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Abstract12

We compare a higher-order asymptotic construction for balance in geo-13

physical flows with the method of “optimal balance”, a purely numerical14

approach to separate inertia-gravity waves from vortical modes. Both15

methods augment the linear geostrophic mode with dependent inertia-16

gravity wave mode contributions, the so-called slaved modes, such that the17

resulting approximately balanced states are characterized by very small18

residual wave emission during subsequent time evolution. In our bench-19

mark setting – the single-layer rotating shallow water equations in the20

quasi-geostrophic regime – the performance of both methods is compara-21

ble across a range of Rossby numbers and for different initial conditions.22

Cross-balancing, i.e. balancing the model with one method and diagnosing23

the imbalance with the other, suggests that both methods find approxi-24

mately the same balanced state. Our results also reinforce results from25

previous studies suggesting that spontaneous wave emission from balanced26

flow is very small.27

We further compare two numerical implementations of each of the28

methods: one pseudospectral, and the other a finite difference scheme on29

the standard C-grid. We find that a state that is balanced relative to30

one numerical scheme is poorly balanced for the other, independent of31

the method that was used for balancing. This shows that the notion of32

balance in the discrete case is fundamentally tied to a particular scheme.33

1 Introduction34

Geophysical flows are characterized by rapid rotation of the frame of reference35

and by density stratification in the vertical. In the mid-latitudes, the dominant36
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force balance is between the Coriolis force due to rotation and the pressure37

gradient forces. The leading order concept, geostrophic balance, is exact in38

linearized dynamics; corrections beyond the leading order are more subtle, as39

nonlinear interactions begin to play a role. In practical terms, a well-balanced40

state is one that minimizes fast geostrophic adjustment by gravity wave activity41

in its subsequent time evolution.42

The necessity to provide balanced initial conditions was recognized early43

in the development of numerical weather prediction (see, e.g., Lynch 2006 for44

a historical account). Machenhauer (1977) and Baer and Tribbia (1977) pio-45

neered the idea of nonlinear normal mode initialization, where Machenhauer46

obtained a first consistent nonlinear correction to a linear mode decomposition,47

which corresponds to the quasi-geostrophic balanced state (Leith, 1980). Baer48

and Tribbia, in the same year, proposed a multiple time-scale expansion which49

produces consistent higher order balance relations and gave explicit second or-50

der expressions. Warn et al. (1995) revisit the problem from a more abstract51

perspective, see Section 3.1 below. They reformulate the procedure without the52

need to introduce explicit fast-time and slow-time variables, and raise the issue53

that the resulting series is asymptotic, but not necessarily convergent.54

Geometrically, a balance relation defines a slow manifold. A slow manifold55

is a submanifold of the phase space on which the solution trajectory evolves56

more slowly than anywhere else. For systems with a small asymptotic order57

parameter, “more slowly” is usually defined as “increases at a lower asymptotic58

rate as the order parameter goes to zero”. In the well-studied case of so-called59

normally hyperbolic systems – the van der Pol oscillator being a classical ex-60

ample – slow manifolds are attracting, unique, and exactly invariant. In this61

situation, it is possible to reduce the dynamics exactly to a dynamical system of62

lesser dimension on the slow manifold. Large scale geophysical fluid flow, on the63

other hand, is essentially inviscid. The Kolmogorov scale at which molecular64

viscosity becomes relevant is so far removed from the scales of interest that,65

for the purpose of characterizing balance, we need to work in the conceptual66

framework of Hamiltonian dynamics.67

For Hamiltonian systems, existence of exactly invariant slow manifolds is68

too much to hope for. MacKay (2004), for example, constructs an elementary69

example which shows that an exactly invariant slow manifold cannot survive70

small generic Hamiltonian perturbations. He argues that a useful notion of71

slow manifold should include any submanifold of phase space with the following72

properties:73

(i) The vector field is approximately tangent to the manifold, i.e., the mani-74

fold is nearly invariant,75

(ii) The component of the vector field normal to the manifold grows strongly76

away from the manifold, i.e., the typical dynamic time scale off the man-77

ifold is much faster than the time rate of change on the manifold.78

In this framework, slow manifolds are not unique. One slow manifold may be79

better than another in the sense that the approximate invariance of the manifold80
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under the flow is more accurate. Often, a hierarchy of slow manifolds is given81

by an asymptotic series. In this situation, nonexistence of an exactly invariant82

slow manifold is seen through the divergence of the asymptotic series. Yet,83

applying optimal truncation, exponential smallness of remainders can often be84

proved—see, e.g., Vanneste and Yavneh (2004) for exponential asymptotics of a85

simple model equation, Vanneste (2013) for a review from the geophysical fluid86

dynamics perspective, and MacKay (2004) and references therein for a more87

mathematical perspective.88

For a practical decomposition of the state variables into their balanced and89

unbalanced components, an optimal truncation of the divergent series is not90

directly available. Therefore, high-accuracy diagnostics will either need to use91

a fixed, but possibly higher-order balance, or rely on a purely numerical proxy92

for optimal truncation, known as optimal balance. Regarding the first practical93

method, fixed higher-order asymptotics, Chouksey et al. (2018) have shown94

that, in order to diagnose the true gravity wave signal of waves emitted from95

an unstable jet, the residual of first order balance obtained from the nonlinear96

normal mode initialization procedure of Machenhauer (1977) is still dominated97

by slaved (slow) modes, not by the true wave signal, which only becomes visible98

at third or fourth order (Eden et al., 2019a), if at all. This is of relevance since99

wave emission is proposed as a significant sink of meso-scale eddy energy globally100

in the ocean from laboratory experiments (Williams et al., 2008) and idealized101

numerical simulations (Brüggemann and Eden, 2015; Sugimoto and Plougonven,102

2016), but it is possible that the signals discussed in those experiments are103

related to the so-called slaved modes and not to actual wave emission.104

The second practical method for computing balance was pioneered by Viúdez105

and Dritschel (2004). Their optimal potential vorticity balance (OPV balance)106

was first conceived as a modification of a Lagrangian contour-advecting numer-107

ical code in which the perturbation potential vorticity is slowly “ramped” from108

