).
Inserting (34) into (17), we obtain the expression for the potential vorticity,

q =
f + ε∇ · (α∇h̃)− ε∇⊥β ·∇h̃

h
. (42)

Finally, inserting (34) into (19), we obtain the Hamiltonian

H =

∫

R2

1
2 h̃

2 + ε τ h |∇h̃|2 dx . (43)

5. Potential vorticity formulation

Special significance among balance models have those that can be formulated in terms of
potential vorticity advection and inversion. Full PV inversion requires solving the pair of
second order differential equations (42) and (40), where the solution of the first equation
becomes a parameter of the second. We claim that when α, f̃ , and the initial PV data are
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uniformly positive, then the two equations are uniformly elliptic. To see this, let us first rewrite
(42) as

Lq(h− 1) = f̃ − q , (44)

where Lq is a linear operator such that for any scalar function φ

Lqφ = q φ− ε∇ · (α∇φ) + ε∇⊥β ·∇φ . (45)

Note that we assumed that h = 1 outside of a compact subdomain. This can be achieved by
ensuring that f̃ = q initially outside of a compact subdomain. We may then analyze (44) as
a homogeneous Dirichlet problem on a sufficiently large bounded domain.
When α is uniformly positive, i.e.,

α(x) ≥ α0 > 0 (46)

for some constant α0, Lq is uniformly elliptic. (We note that when α = 0, we still obtain
a particularly simply PV formulation, but the resulting system is ill-posed; cf. comments
in section 6.) Further, when q is uniformly positive, then the zero-order coefficient of Lq is
positive and, under the assumption of sufficient regularity of all quantities involved, classical
Schauder theory for second order elliptic equations with nonconstant coefficients implies that
(44) has a unique solution (see, e.g., Gilbarg and Trudinger 1983, Chapter 6.3). To proceed,
we recall the classical Hopf (1927) maximal principle (Pucci and Serrin 2004, Theorems 2.1
and 2.2).
(Hopf Maximum Principle.) Let u be a C2 function satisfying the differential inequality

∑

i,j

aij
∂2u

∂xi∂xj
+
∑

i

bi
∂u

∂xi
+ c u ≥ 0 (≤ 0) (47)

in a domain Ω ⊂ R
n, where the symmetric matrix aij = aij(x) is locally uniformly negative

definite in Ω, the coefficients aij, bi = bi(x), and c = c(x) are locally bounded, and c is a non-
negative function on Ω. If u takes a non-positive minimum (non-negative maximum) value M
in Ω, then u ≡M .
As an immediate consequence, we obtain the pointwise bounds

0 < inf
x∈R2

f̃

q
≤ h ≤ sup

x∈R2

f̃

q
. (48)

Indeed, rewriting (44) as

Lq

(

h− inf
x∈R2

f̃

q

)

= q

(

f̃

q
− inf

x∈R2

f̃

q

)

≥ 0 , (49)

noting that h− f̃/q → 0 as |x| → ∞, and using the Hopf principle, we obtain the lower bound
in (48). The upper bound follows from the corresponding argument for h− supx f̃/q.
Since potential vorticity is advected, q− ≡ infx q(x) and q+ ≡ supx q(x) are constants of the

motion. Hence, the time dependent estimate (48) can be replaced by a weaker global bound

0 <
f̃−
q+

≤ h ≤
f̃+
q−

. (50)

Let us now turn our attention to the momentum equation (40), the second stage of the
PV inversion. First, we introduce the necessary functional spaces. As customary, Lp(R2) for
1 ≤ p ≤ ∞ denotes the Lebesgue space of functions integrable to power p over R2. For k ≥ 0,
the Sobolev space W k,p(R2) is the space of functions whose partial distributional derivatives
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up to order k belong to Lp(R2), endowed with the norm

‖w‖W k,p =

(

∑

|γ|≤k

∫

R2

|Dγw|p dx

)1/p

. (51)

We write Hk(R2) and H−k(R2) to denote the Hilbert space W k,2(R2) and its functional-
analytic dual, respectively. Finally, we write w ∈ W k,p(R2) for vector valued functions pro-
vided each component of w belongs to W k,p(R2).
As we have shown, αh is uniformly positive, hence Λh is uniformly elliptic and its unique

invertibility is equivalent to injectivity by the Fredholm alternative (Gilbarg and Trudinger
1983). The simplest and most natural sufficient condition for injectivity is positivity, i.e.,

