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Abstract

We present a new energy backscatter parametrization for primitive equa-
tion ocean models at eddy-permitting resolution, specifically for unstructured
grids. Traditional eddy parametrizations in terms of viscosity closures lead
to excessive dissipation of kinetic energy when used with eddy-permitting
meshes. Implemented into the FESOM2 ocean model, the backscatter parametriza-
tion leads to a more realistic total dissipation of kinetic energy. It maintains
a reservoir of dissipated energy and reinjects this subgrid energy at larger
scales at a controlled rate. The separation between dissipation and backscat-
ter scales is achieved by using different-order differential operators and/or
spatial smoothing. This ensures numerical model stability.

We perform sensitivity studies with different choices of parameter set-
tings and viscosity schemes in a configuration with a baroclinically unstable
flow in a zonally reentrant channel with a horizontally uniform mesh. The
best backscatter setup substantially improves eddy-permitting simulations
at 1/4◦ and 1/6◦ resolution, bringing them close to a 1/12◦ eddy-resolving
reference. Improvements are largest for levels of kinetic energy and variabil-
ity in temperature and vertical velocity. A selected optimal default scheme
is then tested in a mixed resolution setup – a channel with narrow transi-
tions between an eddy-permitting and an eddy-resolving subdomain. The

∗Corresponding author
Email addresses: s.juricke@jacobs-university.de (Stephan Juricke),

sergey.danilov@awi.de (Sergey Danilov), a.kutsenko@jacobs-university.de (Anton
Kutsenko), m.oliver@jacobs-university.de (Marcel Oliver)

Preprint submitted to Ocean Modelling March 19, 2019



backscatter scheme is able to adapt dynamically to the different resolutions
and moves the diagnostics closer to the high resolution reference throughout
the domain.

Our study is a first step toward using backscatter in global variable-mesh
ocean models and suggests potential for substantial improvements of ocean
mean state and variability at reduced computational cost.

Keywords: Kinetic energy backscatter, subgrid eddy parametrization,
inverse energy cascade, viscosity closure, eddy-permitting resolution

1. Introduction

Mesoscale eddies contribute to the transport of heat and tracers in many
regions of the ocean (e.g. Jayne and Marotzke, 2002; Griffies et al., 2015).
They affect the shape and temporal behavior of the ocean currents (e.g.
Kirtman et al., 2012) and modify the atmosphere-ocean exchange (e.g. Bryan
et al., 2010; Frenger et al., 2016; Roberts et al., 2016). They further play a
crucial role in the response to changes in atmospheric forcing in a warming
climate, and can, for example, counteract the effect of increasing Westerlies
on the Southern Ocean Circumpolar Current (Munday et al., 2013).

The resolution of any ocean or atmosphere model defines, to a large
degree, which processes can be explicitly resolved and which need to be
parametrized, i.e., represented through theoretical or heuristic equations that
describe the mean impact of unresolved subgrid processes on the resolved
mean flow. The traditional approach to simulating subgrid mesoscale turbu-
lence is via the Gent–McWilliams parametrization (Gent and McWilliams,
1990) in the tracer equations and an eddy-viscosity closure in the momen-
tum equation. When mesoscale eddies are resolved, only the latter is used.
It simulates the effects of baroclinic instability due to subgrid structures and
maintains model stability by dissipating enstrophy at the grid scale (see, e.g.,
Danilov et al., 2019). However, if resolution is insufficient, horizontal viscos-
ity closures – while dissipating enstrophy at small scales – are also excessively
dissipating energy. They are thereby degrading the effective resolution of the
ocean model even further by damping eddy structures and reducing mean
and eddy kinetic energy.

At 1◦ resolution – still in use today in many climate models (Taylor et al.,
2012) – the Gent–McWilliams parametrization is widely used to simulate the
mean impact of unresolved eddies on potential energy release. Present-day
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global ocean models used for climate research generally move toward an ocean
grid resolution of 1/4◦ (Haarsma et al., 2016) which is eddy-permitting over
broad ocean domains. Such models start to resolve mesoscale turbulence.
The size of mesoscale eddies, however, depends on the first internal Rossby
radius which varies from a few kilometers on shelves in the high latitudes
to around 100 km at around 10◦ N/10◦ S (Hallberg, 2013; Sein et al., 2017).
According to Hallberg (2013), the local Rossby radius should be resolved with
at least two mesh points to represent eddies, and even finer resolution may
be needed to reduce over-dissipation on scales where physical instabilities
occur (Soufflet et al., 2016). Thus, only the largest eddies are fully resolved
on 1/4◦ meshes and most of the mesoscale eddy activity remains part of the
unresolved subgrid.

An eddy-permitting model is able to represent some of the inverse energy
cascade whereby energy is transferred from smaller to larger scales, a process
predicted in theory (e.g. as summarized in Danilov et al., 2019) and observed
in the ocean (e.g. Scott and Wang, 2005; Wang et al., 2015). Although
the arguments for the underlying physical mechanisms driving an inverse
cascade may vary depending on the analyzed flow regime, its existence has
been observed in many studies (see, e.g., Wang et al., 2015, and references
therein). The challenge of eddy-permitting meshes comes from combining
resolved eddies in low latitudes with unresolved, i.e., parametrized eddies in
high latitudes through wide areas where eddies could be simulated but suffer
from excessive damping by the viscosity closure.

In the real ocean, mesoscale eddy kinetic energy is removed from the
system by many processes, such as bottom friction and dissipation in the
mixed layer, with the horizontal viscosity contribution being small. To im-
prove eddy-permitting ocean models, the ideal concept is to keep the level
and distribution of kinetic energy dissipation close to what is observed in the
real ocean, where horizontal viscous energy dissipation is much smaller than
in the models. Conceptually, this means that energy dissipated due to hor-
izontal viscosity needs to be reintroduced into the system without violating
model stability, one of the main constraints for any numerical simulation.
As the inverse energy cascade is at least partly resolved at eddy-permitting
resolution, this gives an opportunity to inject energy back into the system
at scales larger than those of dissipation, and make use of this inverse en-
ergy cascade in the sense of energy backscatter, i.e. energy transferred from
smaller back to larger scales, energizing the entire spectrum of wavenumbers.