a trivial state to a fully nonlinear state “in which the amount of inertia-gravity109

waves is minimal”, but the original approach by Viúdez and Dritschel can be for-110

mulated for any model code as shown below. The approach is attractive because111

it produces high quality balance without any explicit asymptotics at non-trivial,112

but moderate computational expense, and is relatively easy to implement for a113

given numerical code.114

Cotter (2013) realized that Viúdez and Dritschel’s procedure can be under-115

stood theoretically in terms of adiabatic invariance in the following sense: A116

trajectory that is initially close to a slow manifold, thus evolving approximately117

along this manifold, will continue to do so when the manifold is deformed slowly118

in time. Cotter provided proof, in the context of a finite-dimensional Hamilto-119

nian system, that the resulting balance is exponentially accurate, just as balance120

itself can only be defined up to exponentially small remainders. His argument121

presumes that the required integration is performed over an unbounded interval122

of time. Gottwald et al. (2017) studied optimal balance for the same finite-123

dimensional model restricted to a finite interval of time, which is necessary for124

any practical implementation. They realized that the required ramp function125

must satisfy consistency conditions at the temporal end points that preclude126
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the use of analytic normal form theory for the mathematical analysis. Yet,127

they were able to prove exponential estimates, albeit with a smaller power of128

the time separation parameter in the exponent. Thus, the state produced by129

“optimal balance” (here not “optimal potential vorticity balance” because the130

principle goes beyond a potential vorticity formulation of the problem) is not131

optimal in the strict sense, but very good in the sense that the remainder is132

small beyond all orders, and arguably the best practically accessible algorithm133

for flow separation.134

In this study, we compare the higher-order balancing method by Warn et al.135

(1995) with the optimal balance method by Masur and Oliver (2020) using136

two different discretizations of the single layer shallow water equations, and for137

two qualitatively different initial states. In the following section, the model138

equations and their spectral representation are specified. Both methods are re-139

derived within the same framework in Section 3. It turns out that they can both140

be understood as a correction to the linear geostrophic mode z0 for the nonlin-141

ear model, using only z0 itself. In Section 4, the numerical codes, our model142

diagnosis strategy, and the initial conditions are detailed. Section 5 presents143

the results of the comparison. The paper concludes with a short discussion.144

2 Model description145

2.1 The single layer model146

As a simple test case, we take a reduced gravity model for a single layer of
constant density with mean height H0. The dimensional equations of motion
for velocity u and perturbation height h are given by

∂tu + u ·∇u + f u⊥ + g∇h = 0 , (1a)

∂th+H0 ∇ · u + ∇ · (hu) = 0 , (1b)

where u⊥ denotes anticlockwise rotation of the vector u = (u, v) by π/2, i.e.147

u⊥ = (−v, u), f is the Coriolis parameter, and g the acceleration due to gravity.148

We non-dimensionalize (1) in terms of the usual Rossby (Ro), Burger (Bu), and149

Froude (Fr) numbers150

Ro =
U

f0L
, Bu =

Ro2

Fr2
, and Fr =

U

c
(2)

where f0 denotes the constant background rate of rotation and c2 = gH0 is the
phase speed of gravity waves in the high wavenumber limit. U and L denote the
horizontal velocity scale and length scale respectively. Assuming that Coriolis
and pressure gradient forces approximately balance and choosing the fast time
scale associated with the propagation of gravity waves, we have

∂tu + f u⊥ + ∇h = −Rou ·∇u , (3a)

∂th+ Bu∇ · u = −Ro∇ · (hu) , (3b)
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where all symbols refer to non-dimensional quantities. We now assume a con-151

stant rate of rotation, taking the scaled Coriolis parameter f = 1 and choose152

the quasi-geostrophic distinguished limit by setting Bu = 1.153

2.2 Normal mode representation154

We consider the model on a doubly periodic square domain of length 2π. Using155

the Fourier representation156

u(x, t) =
∑
k∈Z2

uk(t) eik·x (4)

where the complex coefficients satisfy u−k = u∗k so that u(x, t) is real, with a157

corresponding representation for h, writing zk = (uk, vk, hk), and denoting the158

vector of all Fourier coefficients by z = (zk)k∈Z2 , we write (3) in the form159

dz

dt
= iAz + RoN(z, z) . (5)

The system matrix A is given by160

Ak =

 0 −i −k
i 0 −`

−Bu k −Bu ` 0

 , A = (Ak)k∈Z2 , k = (k, `) (6)

and the nonlinear interactions N(z, z) = (Nk)k∈Z2 are given by the symmetric161

bilinear form162

Nk(z, z′) = − i

2

∑
`+m=k

(
um m · u′` + u′m m · u`

hm k · u′` + h′m k · u`

)
(7)

where z′ is a second coefficient vector with components u′k and h′k. A denotes163

the infinite block-diagonal matrix made of components Ak with corresponding164

ordering to fit to z = (zk)k∈Z2 . The expression for Nk has been symmetrized,165

which is not necessary at this point, but makes it easy to separate the interac-166

tions between different modes as in (12) below.167

The matrix Ak has three eigenvalues ω0
k = 0 and ω±k = ±

√
1 + Bu |k|2.168

Two of them, ω±, correspond to inertia-gravity waves, henceforth referred to169

as gravity waves for short. The other one, ω0, corresponds to a vortical mode,170

sometimes also referred to as Rossby mode or Rossby wave (here, it is a zero-171

frequency “wave” since the f is constant.) In the more general case when f is172

slowly varying in space, the Rossby wave frequency is finite but remains much173

smaller than |ω±| (see, e.g., Appendix B of Eden et al. 2019b for an expression174

using first-order perturbation theory).175

The corresponding left and right eigenvectors, satisfying (pσk)HAk = (pσk)H ωσk176

and Akq
σ
k = ωσk qσk for σ = 0,−,+ are (see, e.g., Eden et al., 2019b)177

qσk =

σ |ω|k + ik⊥

1− σ2 ω2

1

 , pσk = nσk

σ |ω|k + ik⊥

1− σ2 ω2

Bu−1

 (8)
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with normalization178

nσk =
Bu

1 + σ2

|σ2 ω2 − 1|
1 + Bu |k|2

(9)