〈Λhw,w〉 > 0 (52)

for any vector fieldw ∈ H1(R2), where 〈·, ·〉 denotes the pairing betweenH1(R2) andH−1(R2).
Let us assume, for simplicity, that β is constant across the domain. Then all the terms involv-

ing β in the momentum equation and the definition of potential vorticity vanish. Integrating
by parts, we obtain

∫

R2

w · Λhw dx =

∫

R2

[

f̃ + ε∇ · (α∇h)− 1
2 ε∆(αh)

]

|w|2 dx

+ ε

∫

R2

αh |∇w|2 + (∇α ·w) (∇h ·w) dx . (53)

Formula (42) implies that

f̃ +
ε

2
∇ · (α∇h) =

qh+ f̃

2
. (54)

Substituting (54) into (53), we can write the invertibility condition in the form
∫

R2

1
2

[

f̃ + qh− ε∇ · (h∇α)
]

|w|2 + ε
[

αh |∇w|2 + (∇α ·w) (∇h ·w)
]

dx > 0 . (55)

If α is a constant, the solvability condition (55) holds trivially. In the general case, it can be
replaced by the stronger requirement

3 ε |∇h| |∇α| ≤ qh+ f̃ − ε h∆α , (56)

which arises via the Cauchy–Schwarz inequality applied to all terms in (55) that involve first
order derivatives on α and h.
Once solvability is guaranteed, either by (52), (55), or by the stronger condition (56), we

may ask for the regularity of the solution. Suppose that the coefficients α, β, τ , b, and f̃
are smooth. Then, by standard elliptic regularity theory for second order operators (see, e.g.,
Gilbarg and Trudinger 1983), a potential vorticity defect q̃ ≡ q − f̃ ∈ Hm(R2) in equation
(44) implies that (h−1) ∈ Hm+2(R2). This implies that the right hand expression of (40), the
second stage of the inversion, is of class Hm−1(R2) in the general case, and of class Hm+1(R2)
when τ = 0. (For m > 0, this is obvious since Hm+1(R2) is a topological algebra, i.e., the
norm of products is bounded above by the product of the norms. For m = 0, the proof is more
involved, requiring the use of the Gagliardo–Nirenberg inequality and uniform bound on h
given by (50).) Then, by elliptic regularity once again, u ∈ Hm+1(R2) in the general case and
u ∈ Hm+3(R2) when τ = 0. Following Çalik, Oliver and Vasylkevych (2012), it is possible to
show that the same pattern of regularity holds more generally on the scale of spacesWm,p(R2)
for p ∈ (0,∞) fixed.
The equivalence of the vorticity formulation of the balance model, comprised of equations

(18), (44), and (40), and the u-h formulation of the model, equations (40) and (1b), can be
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made rigorous by noting that differentiation of (42) and the use of (40) yields

∂tq + u ·∇q = −h−1 Lq[∂th+∇ · (hu)] . (57)

When the initial PV data is uniformly positive, it remains so for all times as it evolves by
scalar advection. Then uniform positivity of α implies that Lq is invertible at all times, and
that h is uniformly positive and bounded. Hence, (57) implies the equivalence of continuity
equation (1b) and PV advection.
We finally note that the uniform positivity requirements for the PV data and the effective

Coriolis parameter f̃ are physically natural and consistent with the chosen scaling.

6. Special cases

We now discuss several distinct choices for the parameters ν, τ , and µ in our transformation
(31). Let us recall that, when the Coriolis parameter is constant, the family of generalized LSG
models in Oliver (2006) interpolates between Salmon’s L1 and LSG models, with one special
model in the middle for which the PV inversion is of third order. Moreover, for all models in this
family, the solvability condition (52) is satisfied provided that bottom topography variations
are not too large. Salmon’s L1 model is distinguished by the fact that the transformation from
physical to computational coordinates is the identity transformation up to terms at O(ε2),
which are beyond the formal order of accuracy of the model itself.
For a non-constant Coriolis parameter, such an alignment of features no longer takes place:

one has to choose between the family interpolating between L1 and LSG models (the model
where PV inversion gains three derivatives belongs in here) and an alternative family for which
the equations of motion and the solvability condition take a particularly simple form. This
will be detailed below.
In all of the cases considered, we set µ = ν = 0 so that β = 0. It appears that nonzero

values for these parameters may only be of use when deriving equations on bounded domains.