The concept of energy backscatter parametrizations has a long history
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(see, e.g., Frederiksen and Davies, 1997; Kitsios et al., 2013; Jansen and Held,
2014; Jansen et al., 2015; Danilov et al., 2019, and references therein), pre-
dominantly in the context of idealized setups. Energy backscatter parametriza-
tions have also been used in the atmospheric sciences and in global atmo-
spheric models (Shutts, 2005; Berner et al., 2009; Leutbecher et al., 2017).
In this context, backscatter parametrizations are, to a large degree, used as
a tool for estimating the uncertainty due to the lack of information about
the unresolved scales. In particular, stochastic backscatter can be used to
inflate the dynamical growth of model ensemble spread (Shutts, 2005).

Recently, in the context of increased ocean model resolution, the idea of
backscatter as an energetically consistent closure has gathered new momen-
tum and generated promising results in idealized ocean model simulations
(Jansen et al., 2015; Klöwer et al., 2018). The approaches in these stud-
ies are making efficient use of the special situation of model resolution we
currently encounter in ocean models: Energy backscatter can be employed
to reinject energy and improve both the mean and variability of connected
model quantities.

The next step is to investigate the impact of ocean kinetic energy backscat-
ter in full primitive equation global ocean models. A wide variety of ocean
models are currently used in coupled climate models, applying different
parametrizations, discretizations, resolutions, and dynamical cores. The fi-
nite element sea ice-ocean model FESOM (Danilov et al., 2004; Wang et al.,
2014) was the first multiresolution global ocean model coupled to an atmo-
spheric component in a climate model setup (Sidorenko et al., 2015; Rackow
et al., 2018). It allows to locally vary grid resolutions by designing telescoped
(i.e. locally increased resolution) triangular meshes. The advantage is that
mesh refinement can be made where it is necessary, for example, to locally
resolve the mesoscale eddy field (Sein et al., 2016, 2017). FESOM has moved
to a finite volume dynamical core in FESOM2. In variable-grid simulations,
the effect of a coarse domain region upstream or nearby may still be visible
in the high resolution areas (see Danilov and Wang, 2015; Sein et al., 2016).
Backscatter parametrizations may be used to partly compensate for these
effects, making FESOM and FESOM2 an ideal testbed to implement, study,
and improve backscatter parametrizations, not only on classical equidistant
grids, but also on more challenging grids with varying resolution. On such
grids, backscatter is expected to be most active in the low resolution parts,
helping to energize the flow there and consequently also in the downstream
higher resolution regions.
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In this paper, we provide a systematic evaluation of different backscatter
implementations in the context of FESOM2 in a 3D zonally reentrant channel
setup. Our backscatter model, as in Jansen et al. (2015), applies an unre-
solved kinetic energy (UKE) equation to the scalar UKE field which keeps
track of the energy dissipated by the viscous operator, making it available for
reinjection into the momentum equation. Different from Jansen et al. (2015),
we use a three-dimensional rather than vertically averaged two dimensional
UKE field. We test the backscatter setup on horizontally uniform and vari-
able meshes, and for different viscosity parametrizations with temporally and
spatially varying viscosity coefficients. We compare the eddy-permitting sim-
ulations with and without backscatter with a high resolution, eddy-resolving
reference to investigate the impact of the backscatter on mean and eddy ki-
netic energy, but also on flow variability in quantities such as temperature
and vertical velocity.

The paper is structured as follows. In Section 2, we introduce the model
and the experimental setup. We also introduce the viscosity parametrization
options and present the new backscatter parametrizations including relevant
parameters. Section 3 discusses simulations with backscatter on two uniform
grids of 1/4◦ and 1/6◦ resolution and compares them to an eddy-resolving ref-
erence of 1/12◦ resolution. We further explore the sensitivity of the backscat-
ter parametrization to different parameter settings and identify an optimal
“default” scheme. In Section 4, we test the default scheme in a mixed-
resolution setup. We compare simulations with and without backscatter,
focusing on the transitions between high and low resolution mesh domains.
Section 5 discusses the results and their potential with regard to global ocean
simulations.

2. Model and backscatter parametrization

2.1. Model setup

The model used for this study is the current version of FESOM2 (Danilov
et al., 2017). It solves the primitive equations using triangular surface meshes
and a cell-vertex (quasi-B-grid) discretization, with tracers, sea surface height,
and vertical velocities on mesh vertices, and horizontal velocities on triangle
centroids. Details to the model setup, temporal discretization and the advec-
tion schemes can be found in Danilov et al. (2017). Here we use a simplified
setup that does not include the sea ice model and uses a linear equation of
state with temperature being the only advected scalar field.
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The classical ocean momentum equation is given by

∂tu+ u ·∇u+ w ∂zu+ f u
⊥ +

1

ρ0
∇P = V (u) + ∂z(Av ∂zu) (1)

with u = (u, v) the horizontal velocity field, w the vertical velocity, time t,
vertical coordinate z, ∇ = (∂x, ∂y) the horizontal gradient operator, Coriolis
parameter f , u⊥ = (−v, u), reference water density ρ0, pressure P , gravita-
tional acceleration g, vertical viscosity coefficient Av which is specified by the
vertical mixing parametrization in FESOM2, and horizontal subgrid viscosity
parametrization V to be discussed further. We use the usual quadratic fric-
tional stress term as the bottom boundary condition where Av ∂zu = Cd |u|u
with Cd = 0.001. No wind stress is applied at the surface. With regards to
viscous stresses at vertical walls, free-slip boundary conditions were applied.
Impermeability at the boundaries is always implied. Furthermore, for the
biharmonic operator there is one more boundary condition: we set to zero
contributions from boundary edges in Eq. B.6, which is equivalent to the as-
sumption that the velocity derivative in the direction of the boundary ∂u/∂n
is zero.