so that orthonormality holds, i.e., (pσk)H qσ
′

k = δσ,σ′ . The superscript H denotes179

the Hermitian conjugate. We write P0 to denote the orthogonal projector onto180

the vortical modes, and P+ and P− to denote the orthogonal projector onto181

each of the gravity wave modes, given for every fixed wavenumber k by182

Pσk = qσk (pσk)H for σ = 0,−,+ , (10)

set zσ = Pσz, Nσ = PσN , and introduce the short-hand notation Pgw =183

P+ + P− and zgw = z+ + z−. In the basis of right eigenvectors, the linear part184

of the components of (5) is diagonal, so that185

dzσk
dt
− iωσk zσk = RoNσ

k(z, z) , (11)

where the case σ = 0 corresponds to the slow (vortical) modes and σ = ± to
the fast (gravity wave) modes. We note that

Nσ(z, z) = Nσ(z0, z0) + 2Nσ(z0, zgw) + Nσ(zgw, zgw) , (12)

so that we can sort the nonlinear interactions into vortical-vortical, vortical-186

gravity, and gravity-gravity mode interactions. Due to this coupling, an accurate187

description of the slow manifold will involve not only the linear geostrophic188

modes z0, but also some non-zero contributions in the linear gravity wave modes189

zgw = z+ + z−.190

3 Nonlinear high-order balance191

3.1 Higher order balance procedure192

We assume a state in which the gravity waves are initially small, namely z± =193

O(Ro). Accordingly, we expand the gravity wave amplitudes as194

z± = Roz±1 + Ro2 z±2 + Ro3 z±3 + . . . (13)

It can be shown that, under this assumption, the gravity wave amplitudes are195

growing only weakly in time, so that this ansatz remains consistent for an ex-196

tended period of (slow) time.197

The time derivative in (5) includes fast gravity waves with frequency ω±198

and the slow growth and decay of the amplitudes of both slow and fast modes199

due to the nonlinear interactions. Therefore, we introduce a slow time variable200

s = Ro t so that d/dt = ∂t + Ro ∂s.201

Assume now that z0 is a function of slow time only, whereas z± is a function202

of slow and fast times. Thus, (11) for the vortical mode σ = 0 reads203

Ro ∂sz
0 = RoN0(z, z) . (14)
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Using (12) and inserting the expansion (13), we see that the leading order of204

(14) is given by205

∂sz
0 = N0(z0, z0) . (15)

This first order balanced model is identical to the familiar (first order) quasi-206

geostrophic approximation, as observed by Leith (1980). Only the vortical207

modes z0 are involved, and this is why (15) – which is a spectral representation208

of the quasi-geostrophic potential vorticity equation – is closed.209

To obtain a model which is second or higher order accurate, diagnostic rela-210

tions for the ageostrophic balanced modes or slaved modes z±n need to be derived.211

These modes are part of the balanced motion since they evolve only slowly (Kafi-212

abad and Bartello, 2018; McIntyre and Norton, 2000; Warn et al., 1995). The213

lowest order of these, z±1 , corresponds to the first order (ageostrophic) variables214

in the quasi-geostrophic approximation (Leith, 1980), which are not needed to215

predict the evolution of the geostrophic variables and generally unknown in the216

quasi-geostrophic model. However, they are required for all higher order balance217

models.218

To first order in Ro, equation (5) for the gravity wave modes reads219

∂tz
±
1 − iω± z±1 = N±(z0, z0) , (16)

where ω± denotes the diagonal operator acting as multiplication by ω+
k or ω−k ,220

respectively, on each of the eigenspaces.221

A non-zero time derivative in (16) reflects the existence of fast waves with222

frequency ω±. Thus, to enforce a balanced state, it is necessary to have223

z±1 = iN±(z0, z0)/ω± . (17)

Inserting this relation back into (5), we obtain a second order balance model of224

the form225

∂sz
0 = N0(z0, z0) + 2 RoN0(z0, zgw

1 ) . (18)

Setting ∂tz
±
n = 0 to suppress generation of gravity waves in general, we write

(11) as

∞∑
n=1

(Ron+1 ∂s − iω±Ron) z±n = RoN±(z0, z0)

+ 2

∞∑
n=1

Ron+1 N±(z0, zgw
n ) +

∞∑
n=2

Ron+1
∑
i+j=n

N±(zgw
i , zgw

j ) (19)

with zgw
n = z+

n + z−n . In particular, the second, third, and fourth orders are
given by

∂sz
±
1 − iω± z±2 = 2N±(z0, zgw

1 ) (20a)

∂sz
±
2 − iω± z±3 = 2N±(z0, zgw

2 ) + N±(zgw
1 , zgw

1 ) (20b)

∂sz
±
3 − iω± z±4 = 2N±(z0, zgw

3 ) + 2N±(zgw
1 , zgw

2 ) . (20c)
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Hence, we can calculate z±2 from (20a), z±3 from (20b), and so on. The slow226

time derivative ∂sz
±
1 in (20a) is calculated analytically by taking the derivative227

of (17) and inserting (15) as outlined in Kafiabad and Bartello (2018) and Eden228

et al. (2019a, Section 2). ∂sz
±
2 and higher are calculated by integrating the229

model with (the inverse Fourier transform of) z0+Rozgw
1 as initial condition for230

a few time steps and taking a finite difference. Since only slow time derivatives231

∂s show up, the slaved modes (or ageostrophic balanced modes) zgw
n = z+

n +z−n232

are only slowly evolving in time, just as the vortical mode. The combination233

of vortical mode amplitude z0 and zgw
n defines the balanced mode in spectral234

space, and inverse Fourier transform yields the balanced flow in physical space.235

In the following, we will denote the slaved modes by236

Bn(z0) =
n∑
i=1

Roi zgw
i =

n∑
i=1

Roi (z+
i + z−i ) . (21)