6.1. Salmon’s L1 model

The L1 model as originally proposed by Salmon (1985) is derived by appropriately substituting
the geostrophic velocity (3) as a constraint into an extended form of the Hamilton principle.
The resulting Lagrangian reads

L1 =

∫

R2

h
(

R+ εuG

)

· u−
1

2
ε h |uG|

2 −
1

2
h̃2 dx . (58)

In the setting of section 3, we obtain this very model by choosing

τ =
1

2f2
so that α =

1

f
. (59)

In this case, substituting the leading order balance relation (40) into the expression for v,
equation (31), shows that the transformation vector field v vanishes to O(ε). Hence, the
transformation from physical to computational coordinates is the identity transformation up
to terms of O(ε2).
The momentum equation retains its general form with α = f−1, β = 0,

Λhu =
[

f̃ + ε (∇ · (α∇h))
]

u+ ε∇α∇ · (hu)

+ ε
(

∇(hu ·∇α)−∆(αhu)
)

, (60)
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potential vorticity

q =
f̃ + 2ε∇ · (f−1

∇h̃)

h
, (61)

and solvability condition (55) or (56).
When q and f are uniformly positive,

sup
x∈R2

|∇h| ≤ ε−2/3C , (62)

where C depends only on the maximum and minimum value of q. Therefore, when the effective
Coriolis parameter and the initial potential vorticity are uniformly positive and ε is small
enough, the solvability condition is satisfied for all times. However, it appears difficult to get
practical bounds on ε. Moreover, solvability at time t = 0 does not necessarily imply solvability
for later times.
The proof of (62) is based on Lp-regularity of second order elliptic operators (e.g. Chen and

Wu 1991, Theorem 5.4), which yields

‖h− 1‖W 2,4 ≤ C1

(

ε−1 ‖f̃ − q‖L4 + ‖h− 1‖L4

)

≤ ε−1C2 . (63)

Inserting this estimate into the Gagliardo–Nirenberg inequality

‖h− 1‖W 1,∞ ≤ C3 ‖h− 1‖
2/3
W 2,4 ‖h− 1‖

1/3
L∞

(64)

and recalling the maximum principle for h, we obtain (62). Similar arguments have been used
by Çalik, Oliver and Vasylkevych (2012).

6.2. Salmon’s LSG model

The large-scale semigeostrophic (LSG) equations are a second model proposed by Salmon
(1985) as a Hamiltonian simplification of the L1 model. In our setting, they are obtained by
choosing τ = −1/(2f2) so that α = 0. The resulting momentum equation reads

u = f−1
∇

⊥
[

h̃− ε
(

2∇ · (τh∇h̃)− τ |∇h̃|2
)]

. (65)

Unfortunately, this model appears ill posed since (65) suggests that the advecting velocity
field is less smooth than the advected PV. On the other hand, in general the advected field
can be at most as smooth as the advecting vector field. So unless there is some undiscovered
very special structure, ill-posedness results. This is confirmed by simple numerical tests in a
space-periodic setting.

6.3. Generalized LSG models

When f is non-constant, there are at least two natural generalizations of the one-parameter
family of models derived by Oliver (2006). First, we can set

τ =
λ

f2
so that α =

λ+ 1
2

f
. (66)

Then λ = 1
2 and λ = −1

2 correspond to the L1 and the LSG models discussed above; when
λ = 0, we obtain a model for which the velocity field is three derivatives smoother than the
potential vorticity. However, the entire family shares the difficulty arising from the solvability
condition with the L1 case.
Second, we can choose

τ =
λ+ 1

2

f
−

1

2f2
so that α = λ+ 1

2 . (67)
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For this family, the momentum equation (40) and the expression for the potential vorticity
(42) take a particularly simple form, namely

(

f̃ − ε (λ+ 1
2) (h∆+ 2∇h ·∇)

)

u = ∇
⊥
[

h̃− ε
(

2∇ · (τh∇h̃)− τ |∇h̃|2
)]

(68)

and

q h = f̃ + ε (λ+ 1
2)∆h . (69)

Since α is constant, the solvability condition reduces to the condition that the effective Coriolis
parameter f̃ = f − ε (λ+ 1

2)∆b is uniformly positive. Then, as we have argued in the previous
section, equations (69) and (68) can be solved simultaneously for h and u, respectively, at
all times provided the initial PV data is uniformly positive and λ + 1

2 > 0. Under these
assumptions, the full vorticity inversion as a nonlinear operator on q gains one derivative
in Sobolev space. Hence, we expect that this second family of models is globally well posed
without the need for additional solvability conditions, with a proof along the lines of Çalik,
Oliver and Vasylkevych (2012).
We further note that the family (67) does not generally include the case τ = 0 when extra

regularity can be gained, nor the case τ = 1
2 f

−2 when the transformation can be considered
to be the identity to O(ε). In other words, we are trading the necessity to explicitly transform
between coordinate systems for a robust solvability condition.