The flow is maintained by temperature relaxation near the boundaries
via the temperature equation

∂tT +∇ · (uT ) + ∂z(wT ) = ∂z(Kv ∂zT ) + γ (Tclim − T ) . (2)

The density ρ is given by the linear equation of state

ρ = ρ0 (1− α (T − T0)) . (3)

Here, T denotes the temperature, T0 its reference value, Kv the vertical dif-
fusivity (provided by the vertical mixing parametrization), Tclim the given
(climatological) temperature distribution, γ the relaxation parameter, differ-
ent from zero only in narrow zones (see Section 2.3), and α is the thermal
expansion coefficient in the linear equation of state. Horizontal diffusivity is
provided by the transport scheme which combines 3rd order upwind (with
weight 0.25) and 4th order centered (with weight 0.75) fluxes. Heat fluxes
through all surfaces are assumed to be zero. The setup of the numerical ex-
periments will be explained further in Section 2.3, together with the selection
of γ and Tclim.
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2.2. Backscatter scheme

The focus of this study is the subgrid closure for the momentum equation
of the ocean model. Eq. 1 is augmented to include a negative viscosity term
that acts as kinetic energy backscatter. The new momentum equation reads:

∂tu+ u ·∇u+ w ∂zu+ f u
⊥ +

1

ρ0
∇P = V (u) +B(u) + ∂z(Av ∂zu) (4)

with B(u) as the backscatter term. It should be emphasized here that the
backscatter term B(u) is not designed to represent the physical inverse en-
ergy transfer from unresolved to resolved scales in the sense of an inverse cas-
cade near the model grid’s truncation scale. Instead, it is a numerically stable
method to compensate for the unphysical forward energy transfer caused by
the viscous closure V (u). This is achieved by reinjecting excessively dissi-
pated kinetic energy on larger scales and making use of the already resolved
inverse energy cascade to allow the resolved flow dynamics to simulate well-
developed mesoscale turbulence (see also the discussion in Jansen et al. 2015).
In the following, we will discuss the design of both the viscosity term V (u)
and the backscatter term B(u).

2.2.1. Viscosity parametrization V (u)

On triangular meshes, triangles with a common edge differ in the orienta-
tion relative to one another. For example, on regular triangular grids one can
imagine that a central triangle is pointing northwards with one of its tips,
while all three neighbouring triangles are pointing southwards with one of
their tips. The neighbouring triangles are effectively rotated by 180◦ relative
to the central triangle. This may lead to a grid mode (grid imprinting) for
discrete quantities located on triangles (see also Danilov et al., 2017). Since
the horizontal velocities of FESOM2 are defined as volume averages over tri-
angular prisms, they may suffer from such a mode. In order to keep it under
control, a special form of viscous dissipation operator is needed, capable of
dissipating a grid pattern in velocity. FESOM2 is therefore run with approx-
imate harmonic and biharmonic operators, detailed in Appendix B, which
act strongly dissipatively on the grid mode and are thus capable of effectively
suppressing it.

For simulations of turbulent flows we seek such a viscous operator that
would provide minimum dissipation consistent with numerical stability. In
this study we test two different vicosity schemes. In the following we will
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only discuss the Reynolds type viscosity scheme that showed the best results
as discussed in Section 3. The alternative Leith viscosity parametrization is
detailed in Appendix A.

The Reynolds type viscosity uses the discrete biharmonic operator given
by Eq. B.6 with a coefficient for each grid cell c

νb
c = Sc ν

R
c with νR

c = max{uR
0 , |uc|}

√

Sc/30 . (5)

Here, Sc is the area of the top of the prism c, uR
0 = 0.2m/s is a velocity

scale selected experimentally, as well as the factor 1/30, and uc is the cell
horizontal velocity. For large velocities, this form of dissipation is similar to
that of the third-order upwind scheme, but with a reduced coefficient. We
note that νR

c has the dimension of a harmonic viscosity; it keeps the cell
Reynolds number constant throughout the simulation, hence the superscript
R.

2.2.2. Energetic considerations of V (u)

To know how much UKE is available for reinjection into the resolved
flow, we need to know how much energy has been dissipated by the viscous
operator. The energy dissipation rate due to horizontal viscosity at a given
location in space x and time t in the continuum is given by

V = u · V (u) . (6)

This expression is not sign definite and it only leads to consistent energy
dissipation when averaged over the entire domain. The subgrid viscous force
V is the divergence of the subgrid viscous stress tensor σ, i.e. V = ∇ · σ.
In the case of the classical harmonic viscosity, σ = 2ν(ε̇ − tr ε̇) with ε̇ =
1
2
(∇u+(∇u)T ), so that the local rate of energy dissipation V takes the form

V = u · (∇ · σ) = ∇ · (σu)− 2ν |ε̇− tr ε̇|2 = ∇ · (σu) + V , (7)

where V is nonpositive. A similar relation holds for the biharmonic viscosity.
V and V will become equal if averaged over some area such that the flux
contribution ∇ · (σu) becomes small. Both forms of the dissipation rate, i.e.
the full form V or the nonpositive form V , can be used in calculations of UKE
available for backscatter, and their discrete analogs are given in Appendix B.
The advantage of the original form V is that it contains the full viscous energy
contribution. However, it contains grid-scale flux contributions and has to
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be smoothed before it is applied to computations of UKE. Spatial smoothing
is done by applying the filters defined in Appendix C.

Because of the properties of the discretization and the selection of vis-
cous operators, dissipation related to mesoscale turbulence is accompanied
by dissipation of the grid mode of the cell-vertex discretization. This is com-
mon for staggered discretizations on unstructured meshes and may lead to
increased dissipation on the grid scale.