3.2 Optimal balance in primitive variables237

Optimal balance in primitive variables, which are u and h for the single layer238

model, was introduced by Masur and Oliver (2020). The method works by in-239

tegrating the model over an interval [0, T ] of artificial time τ while gradually240

switching on the nonlinear interactions. Initially, at τ = 0, the nonlinear in-241

teractions are switched off and an exact linear mode decomposition allows the242

complete removal of gravity waves. When the nonlinear interactions are fully243

switched on, at τ = T , the system is in a state which is nearly optimally bal-244

anced with regard to an evolution of the shallow water model in physical time.245

The method is based on the principle that, so long as the change between linear246

and fully nonlinear time evolution is slow, i.e., comparable to the physical mo-247

tion on the slow time scale, a state on a slow manifold will continue to evolve248

close to it as the system and hence the manifold undergoes a slow deformation.249

In particular, since the fast energy is identically zero at τ = 0, it will remain250

zero to a good approximation at τ = T .251

Usually, we would want to compute the balanced state which corresponds252

to a known physical field, the “base point variable”, such as z0 in the setup253

above. In that case, we obtain a boundary value problem in time, where the254

“linear end” boundary condition at τ = 0 encodes that no gravity waves are255

present, and the “nonlinear end” boundary condition at τ = T encodes that the256

prescribed value of the base point variable is met.257

Optimal balance is implemented by multiplying all nonlinear terms with a258

smooth monotonic “ramp function” ρ(τ/T ), where ρ : [0, 1]→ [0, 1] with ρ(0) =259

0 and ρ(1) = 1. Further, a sufficient number of derivatives of ρ need to vanish260

at the temporal end points; Gottwald et al. (2017) give a rigorous analysis of261

why this is so. In this study, we use as ramp function262

ρ(θ) =
f(θ)

f(θ) + f(1− θ)
, f(θ) = exp(−1/θ) , (22)

which was shown to yield asymptotically the best performance in Masur and
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Oliver (2020). For the shallow water equations in the form (3), this corresponds
to the following set of equations:

∂τu + f u⊥ + ∇h = −Ro ρ(τ/T )u ·∇u , (23a)

∂τh+ Bu∇ · u = −Ro ρ(τ/T )∇ · (hu) . (23b)

At the linear end, in the notation set up in Section 2.2, the boundary condition263

Pgwz(0) = 0 , (23c)

encodes that no linear gravity waves are present. At the nonlinear end, we use264

the condition265

P0z(T ) = z0
∗ (23d)

where z0
∗ denotes the prescribed linear vortical mode component of the flow.266

This is equivalent to taking the linear potential vorticity of the nonlinear flow267

as the “base point” coordinate. Other base point coordinates, such as nonlinear268

potential vorticity or height, have been explored in Masur and Oliver (2020).269

The output balanced state is then given by270

zgw
bal = Pgwz(T )) ≡ Bopt(z

0
∗) . (24)

As described in Masur and Oliver (2020), we solve the boundary value problem271

approximately using a backward-forward nudging process. At the final time τ =272

T , we impose boundary condition (23d), leaving the complementary components273

Pgwz(T ) unchanged. We then integrate backward up until τ = 0. At this274

initial time, we impose boundary condition (23c), leaving the complementary275

components P0z(0) unchanged. To close the cycle, we integrate forward again276

up to τ = T . This cycle is iterated until, at τ = T , the difference between277

consecutive updates falls below a certain tolerance threshold. It can be shown278

that, under a suitable smallness assumption for the vortical number, the iterates279

converge to a function that solves (23) up to possibly a small remainder which is280

comparable to the (exponentially small) balancing residual of optimal balance281

itself (Masur, 2022; Masur et al., 2023).282

4 Experimental setup283

4.1 Numerical schemes284

To solve the single layer model (3), we discretize the spatially periodic domain285

of length L = 2π with 255 grid points in each direction, and use the following286

two numerical schemes. The first is a pseudo spectral scheme with rotationally287

symmetric truncation of 2/3 of the largest wavenumber to compute the Fourier288

transforms of the convolutions of nonlinear terms in physical space, and is also289

used by and further detailed in Masur and Oliver (2020). The spatial mesh290

is an A-grid. The other scheme uses finite differences on a standard C-grid291

and is identical, except for the time stepping scheme, to the one used by Eden292
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et al. (2019b), where the discretization of the nonlinear terms in the momentum293

equation follows the energy-conserving scheme by Sadourny (1975). The time-294

stepping scheme for both cases is the third-order Adam–Bashforth method. In295

the spectral model, we use a time step selection based on the code by Poulin296

(2016), and in the finite difference model we use a fixed time step ∆t = 0.002,297

unless noted otherwise. In both cases, there is no other damping in the model298

by frictional or mixing terms.299

Note that for the balancing procedure and the diagnostics of the imbalance,300

we use the eigenvectors pσk and qσk representative for the discrete equations of301

the C-grid as given in Eden et al. (2019b) for the finite difference model, and302

the analytical version of pσk and qσk given by (8) for the spectral model on the303

A-grid. We note that the use of eigenvectors that are compatible with the304

numerical scheme is crucial for the quality of balance.305

4.2 Diagnosed imbalance306

As we have no direct access to a well-balanced reference state, we evaluate307

the balancing schemes via the following notion of diagnosed imbalance. Any308

balance scheme can be seen a map from a “base point”, here the linear vortical309

mode contribution z0, to the remaining phase space coordinates, here the linear310

gravity mode contribution zgw, which we express as311

zgw = B(z0) . (25)

This map may be B = Bn, the higher order balance to order n described312

in Section 3.1, or B = Bopt, the result of the optimal balance procedure as313

described in Section 3.2. We perform the following steps:314

(i) Given a prescribed base point z0
∗, initialize the full nonlinear model at315