7. Generalized LSG as a constrained system

In the following, we give a brief account on the parallels and differences between Salmon’s ap-
proach and our approach from the point of view of constrained Hamiltonian systems. Salmon
(1985, 1996) viewed the derivation of Hamiltonian balance models as imposing a velocity con-
straint onto the variational principle. This point of view has subsequently been used by other
authors (Holm 1996, Wunderer 2001, McIntyre and Roulstone 2002, Vanneste and Bokhove
2002). In our framework, the resulting degenerate Lagrangian can be reinterpreted as a con-
strained Hamiltonian system. In the following, we will make this link explicit.
First, we use the Legendre transform

p =
δLRSW

δu
= h (R+ εu) , (70)

to write out the phase-space counterpart of the shallow water variational principle correspond-
ing to (7), namely

δ

∫ t2

t1

〈p,u〉 −HRSW(p, h) dt = 0 , (71)

with respect to independent variations δp and δη, fixed at the temporal endpoints, where δη
induces the variations δu and δh via the Lin constraints (9). The Hamiltonian HRSW(p, h) is
obtained by solving (70) for u and inserting the result into the expression for the energy (10).
Imposing a momentum-configuration constraint of the form

pc ≡ h (R+ εuc(h)) = F(h) (72)

into the variational principle (71) leads to an affine Lagrangian

Lc = 〈F(h),u〉 −HRSW(F(h), h) . (73)

Comparing (73) with (58), we observe that the L1 model corresponds to the choice uc = uG.
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We must stress that all of the above takes place in physical coordinates, and should therefore
be read with an ε subscript when comparing with our transformational approach. The gener-
alized LSG equations can be similarly interpreted as imposing the momentum-configuration
constraint

pc = h (R+ εuGLSG) (74)

with

uGLSG = α∇⊥h̃− β∇h̃ (75)

onto the unconstrained Hamiltonian in transformed coordinates,

Huc(u, h) =

∫

R2

h ε
(

|u|2 − |uGLSG|2 + τ |∇h̃|2
)

+ 1
2 h̃

2 dx . (76)

To determine the constraint in physical coordinates implied by this construction, we must
match

∫ t2

t1

〈pc
ε,uε〉 dt =

∫ t2

t1

〈pc,u〉 dt , (77)

fully expanded through to O(ε). A direct but lengthy calculation, based on identities similar
to the ones used in (28), yields

uc
ε = uGLSG − f v⊥ +O(ε) = uG +O(ε) , (78)

as should be expected from any consistently constructed balance model, and HRSW = Huc +
O(ε2).

8. Concluding remarks

We have shown that the transformational approach of Oliver (2006) for deriving Hamiltonian
balance models extends naturally to situations where the Coriolis parameter is spatially vary-
ing. The resulting balance models can, by construction, be described in terms of PV advection
and inversion. However, the choices to be made are more subtle than in the case of a constant
Coriolis parameter. In particular, while we can derive a model for which the PV inversion
satisfies a robust solvability condition and the balance relation is no more complicated than
for the L1 model with constant f , this model is necessarily posed, unlike the L1 model with
constant f , in a coordinate system arising through O(ε) changes of variables. If, on the other
hand, we seek a transformation which is negligible up to terms of O(ε2)—terms beyond the
formal order of accuracy of the model—we lose simplicity of the balance relation and we lose
robust solvability. Similarly, the model where PV inversion gains the maximum possible three
derivatives has a non-robust solvability condition whenever the Coriolis parameter is spatially
varying. Thus, we believe that the family of balance models characterized by (67), which is ro-
bustly solvable, whose balance relation is relatively simple, and which has not been suggested
previously, is the most promising and warrants further study.
Our main restriction is that the derivation and the PV invertibility analysis are confined to

an extra-equatorial region and can not easily be extended across the equator. For instance, if
the Coriolis parameter has zeros, the transformational vector field (31) is necessarily singular.
On the other hand, no further restrictions are placed on Coriolis parameter or on the bottom
topography except those necessary to guarantee PV invertibility. In particular, order one
variations in the scaled Coriolis parameter are allowed, so that the new models are potentially
useful for simulations encompassing large latitude ranges.
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