2.2.3. Backscatter parametrization B(u)

Conceptually, the term B(u) in Eq. 4 reinjects the energy that is ex-
cessively dissipated by the viscous parametrization, but on a larger spatial
scale and at a controlled rate over time. In fully-developed quasi-geostrophic
turbulence, viscosity is thought to dissipate enstrophy near the truncation
scale while energy dissipation is small. Hence, by reinjecting energy at larger
scales, we shift the dynamics toward such a well-developed turbulent state.
In this new equilibrium, excessive energy dissipation is substantially reduced.
The system still dissipates a sufficient amount of enstrophy to prevent model
instabilities.

Our backscatter operator takes the form of the approximate harmonic
operator given by Eq. B.2, except that its coefficient has the opposite sign
to the coefficient of a viscosity parametrization and that its magnitude is
related to the amount of available UKE. In our model, the scalar UKE field
e = e(x, z, t), defined on cells c, follows the prognostic equation

∂te = −cdis Ėdis − Ėback −∇ · (νC
∇e) . (8)

The first term on the right, cdis Ėdis, is the resolved kinetic energy dissipa-
tion rate, the second describes the rate at which UKE is returned back to
the resolved flow through backscatter, and the last is some UKE harmonic
diffusion with coefficient νC

c = (Sc/Sr)
1/2 600m2/s at a specific cell c which

follows Jansen et al. (2015) but is scaled due to changes in grid resolution,
with Sr = 5.8·109 m2 the area of a reference triangle. Since we apply smooth-
ing to the first two terms, additional UKE diffusion is small and will not be
discussed in detail.

Note that our UKE field varies in z as well, in contrast to Jansen et al.
(2015) who applied vertical averaging to the UKE contributions. The same
is true for the spatially varying viscosity coefficient used in this study. In
our setup, this choice is physically more realistic as the observed rates of
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dissipation and backscatter are about 1/3 smaller in the bottom layer than
at the surface; see Section 3.3.2 below.

UKE advection is neglected since it is not clear whether UKE should
simply be advected by the mean flow. Jansen et al. (2015) have shown that
even without UKE advection the backscatter parametrization can achieve
good results. Adding an advective term will increase computational costs,
but more importantly will affect model stability. Dissipation of resolved
kinetic energy by the spatial and temporal discretization schemes is also
neglected here and may be considered in future studies. Furthermore, we do
not dissipate UKE through an additional term in Eq. 8, in line with Jansen
et al. (2015). Adding such a dissipative term could be seen as an alternative
approach which we did not follow in this study. Instead, the fact that some
energy dissipates is modeled by the coefficient cdis which takes values between
0 and 1 and determines which fraction of the energy that is removed from
the resolved flow enters the UKE budget. The coefficient cdis varies in time
and space and follows the design by Klöwer et al. (2018), where

cdis(u) =

(

1 +
R(u)

Rdis

)−1

(9)

with R(u) = |Dr(u)|/f the local Rossby number, calculated for each cell by
a discrete estimate of the local horizontal deformation rate

|Dr(u)| =
√

(∂xu− ∂yv)2 + (∂yu+ ∂xv)2 , (10)

where x and y are local zonal and meridional directions, and u = (u, v). Rdis

is a tunable scaling parameter that defines for which flow regime – distin-
guished by the local Rossby number – dissipated energy will enter the UKE.
Large values, i.e. values greater than one, correspond to a more effective re-
cycling of dissipated kinetic energy; see Klöwer et al. (2018) for a detailed
discussion.

The first two terms in Eq. 8 can be calculated in two different ways.
The first is to use the respective tendency contributions from viscosity and
backscatter directly and take the dot product with the local value of u. This
yields the sign non-definite form, corresponding to the V-form of Eq. 7.

However, for reasons of numerical stability, it is desirable to keep these
contributions sign-definite, i.e., to have local UKE injection by the viscos-
ity term, and local UKE removal by the backscatter term. This is achieved
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by applying spatial filtering as described in Appendix C. V is not neces-
sarily sign-definite, only its area mean is non-positive. Likewise, the local
values of harmonic backscatter are not sign-definite; injection of energy is
only achieved in an area-mean sense.

The second alternative is to use a sign definite form, i.e. the V-form,
of the respective terms to ensure positivity of UKE as well as numerical
stability. Sign-definite forms of their respective operators were also used by
Jansen et al. (2015) and Klöwer et al. (2018). The corresponding sign-definite
discrete forms for our scheme are detailed in Appendix B.1 and Appendix B.2.

In both cases, spatial filtering is used for the following reasons:

• The viscous dissipation rate may include contributions from a grid
mode (cf. the discussion at the end of Section 2.2.1), and so does the
backscatter term as it is based on the same differencing scheme. We do
not want grid scales to be emphasized by the backscatter and carried
into the subgrid energy equation. Spatial filtering of the tendencies will
smooth it.

• Spatial filtering can be used for scale separation (see also Berloff, 2018).
Smoothing of the backscatter term and the UKE will ensure that the
backscatter scheme is active at different, larger scales than the corre-
sponding (unfiltered) viscous operator. Some scale separation can also
be achieved by using the less scale selective harmonic operator for the
backscatter and the more scale selective biharmonic operator for the
viscous parametrization (see Jansen et al., 2015).

• For the sign-indefinite form of the energy contributions, spatial filtering
will reduce the relative amplitude of the flux term in Eq. 7. If filtering is
large enough, the contributions from the flux term become small, mak-
ing the remaining energy tendency almost sign definite, hence bringing
V closer to V .

The spatial filter applied here is the one described in Eq. C.3. This filter
has a spatial scale that depends on the grid, as it incorporates only infor-
mation from neighboring grid points. Its advantage is a minimal halo size
for exchange of information across processor boundaries, which is crucial for
massively parallel implementations.