(physical) time t = 0 in a balanced state by setting z(0) = z0
∗ +B(z0

∗).316

(ii) Evolve this state by numerically solving the shallow water equations (5)317

starting from t = 0 up to some time t = t′. Set z′ ≡ z(t′)318

(iii) “Rebalance” the evolved flow, setting z′′ = P0z′ +B(P0z′).319

(iv) Compute the diagnosed imbalance as the relative difference between the320

evolved state and the rebalanced state, i.e.,321

I(u) =
‖u′ − u′′‖

1
2

(
‖u′‖+ ‖u′′‖

) , (26)

and similarly for h, where ‖ · ‖ is the Euclidean norm (or root mean square) on322

the computational grid. We use separate norms for both u and h since it is323

not obvious to define a single norm representative of the diagnosed imbalance324

that reflects the correct scaling behavior as Ro → 0. In particular, the energy325

norm is not appropriate as our results, see Section 5, show that u and h behave326

differently.327
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The diagnosed imbalance is based on the idea that the phase angles of the328

fast degrees of freedom are essentially random when viewed on the slow time329

scale. Therefore, it is highly unlikely that fast degrees of freedom, if present,330

will be preserved in the rebalancing step (iii) so that any fast component of331

the motion will, with high probability, contribute to the diagnosed imbalance.332

Numerical tests, e.g. as reported in von Storch et al. (2019) have shown that even333

in low-dimensional systems, the diagnosed imbalance provides a robust measure334

for the fast energy. Here, since the number of fast degrees of freedom is large, if335

the fast degrees of freedom where truly random and independently distributed, a336

central limit argument would prove that the variance of the diagnosed imbalance337

goes to zero as the number of degrees of freedom increases. This argument is338

not rigorous, of course, as there is no proof of statistical independence in some339

limiting regime.340

However, it is possible that the diagnosed imbalance underestimates the level341

of fast energy because there might be recurrence points at which the actual fast342

dynamics has a close approach to the slow manifold given by the balance relation343

(25). But the diagnosed imbalance may also pick up the “real” fast wave signal344

due to spontaneous emission of gravity waves during the forward time evolution345

from t = 0 to t = t′. However, it appears that wave emission of balanced346

flow is in general very weak – only in case of instabilities of the flow significant347

wave generation can be detected (Chouksey et al., 2022). Consistent with this348

expectation, experiments with varying forward integration time t′ support the349

conclusion that spontaneous emission does not contribute significantly to the350

results shown below.351

Thus, even though not perfect, the diagnosed imbalance I is the most acces-352

sible and unbiased diagnostic tool to quantify the quality of balance obtained353

from a balance relation of the form (25).354

4.3 Initialization355

At time t = 0, we choose the base point coordinate for our balance comparison356

from two different flow configurations. The first configuration is taken from357

Masur and Oliver (2020) and constructed from a random height anomaly field358

h where the amplitude of the Fourier coefficients hk are adjusted so that the359

spectral energy density S(k) is given by360

hk ∼ r
√
S(k)/k with S(k) =

k7

(k2 + a k20)2b
(27)

where k = |k| and r is a random complex number with zero mean and unit361

variance. With b = (7 + d)/4 and a = (4/7) b − 1, the spectral slope becomes362

S(k) ∼ k−d as k →∞, with the maximum of S(k) at k = k0. We choose d = 6363

and k0 = 6. The base point is then obtained by projecting z = (0, 0, hk) onto364

the geostrophic mode, i.e., setting z0
∗ = P0

kz, then rescaling the result such that365

max|h| = 0.2, which finally yields zrand.366

Fig. 1 shows the resulting optimally balanced initial state zrand+Bopt(zrand)367

for the spectral model with Ro = 0.1 (upper row), and the evolved state at368
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Figure 1: Random field initialization zrand +Bopt(zrand) in the spectral model
for Ro = 0.1. We show h, u, and v at t = 0 in panels (a), (b), and (c),
respectively, as well as the evolved state at t′ = 0.5/Ro (d–f). For the optimal
balance method, the ramp time is T = 2 and the convergence threshold is 10−4.

t′ = 0.5/Ro (lower row) from which the diagnosed imbalance is then computed369

as laid out in Section 4.2. The evolved state is moderately different from the370

state at t = 0. The corresponding fields for the finite difference model and371

the different balancing methods are visually very similar, but the diagnosed372

imbalance differs as discussed below. Further, the fields for zrand, which is373

balanced only to zero order, are visually very close to zrand + Bopt(zrand), but374

do contain a substantial contribution of fast motion.375

The second configuration is a developing instability from two counter-flowing376

jets in the double periodic domain, also used by Eden et al. (2019b), initially of377

the form378

u(y) ∼ e−(y−L/4)
2/(L/50)2 − e−(y−3L/4)

2/(L/50)2 (28)

where, as before, L = 2π denotes the extent of the domain. We use the Fourier379

transform of (28), uk, plus a small sinusoidal perturbation in the corresponding380

hk from h ∼ sin(10πx/L) to form the state vector z = (uk, 0, hk). The corre-381

sponding sinusoidal perturbation in v is chosen to be about 10−5 times smaller382

than the jet-like flow in u. As before, we obtain the base point by projecting383

z on the geostrophic mode, i.e., z0
∗ = P0

kz (again, with the projector chosen to384

be compatible with the numerical scheme in use). The amplitude of z0
∗ is then385

scaled to yield a maximum jet speed of u = 1.4, which finally yields zjet.386

Fig. 2 (upper row) shows the resulting jet-like balanced initial condition387

zjet + B4(zjet) in the finite difference model for Ro = 0.1. Both models are388

integrated from t = 0 to t = t′ = 4/Ro where the imbalance I is diagnosed.389

Here, we choose a larger t′ compared to the random field configuration to allow390

the flow to fully develop its instability where it may emit waves. The fully391
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Figure 2: As Fig. 1, but for the jet flow initialization zjet +B4(zjet) in the finite
difference model for Ro = 0.1. We show the fields at t = 0 (upper row) and the
evolved state at t′ = 4/Ro (lower row).

developed instability can be seen in Fig. 2 (lower row) for the finite difference392

model, the fields for the spectral model and using different balancing methods393

are again visually very similar.394

5 Results395

In this section, we discuss the performance of the two balancing methods –396

higher order (B1, . . . , B4) and optimal balance (Bopt) – in the two different397

models – the spectral (SPEC) and finite difference (DIFF) discretizations –398

using the two different balanced initial conditions – random (zrand) and jet-like399

(zjet). In general, the diagnosed imbalance or residual wave signal is very small400

in both models, for both initial conditions. We therefore detect no significant401

wave emission in any of the experiments discussed here in agreement with the402

results of Chouksey et al. (2022). However, we shall describe and discuss small403

differences in performance which are particularly visible in the jet-like test case.404

5.1 Random initial conditions405

Fig. 3 shows the diagnosed imbalance in DIFF for zrand using Bn for different406

orders n. The residual wave signal scales as expected for B0 to B2, i.e. as407

Ro for B0, as Ro2 for B1, and as Ro3 for B2. For B3 and B4, the expected408

scaling is only seen for small Rossby numbers. In fact, for Ro getting close409

to 1, the residuals start growing when the order is increased. It is difficult to410

judge if this behavior is due to actual gravity wave emission, imperfection of our411

implementation of the method, an already diverging power series, or numerical412
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Figure 3: Diagnosed imbalance I(u) (a) and I(h) (b) in DIFF using the field
zrand balanced with B4 (black), B3 (green), B2 (magenta), B1 (red), and B0

(orange), as a function of Rossby number Ro. The thin black lines denote
different scaling laws, i.e. Ro2 (dotted), Ro3 (dashed), and Ro4 (dashed-dotted).

truncation errors. We expect that for Ro approaching 1, the optimal truncation413

is of rather low order so that the quality of balance decreases when including414

higher orders terms, as seen in Fig. 3. However, we noticed that small details in415

the numerical coding affect the residual drastically (not shown), as already noted416

by Eden et al. (2019a), pointing towards a large role of numerical truncation417

errors.418

Fig. 4 compares the performance of B4 and Bopt in SPEC and DIFF. Bopt419

scales in general similar to B4 in all cases, but the overall level of the residuals420

can be different, although still very small in all cases. The residual wave signal421

is here slightly larger in SPEC than DIFF. However, using also T = 2 for Bopt422

in DIFF, the residuals are getting very similar to Bopt in SPEC (not shown).423

The impact of ramp time T on the diagnosed imbalanced is documented in424

Masur and Oliver (2020) and not repeated here. For larger T , the residual gets425

smaller, but for even larger T , the residual increases again. The optimal T for426

this configuration is between T = 2 and T = 4 for DIFF, but for SPEC the427

optimal T is between T = 0.5 and T = 2. This points towards the importance428

of the numerics for the performance of the optimal balance method. Masur429

and Oliver (2020) also discussed the impact of the threshold to terminate the430

iteration in Bopt; they show that the impact is minor and the same is true here.431

The impact of the choice of the ramp function ρ(τ/T ) is also documented in432

Masur and Oliver (2020); here we use the exponential ramp function given in433

(22), which is the optimal choice in Masur and Oliver (2020).434

The diagnosed imbalance for DIFF usingBopt with T = 4 gets rather noisy at435

small Ro and fluctuates by orders of magnitude for small changes in Ro. When436
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Figure 4: Diagnosed imbalance I(u) (a) and I(h) (b) using the field zrand

balanced with B4 in DIFF (black), Bopt in SPEC with T = 2 (blue), Bopt in
DIFF with T = 4 (green), and Bopt in DIFF with T = 4 but 10 times smaller
time step (red). The dotted lines denote different scaling laws, i.e. Ro2, Ro3,
and Ro4.The thin black lines denote different scaling laws, i.e. Ro2 (dotted),
Ro3 (dashed), and Ro4 (dashed-dotted). Dots denote individual experiments.

decreasing the time step by a factor 10, this behavior disappears, the dependency437

of the diagnosed imbalance on Ro becomes smooth, and the residuals get again438

smaller than with larger time step. An accurate time stepping scheme appears439

therefore important for the performance of optimal balance, while this is not440

the case for B4 (not shown). Reducing the time step further by an overall factor441

of 20 reduces the residual only at very small Ro (not shown), so that for the442

parameter range shown, the results for Bopt are not affected by the accuracy of443

the time stepping scheme and other errors appear to dominate.444
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Figure 5: Residual wave signal z′ − z′′ after rebalancing at t = 0.5/Ro for
Ro = 0.1 and zrand in DIFF and B4 (a), in SPEC and Bopt with T = 2 (b),
and in DIFF and Bopt with T = 4 and 10 times smaller time step (c). We show
h/Ro4 in color and u, v as arrows, with magnitude of O(10−6).
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Fig. 5 shows the residual wave signal z′−z′′ after rebalancing at t = 0.5/Ro445

for a fixed Rossby number Ro = 0.1 using zrand, both models and balancing446

methods. For all cases, the residual shows in all variables a large-scale pattern,447

clearly deviating from geostrophic balance. We see no systematic difference for448

the different balancing methods in their spatial patterns, except for the different449

magnitude of the residual. However, the case using DIFF and Bopt with T = 4450

and smaller time step shows also noise on smaller scales which is not present451

for the other cases which have larger diagnosed imbalance. Using a time step452

20 times smaller, the noise remains the same, and also the diagnosed imbalance453

as mentioned before.454

5.2 Jet-like initial conditions455
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Figure 6: Diagnosed imbalance I(u) (a) and I(h) (b) for zjet in DIFF balanced
with B4 (black), in SPEC using Bopt with T = 4 (blue), in DIFF using Bopt with
T = 4 (green), and in DIFF using Bopt with T = 4 but 20 times smaller time
step (red). The thin black lines denote different scaling laws, i.e. Ro2 (dotted),
Ro3 (dashed), and Ro4 (dashed-dotted). Dots denote individual experiments.