Thus, the first two terms in the UKE model, Eq. 8, for cell c take the
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form

(cdis Ėdis)c = (Fn1)cc′ (cdis V)c′ with Vc = (u · V (u))c = (u · Vb
u)c (11a)

for the UKE source, and

(Ėback)c = (Fn2)cc′ Bc′ with Bc = (u ·B(u))c = uc · (F
n3)cc′ (V

B
u)c′
(11b)

for the UKE sink. F
n denotes n cycles of the smoothing filter Eq. C.3; n1,

n2, and n3 are the experimentally selected numbers of smoothing cycles.
Summation over the repeated index c′ is implied. These expressions are
written out for the Reynolds viscosity scheme where V

b denotes the discrete
biharmonic operator Eq. B.6 with coefficient given by Eq. 5 and V

B denotes
the discrete harmonic backscatter operator Eq. B.2 with the coefficient scaled
by the local UKE amplitude ec

νB
c = −c0

√

Sc

√

max(2ec, 0) < 0 . (12)

The constant c0 determines how quickly the dissipated energy is reinjected
into the resolved flow, i.e. it controls the temporal response of the parametriza-
tion. The maximum function ensures that the backscatter is only active when
there is a local reservoir of UKE. Physically, negative values of ec correspond
to a local depletion of UKE and can potentially occur because both the
backscatter and the viscosity operators act on different scales. For the Leith
viscosity scheme, Vb in Eq. 11a must be replaced by the sum of the harmonic
operator V (Eq. B.2) with coefficient given by Eq. A.1 and the biharmonic
(background) operator V

b (Eq. B.6) with coefficient given by Eq. A.2 (see
Appendix A).

Finally, the actual discrete backscatter contribution to the momentum
equation (Eq. 4) takes the form

Bc(u) = (Fn3)cc′ (V
B
u)c′ . (13)

Note that the smoothing filter applied in the computation of Bc in Eq. 11b
must also be used in the backscatter tendency contribution Bc(u) to remove
the grid mode from the operator.

Alternatively, we may replace Vc and Bc in Eq. 11 by their sign-definite
alternatives, Eq. B.4 and B.7. We retain the smoothing filters to potentially
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increase the scales on which the backscatter acts. The backscatter term in the
momentum equation also retains its smoothing filter to prevent backscatter
into the grid mode. The sign-definite formulation typically requires fewer
smoothing cycles, i.e. smaller values of n1, n2, and n3.

As a consequence of these different choices, we end up with four separate
backscatter implementations, two with sign definite energy tendencies (V)
and two with non-definite ones (V), one of each for the Leith and one for the
Reynolds viscosity schemes (Appendix A and Section 2.2.1, respectively). We
will further discuss the effect of different filter cycle choices, the coefficients
Rdis and c0, and the choice of the backscatter implementation in Section 3.2.6
below.

2.3. Experimental setup

We simulate a zonally reentrant, baroclinically unstable flow in a channel
with walls at 30◦N and 45◦N and spherical geometry. As for global model
simulations, the grid is rotated with the rotated pole over Greenland, lo-
cated at 40◦W/75◦N. The channel has 24 unevenly spaced vertical layers,
with thicknesses ranging from 10m at the surface to 100m for the last few
layers, going down to the constant depth of 1600m. The flow is analyzed
in two distinct sets of experimental setups that differ in their meshes and
zonal extent, described below. For both sets of experiments, when varying
the horizontal resolution, the vertical resolution is kept constant to enable
a better comparison of the effect of increased horizontal resolution vs. the
backscatter parametrization.

Both sets of experiments use the same temperature relaxation to force the
mean flow. This takes place in 1.5◦ strips at the northern and the southern
boundaries. The relaxation parameter γ in Eq. 2 takes the value 1/(3 days)
directly at the boundary and is linearly reduced to zero at 43.5◦ and 31.5◦,
respectively. The reference temperature climatology Tclim to which the tem-
perature near the boundaries is relaxed is the same as the temperature initial
condition, which is linear with vertical gradient of 8× 10−3 K/m and merid-
ional gradient of −0.5× 10−5 K/m. The surface temperature at the southern
boundary is 25◦C. Initial velocities are zero. A small temperature perturba-
tion – the structure of which is not relevant for the discussion of the results –
is added to the initial state to create small instabilities that quickly grow on
a mean eastward flow. All runs reach a statistically steady state of kinetic
energy within the first year.
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The first set of experiments compares three equidistant meshes with res-
olutions of 1/4◦, 1/6◦ and 1/12◦, corresponding to triangle areas of about
270 km2, 120 km2 and 30 km2. The zonal extent of the channel is 20◦. The
lower resolution runs were performed with and without backscatter, the high
resolution run is used as a reference without backscatter. The Rossby ra-
dius is about 25 km, so that the 1/4◦ and 1/6◦ grids are eddy-permitting
while the 1/12◦ grid is eddy-resolving. For the 1/4◦ setup different viscosity
and backscatter schemes were tested in short 5-year integrations. The default
backscatter and viscosity configurations – selected after carrying out the sen-
sitivity studies of the 1/4◦ setup (see Section 3) – are extended to a total
of ten years each to improve statistics, which are well equilibrated over this
period. Timestep lengths for the 1/4◦, 1/6◦, and 1/12◦ grid configurations
are 15min, 10min, and 1min respectively. These choices are relatively con-
servative (i.e. small), especially for the 1/12◦ grid configuration; a moderate
increase of timestep did not significantly affect the results (not shown).

The second set of experiments has a zonal extent of 40◦ to accommo-
date subdomains of different resolution. The horizontal grid is unstructured
and has a high and a low resolution part with two transition regions at 7.5◦

and 32.5◦ longitude (see Fig. 1 of Danilov and Wang (2015), and later in
this paper Fig. 8). The resolution varies from 1/12◦ in the high resolution
domain to around 1/3◦ in the low resolution part, incorporating both eddy-
permitting and eddy-resolving grids. Two simulations are carried out, with
and without the default backscatter parametrization discussed in Section 3
for the equidistant grid. The general setup of the experimental domain cor-
responds to “Setup A” of Danilov and Wang (2015). Simulation length is 10
years with the timestep set to 1min. As a high resolution reference for these
simulations we use the same 1/12◦ equidistant mesh setup with zonal extent
of 20◦ as in the first set of experiments.