Fig. 6 shows the diagnosed imbalance of both methods in both models using456

the jet-like initial conditions instead of the random case. B4 scales roughly as457

Ro4, similar to the case using zrand, pointing again to numerical truncation458

errors for the highest orders. Bopt scales shallower, but shows smaller residuals459

for Ro > 0.1 than B4. Bopt in DIFF depends again on the quality of the time460

stepping method, i.e. the fluctuations of the diagnosed imbalance for only small461

changes in Ro seen at small Ro < 0.1 for the normal time step disappear using462

a 20 times smaller time step. Bopt in SPEC has smaller residuals than Bopt in463

DIFF for Ro < 0.1 in I(h), but larger residuals than Bopt in DIFF for Ro < 0.1464

in I(u), while they are similar for Ro > 0.1. This shows that at the level of the465

very small residuals, the different model codes can better reduce the residuals466

16



in different variables, and points again to the large role of numerical details and467

different errors for the quality of the balancing methods.468
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Figure 7: Residual wave signal z′−z′′ after rebalancing at t = 4/Ro for Ro = 0.1
in DIFF for zjet using B4 (a), in SPEC using Bopt with T = 4 (b), and in DIFF
using Bopt with T = 4 and 20 times smaller time step (c). We show h/Ro4 in
color and u, v as arrows, with magnitude of O(10−7).

Fig. 7 shows the residual wave signal for Ro = 0.1 for the different balancing469

methods and numerical models using zjet. While the residuals in DIFF are on470

the same scale as the jet, the very small residual in h using Bopt in SPEC begins471

to show smaller scales similar to what has been reported before as gravity wave472

emission during frontogenesis (e.g. Plougonven and Snyder, 2007). However,473

note the small magnitude of the signal, which is much different to the wave474

signal reported in the previous section for the random field case.475

5.3 Cross-balancing476

In this section we discuss experiments where the imbalance I(u) and I(h) of the477

balanced state from the one method is diagnosed with the other method, which478

we refer to as cross-balancing. Note that using any balanced state from SPEC479

in DIFF or vice versa introduces errors already at zero order in Ro, because480

of the incompatible eigenvectors for the different numerical grids (A-grid vs.481

C-grid). Fig. 8 (green line) shows such a case, where the analytical eigenvectors482

qσk , pσk appropriate for an A-grid instead of the corresponding ones for the C-483

grid are used for balancing with B4. The error is large and does not change484

much for smaller Ro. The spectral model behaves correspondingly. However,485

cross-balancing in the same numerical model with the same grid will provide486

additional information how the different (approximately) balanced states differ.487

First, we balance DIFF using zrand at t = 0 with B4, then we integrate to488

t = 0.5/Ro and rebalance with Bopt (using T = 4) and diagnose the imbalance489

from the difference to the state at t = 0.5/Ro (shown as yellow line in Fig. 8).490

Second, we initially balance with Bopt (using T = 4) and rebalance later with491

B4 and diagnose the imbalance (shown as red line in Fig. 8). In both cases, the492

resulting diagnosed imbalance is only slightly larger than or almost equal to the493

maximum of I(u) or I(h) of the corresponding experiments using either Bopt or494

B4 only. Thus, we conclude that both methods find a similar (approximately)495
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Figure 8: Diagnosed imbalance I(u) (a) and I(h) (b) for zrand in DIFF using B4

(black), Bopt with T = 4 (blue), and the cross-balancing experiments using first
B4 then Bopt (green) and first Bopt then B4 (red). The thin black lines denote
different scaling laws, i.e. Ro2 (dotted), Ro3 (dashed), and Ro4 (dashed-dotted).
Also shown is a case with B4 in DIFF (orange), where the eigenvectors for the
A-grid are used instead of the correct ones.

balanced state.496

6 Discussion and Conclusions497

In this study, we compare two different methods to approximately balance geo-498

physical flows: the higher order asymptotic implementation inspired by Warn499

et al. (1995) and the optimal balance implementation of Masur and Oliver500

(2020). We use here a single-layer shallow water model as example, but both501

methods can also readily be applied in three-dimensional models. We show502

that both methods can be understood as adding to the linear geostrophic mode503

z0 contributions Bn(z0) and Bopt(z0), respectively, taken from the linear wave504

modes, the so-called slaved modes, to generate a balanced state which evolves505

only slowly in time in the nonlinear model.506

The main finding of this paper is that optimal balance and fourth-order in507

Rossby-number asymptotics can be considered equivalent for practical purposes.508

The residual wave signals of both balancing methods are comparable and show509

similar spatial patterns. There are, however, differences in the magnitude of510

the diagnosed imbalance for different model codes and initial conditions. It511

is difficult to decide if these differences are due to numerical issues such as512

truncation error or errors introduced by the time stepping scheme, or systematic.513

Cross-balancing, i.e. balancing the model with one method and diagnosing the514

imbalance with the other one, suggests that both methods find approximately515
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the same balanced states.516

It has long been known that the quality of preservation of balance might517

depend on the numerical scheme (see, e.g., Mohebalhojeh and Dritschel, 2000).518

Here, we are able to show that adapting the notion of balance when changing519

between the finite difference and the spectral scheme yields comparably very520

good preservation of balance. It is only when mixing notions of balance across521

schemes that quality of preservation of balance drops. For more practical ap-522

plications, such as defining balance for observational data, this implies that523

for a single-time snapshot of observational data the leading order balance is as524

good (or bad) as higher-order balance. To increase the accuracy for the split-525

ting of observational data into balance and imbalanced motion, the only way is526

to use temporal-spatial data with a data assimilation scheme which includes a527

higher-order characterization of balance that matches the numerical model.528

A practical difference between the balancing methods presented here is the529

computing resource demand. While the higher order balance method only needs530

to run the model for a few time steps at maximum, followed by a few (fast)531

Fourier transforms, the optimal balance method needs to integrate the model532

over a sufficiently long ramping time, which needs significantly more computing533

resources. On the other hand, the optimal balance model appears easier to534

implement for a given numerical code.535

Our results are presented in terms of the “diagnosed imbalance” which picks536

up contributions that could be either due to imperfections of the balancing537

method or due to actual wave emission of the balanced flow. We find that538

the diagnosed imbalance, thus both contributing signals, decay rapidly with de-539

creasing Rossby number. This implies, in particular that spontaneous emission540

of gravity waves is negligible in flows within typical geophysical parameters,541

in agreement with much earlier work such as Dritschel and Viúdez (2007) or542

Chouksey et al. (2022) who found significant wave emission during balanced543

shear flow instabilities in a three-dimensional flow only if symmetric or convec-544

tive instabilities occur and the Rossby number is close to unity. This conclusion545

is of practical relevance since several studies have previously reported signifi-546

cant spontaneous wave emission by balanced flow (e.g. Borchert et al., 2014;547

Plougonven and Snyder, 2007), which is also proposed as a significant sink of548

meso-scale eddy energy in the ocean based on global estimates from labora-549

tory experiments (Williams et al., 2008) and idealized numerical simulations550

(Brüggemann and Eden, 2015; Sugimoto and Plougonven, 2016). It is possible551

that the signals in those experiments are dominated by slaved modes rather552

than actual wave emission, which calls to re-evaluate the experiments with the553

high-order methods available now. It is, however, outside of the scope of the554

present study to answer this issue.555

There are two more obvious questions that also lie outside of the scope556

of this paper. First, none of our results is directly applicable to the original557

OPV formulation of Viúdez and Dritschel (2004) and it would be interesting558

to benchmark their scheme in comparison with others. However, this raises a559

new dimension of issues because, for a given resolution of the Eulerian grid,560

the effective resolution of contour-advective semi-Lagrangian (CASL) scheme561
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used in OPV balance is much higher, and so is the computational cost. Thus,562

we choose to focus on balancing schemes that appear best suited for future563

application to operational implementations of full atmosphere and ocean models.564

Second, our current model setting is highly idealized. Other studies have565

explored more complex settings for wave-vortex decomposition, such as McIn-566

tyre and Norton (2000) using potential vorticity inversion, Mohebalhojeh and567

Dritschel (2000) and Mirzaei et al. (2012) using the CASL and diabatic-CASL568

schemes respectively, and Chouksey et al. (2018), Eden et al. (2019a) and569

Chouksey et al. (2022) extending first order (Machenhauer, 1977) to higher or-570

der balance of Warn et al. (1995) for a range of flow regimes. We conjecture that571

both methods analyzed here are good candidates for computing high-accuracy572

balance in these and other circumstances. However, one common obstacle is573

that a spectral transform is necessary to project on the linear geostrophic mode,574

which is difficult to implement in nontrivial cases. We are currently working to575

resolve this issue, with the goal to apply the optimal balance method to realistic576

ocean models which will offer a variety of interesting practical applications of577

the method.578
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Dritschel, D. G. and Viúdez, Á. (2007). The persistence of balance in geophysical605

flows. Journal of Fluid Mechanics, 570:365–383.606

Eden, C., Chouksey, M., and Olbers, D. (2019a). Gravity wave emission by607

shear instability. J. Phys. Oceanogr., 49(9):2393–2406.608

Eden, C., Chouksey, M., and Olbers, D. (2019b). Mixed rossby–gravity wave–609

wave interactions. Journal of Physical Oceanography, 49(1):291–308.610

Gottwald, G. A., Mohamad, H., and Oliver, M. (2017). Optimal balance via611

adiabatic invariance of approximate slow manifolds. Multiscale Model.612

Simul., 15(4):1404–1422.613

Kafiabad, H. A. and Bartello, P. (2018). Spontaneous imbalance in the non-614

hydrostatic Boussinesq equations. J. Fluid Mech., 847:614–643.615

Leith, C. E. (1980). Nonlinear normal mode initialization and quasi-geostrophic616

theory. J. Atmos. Sci., 37(5):958–968.617

Lynch, P. (2006). The Emergence of Numerical Weather Prediction: Richard-618

son’s Dream. Cambridge University Press.619

Machenhauer, B. (1977). On the dynamics of gravity oscillations in a shallow620

water model with applications to normal mode initialization. Beitr. Phys.621

Atmos., 50:253–271.622

MacKay, R. S. (2004). Slow manifolds. In Dauxois, T., Litvak-Hinenzon, A.,623

MacKay, R. S., and Spanoudaki, A., editors, Energy Localisation and624

Transfer, pages 149–192. World Scientific, Singapore.625

Masur, G. T. (2022). A numerical investigation of optimal balance for rotating626

shallow water flow. Phd thesis, Jacobs University.627

Masur, G. T., Mohamad, H., and Oliver, M. (2023). Quasi-convergence of an628

implementation of optimal balance by backward-forward nudging. Multi-629

scale Model. Simul., page to appear.630

Masur, G. T. and Oliver, M. (2020). Optimal balance for rotating shallow water631

in primitive variables. Geophys. Astrophys. Fluid Dyn., 114(4-5):429–452.632

McIntyre, M. E. and Norton, W. A. (2000). Potential vorticity inversion on a633

hemisphere. J. Atmos. Sci., 57(9):1214–1235.634

Mirzaei, M., Mohebalhojeh, A. R., and Ahmadi-Givi, F. (2012). On imbalance635

generated by vortical flows in a two-layer spherical Boussinesq primitive636

equation model. J. Atmos. Sci., 69(9):2819–2834.637

Mohebalhojeh, A. R. and Dritschel, D. G. (2000). On the representation of638

gravity waves in numerical models of the shallow-water equations. Q. J.639

Roy. Meteorol. Soc., 126(563):669–688.640

Plougonven, R. and Snyder, C. (2007). Inertia–gravity waves spontaneously641

generated by jets and fronts. Part I: Different baroclinic life cycles. J.642

Atmos. Sci., 64(7):2502–2520.643

21



Poulin, F. J. (2016). PyRsw: Python rotating shallow water model. GitHub644

repository, GitHub, commit c504456, https://github.com/PyRsw/PyRsw.645

Sadourny, R. (1975). The dynamics of finite-difference models of the shallow-646

water equations. J. Atmos. Sci., 32(4):680–689.647

Sugimoto, N. and Plougonven, R. (2016). Generation and backreaction of648

spontaneously emitted inertia-gravity waves. Geophys. Res. Letters,649

43(7):3519–3525.650

Vanneste, J. (2013). Balance and spontaneous wave generation in geophysical651

flows. Ann. Rev. Fluid Mech., 45(1):147–172.652

Vanneste, J. and Yavneh, I. (2004). Exponentially small inertia–gravity waves653

and the breakdown of quasigeostrophic balance. J. Atmos. Sci., 61(2):211–654

223.655
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