Further details on the parameter choices of all experimental setups of this
study – especially for the viscosity and backscatter parametrizations – can
be found in the next Sections 3 and 4, and are summarized in Table 1.

2.4. Diagnostics

Diagnostics are based on daily mean data if not stated otherwise, which
provides sufficient temporal resolution. The first year of each simulation is
excluded as spinup unless stated otherwise. We focus on zonally averaged
surface mean and temporal standard deviation fields, vertical, layer averaged
mean and temporal standard deviation fields, and total integrated fields over
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Label ∆x [◦] ∆t [min] Viscosity ν0 [
m2

s ] B/S S/D Rdis c0 Filter

REF1/12
1
12 1 Reynolds – No – – – –

REF1/6
1
6 10 Reynolds – No – – – –

REF1/4
1
4 15 Reynolds – No – – – –

REFL500
1/4

1
4 15 Leith 500 No – – – –

REFL2000
1/4

1
4 15 Leith 2000 No – – – –

BACK1/6
1
6 15 Reynolds – Yes No 1 0.1 (2,2,4)

BACK1/4
1
4 15 Reynolds – Yes No 1 0.1 (2,2,4)

BACKL2000
1/4

1
4 15 Leith 2000 Yes No 1 0.1 (2,2,4)

BACKA
1/4

1
4 15 Reynolds – Yes No 8 0.1 (2,2,4)

BACKB
1/4

1
4 15 Reynolds – Yes No 100 0.1 (2,2,4)

BACKC
1/4

1
4 15 Reynolds – Yes No 0.1 0.1 (2,2,4)

BACKD
1/4

1
4 15 Reynolds – Yes No 1 0.4 (2,2,4)

BACKE
1/4

1
4 15 Reynolds – Yes No 1 0.01 (2,2,4)

BACKF
1/4

1
4 15 Reynolds – Yes No 1 0.1 (2,2,2)

BACKG
1/4

1
4 15 Reynolds – Yes No 1 0.1 (1,1,4)

BACKH
1/4

1
4 15 Reynolds – Yes Yes 1 0.1 (2,2,2)

BACKI
1/4

1
4 15 Reynolds – Yes Yes 1 0.1 (1,1,2)

BACKJ
1/4

1
4 15 Leith 2000 Yes Yes 1 0.1 (2,2,2)

REFm
1
3 to 1

12 1 Reynolds – No – – – –

BACKm
1
3 to 1

12 1 Reynolds – Yes No 1 0.1 (2,2,4)

Table 1: Table of simulation labels and configurations. Column ∆x refers to resolution,
∆t to the timestep, Viscosity to the viscosity scheme used, ν0 to the coefficient of min-
imum viscosity when the Leith scheme is used (see Appendix A), B/S states whether
backscatter is active or not, S/D states whether sign-definite operators are used for the
UKE tendencies, Rdis and c0 are parameters defined in Eq. 9 and 12, respectively, and
Filter specifies the number of smoothing cycles (n1, n2, n3) in Eq. 11 and Eq. 13. See text
for details.
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Figure 1: Reference simulation REF1/12. Left column: 9-year zonal averages; the vertical
lines in (d) show total means. Color panels: daily mean snapshots, all taken at the same
instance in time.

different vertical levels. Eddy kinetic energy (EKE) is here defined as the
kinetic energy (KE) of the velocity fluctuations after removing the temporal
model mean state.

3. Equidistant grid simulations

3.1. Reference simulations without backscatter

For the reference simulations, we use the discrete form of the Reynolds
viscosity operator (Eq. B.2) with coefficient given by Eq. 5. In our experi-
ments, this choice resulted in the least amount of spurious dissipation and
the least amount of grid scale noise even on high-resolution unstructured
grids. We will discuss the effect of the Leith compared to the Reynolds
parametrization in Section 3.2.2 below.
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The circulation at 1/12◦ resolution is characterized by a mean eastward
flow with a mean KE peak between about 38◦N and a trough at about 31◦N
and right at the northern boundary (Fig. 1d), where the troughs can be
seen as artificially forced by the temperature boundary layer relaxation. The
temperature relaxation forcing is also visible as a steep gradient in zonally
averaged temperature close to the southern boundary (Fig. 1a). Snapshots
of sea surface temperature SST, sea surface height SSH, surface vorticity,
and vertical velocity w at 100m depth reveal that turbulence is strongest
in the middle of the channel (Fig. 1, right two columns). Eddy size varies
from larger to smaller going northward, in accordance with the increase of the
Coriolis parameter. Vertical velocity (Fig. 1f) is the most sensitive field when
it comes to grid scale noise. Some small wave-like structures are visible in w,
but not in the other fields. Increased viscosity would damp these waves, but
also reduce the simulated variability and provide a less competitive reference
for the backscatter.

Comparing resolutions of 1/4◦, 1/6◦, and 1/12◦ with focus on zonal-
temporal mean KE and EKE reveals that there is not only a strong resolution
dependence of the amplitude of EKE, but also of its meridional location and
of the feedback of eddies on the mean KE (Fig. 2, left two columns). While
layer averaged KE and especially EKE amplitudes generally increase with
increasing resolution, the resolution change also impacts the general flow
structure: At 1/12◦, the flow has only one major meridional peak, seen both
in mean EKE and KE. At 1/4◦ and 1/6◦, the flow has two distinct peaks
at slightly different locations (around 32◦ and 40◦N at 1/4◦ resolution and
around 32◦–34◦ and 40◦–42◦N at 1/6◦ resolution). Increasing resolution from
1/4◦ to 1/6◦ spreads out the two peaks, but the additional eddy forcing at
1/6◦ is still not strong enough to break the bimodal flow structure and create
the unimodal flow seen at 1/12◦.

In the vertical, an increase in horizontal resolution from 1/4◦ to 1/6◦

and finally to 1/12◦ leads to an intensification of KE (EKE) by a factor of
around 1.5 (2) between the coarsest and the finest resolution, in all layers
(Fig. 3). Similar differences are seen in the layer-averaged temporal standard
deviations of temperature and w (Fig. 3, right two columns). We note that
KE and EKE increase monotonically from bottom to surface. The standard
deviation of temperature has peaks near bottom and surface, and a minimum
at a depth of about 600–800m. The opposite is true for variations in w, which
are most intense at mid-depth and weakest near the surface and the bottom.

Total surface KE varies substantially between resolutions (Fig. 3, left

17



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
30
32
34
36
38
40
42
44

La
tit

ud
e 

[
]

a) Mean surface kinetic energy

REF1/4
BACK1/4
REF1/12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Kinetic energy [m2/s2]

30
32
34
36
38
40
42
44

La
tit

ud
e 

[
]

d)

REF1/6
BACK1/6
REF1/12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Kinetic energy [m2/s2]

30
32
34
36
38
40
42
44

e)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

30
32
34
36
38
40
42
44

b)
Mean surface

eddy kinetic energy

Figure 2: Surface KE diagnostics comparing low-resolution (blue), low-resolution with
backscatter (green), and high-resolution reference (black). Top row: 1/4◦ vs. 1/12◦ reso-
lution. Bottom row: 1/6◦ vs. 1/12◦ resolution. Shown are 9-year zonal means and surface
layer averages (vertical lines).
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column, Fig. 4a): at 1/12◦ resolution, it is about 1.5 times larger than at
1/4◦ and about 1.2 times larger than at 1/6◦. This change is accompanied
by an increase of the temporal variability in the total KE (vertical lines in
Fig. 4a).

3.2. Impact of backscatter

3.2.1. Sensitivity studies

To test the backscatter scheme, several parameter choices have to be
made which we will briefly discuss. We study the effect of these choices in
structured sensitivity studies. A summary of the simulations carried out for
the sensitivity studies is given in Table 1.

3.2.2. Viscosity schemes

To provide baseline benchmarks, we carried out a set of simulations with-
out backscatter, but with different viscosity schemes and different resolu-
tions. The biharmonic Reynolds viscosity scheme is taken as described in
Section 2.2.1. The harmonic Leith scheme with additional biharmonic back-
ground viscosity (see Appendix A) has a a tunable coefficient of minimum
viscosity ν0; we tested different values.

At 1/4◦ resolution, the Reynolds viscosity scheme shows the least deple-
tion of total KE; the two Leith viscosity settings – with minimum viscosities
of ν0 = 500 and 2000m2 s−1 – perform slightly worse with respect to min-
imizing spurious dissipation while remaining numerically stable (Fig. 4a).
Increased minimum viscosity tends to stabilize the Leith viscosity scheme,
but also reduces total KE slightly (Fig. 4a). Consequently, we select the
Reynolds viscosity as our default viscosity scheme.

3.2.3. Viscosity-backscatter combinations

Related to the choice of the viscosity is the backscatter implementation,
as it uses the viscous energy dissipation to estimate the amount of UKE avail-
able for the backscatter. Even though the Leith scheme without backscatter
tends to be more dissipative than the Reynolds scheme, in combination with
backscatter the Leith scheme over-energizes the flow and produces far too
much surface KE in the 1/4◦ setup when compared to the high resolution
reference REF1/12. Consequently, the Reynolds scheme performs generally
better with backscatter than the Leith scheme (Fig. 4d).

Still, the Leith scheme also equilibrates within the five-year run and does
not spin up infinitely (Fig. 4d and 5c). Looking at the detailed daily averaged
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energy tendency contributions, we see that in the Leith case backscatter
tends to inject more energy than viscosity removes (Fig. 5c). Even though
the excessive injection of energy is small at the surface, it is – relative to
the rate of viscous dissipation – much larger in the subsurface and near the
bottom.

While the backscatter equation (Eq. 8 and 12) is designed to balance en-
ergy removal and injection, e varies in time and space, and the balance is
neither local nor instantaneous. The scheme may potentially inject more (or
alternatively considerably less) energy than is globally removed at a particu-
lar instance of time. Furthermore, the inclusion of backscatter increases the
spatially and temporally varying viscosity coefficient as well, as it energizes
the flow which the viscosity scheme tries to counteract (compare amplitudes
in Fig. 5a with those in Fig. 5b–f). Therefore, a new balance between viscos-
ity and backscatter is created which varies in both components and for both
time and space. This balance can potentially either lean towards too much
dissipation or too much backscatter. For the Leith scheme, the latter is the
case.

The backscatter is only directly controlling the injection of KE into the
flow, but not the conversion of potential to kinetic energy. As the flow is
fed by a temperature relaxation at the boundaries (Eq. 2), an excessively
turbulent flow may modify eddy heat fluxes from an effectively infinite heat
reservoir at the walls, increasing the release of potential energy. In the Leith
backscatter setup, the standard deviations in w and temperature are much
larger than in the 1/12◦ reference (not shown). This might be a result
of the spatially strongly varying Leith viscosity which also imprints onto
the backscatter. As a result, the Reynolds scheme is chosen as the default
backscatter scheme.

3.2.4. Backscatter parameter Rdis – backscatter amplitude

Changing Rdis has only minor effects on the total KE of the simulation
(Fig. 4b). Low values of Rdis correspond to a reduced backscatter amplitude
and show some effect by reducing total KE (Fig. 4b), although sensitivity to
this parameter is considerably smaller than what is reported by Klöwer et al.
(2018). One of the reasons is that our setup does not have a pronounced
turbulent boundary layer as can be found near complex bottom topography,
coast lines, or in the case of western boundary currents. We expect that
this parameter will have more impact once we test the backscatter in global
ocean simulations. Aside from the surface KE, another indicator for the
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effect of this parameter is the balance of backscatter vs. viscosity energy
tendencies (Fig. 5d–f). Decreasing this parameter leads to a balance that
is more dissipative, i.e. favors the viscosity energy tendencies. Increasing
this parameter leads to a balance that injects more energy. The equilibrium
levels of viscous and backscatter energy tendencies change, with lower values
of Rdis injecting less energy and consequently leading to reduced total viscous
dissipation as the flow is slightly less turbulent (Fig. 5e).

3.2.5. Backscatter parameter c0 – temporal smoothing

The temporal UKE smoothing controls the timescale of the energy release
from the UKE reservoir and is governed by c0. It shows an impact on KE only
when the parameter is reduced substantially, i.e. when temporal smoothing
is high (Fig. 4c). However, it has a considerable impact on the UKE equation
(not shown), as it can prevent the occurrence of negative UKE values when
c0 is decreased. We found a good balance between a smooth, mostly positive
UKE and high values of total KE with a parameter choice of 0.1, which is
smaller than reported by Jansen et al. (2015), probably due to the fact that
our implementation needs a stronger spatial and temporal smoothing for the
UKE equation.

3.2.6. Backscatter parameters (n1, n2, n3) – spatial smoothing

Spatial smoothing is applied to each of the following three terms: (i) The
dissipated energy term which forces the UKE equation, (ii) the backscattered
energy term which dissipates energy in the UKE equation, and (iii) the actual
backscatter tendency contribution to the velocity field u. The filter settings
are described by a triple of integers (n1, n2, n3) which specify the number
of iterated filter cycles in (i), (ii), and (iii), respectively. Spatial smoothing
does not affect the total surface KE much (Fig. 4e). It is, however, crucial for
model stability and the prevention of negative UKE. Also, the backscatter
tendency in the momentum equation needs sufficient smoothing to reinject
energy at scales larger than the dominant scales of viscous dissipation. Es-
pecially higher resolution setups are sensitive to the number of smoothing
cycles (not shown).

We found that (n1, n2, n3) = (2, 2, 4) is a good choice with regards to
model stability and smallest amount of total energy dissipation for all tested
resolutions. This suggests a sufficient scale separation of the backscatter and
viscosity operators even for high-wavenumber-resolving simulations where
the backscatter is small.
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3.2.7. Sign definite vs. sign-indefinite formulation

We analyzed the effect of the sign-indefinite (V) compared to the sign-
definite (V) formulation of the energy tendency operators in the UKE equa-
tion (Fig. 4f). The sign-definite formulation remains numerically stable and
is more energetic than the reference simulation without backscatter, REF1/4.
It also does not need as many spatial smoothing cycles or potentially as low
a value for c0 to keep the model numerically stable compared to the sign-
indefinite version. Furthermore, the Leith sign-definite version performs just
as well as the Reynolds sign-definite version, without the excessive injection
of energy seen for the sign-indefinite Leith backscatter scheme. This points
to the flux components of the viscous dissipation rate V (i.e. the first term
on the right of Eq. 7) as the main cause of excessive energy injection for the
sign-indefinite Leith scheme.

However, all sign-definite versions are clearly outperformed by the sign-
indefinite Reynolds scheme in terms of improved surface KE. This observa-
tion indicates that the flux components in Eq. 7 are relevant and necessary
contributions for a good performance of the backscatter scheme in this setup.

3.2.8. Decision on the default scheme

Based on the sensitivity studies, we choose the following default scheme:
Viscosity is implemented by the biharmonic Reynolds scheme, the energy
source and sink terms to the UKE equation are chosen in their sign-indefinite
form with parameter Rdis = 1, the temporal smoothing parameter is taken
to be c0 = 0.1, and the number of filtering cycles is (2, 2, 4) for smoothing
the source term in the UKE model, the sink term in the UKE model, and
the backscatter forcing in the momentum equation, respectively. The two
default backscatter setups for the two lower resolutions are BACK1/4 and
BACK1/6 (see Table 1). Both setups reach similar levels of surface KE as
the reference REF1/12 (Fig. 4d).

3.3. Impact of the default backscatter scheme

3.3.1. Simulated flow

Hereafter, we give a detailed assessment of the flow which is simulated
with the default backscatter setup. Total KE in the lower-resolution runs
with backscatter is restored to a level comparable to the level at much higher,
eddy-resolving resolution. We note that backscatter actually increases the
rate of viscous dissipation. However, this loss is balanced by the backscatter
energy injection (Fig. 5b and 5d) up to a level where the balance between
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Figure 6: Comparison of low-resolution (blue), low-resolution with backscatter (green),
and high-resolution (black) reference runs: 10 year time series of total surface KE at
different depths, for REF1/12, REF1/4, and BACK1/4. Horizontal lines denote the mean
over the last 9 years of the respective simulation.

the two is closer to total KE conservation than the rate of viscous energy
loss in the high resolution 1/12◦ reference (compare to Fig. 5a). The im-
proved energy balance is also visible in the total KE of the default scheme
at 1/4◦ resolution at different model layer depths (Fig. 6a, 6b, and 6c). KE
is increased by about 50% in all layers to a level comparable to REF1/12.

In the surface layer energy spectra, backscatter leads to an increased
energy across the entire spectrum near the northern and southern boundaries
and in the center of the channel, both for the 1/4◦ and 1/6◦ simulations (not
shown).However, the increase in spectral power through backscatter does
not necessarily rectify the structure of the mean flow at lower resolution
to the structure observed in REF1/12. The lower resolution runs without
backscatter, REF1/4 and REF1/6, have a bimodal zonal mean flow, but
REF1/12 is unimodal. Even though the bimodal structure collapses to a
unimodal one in BACK1/4, the location and width of the mean flow peak is
not quite the same as in REF1/12 (Fig. 2a and b). In BACK1/6, the flow
stays bimodal, although the jets are getting closer (Fig. 2d and e). As a
consequence, line spectra at different locations do not always match the high
resolution reference (not shown). Total mean KE and EKE in the different
layers, on the other hand, are similar between the backscatter simulations
and the high resolution reference (Fig. 2 and Fig. 4d). The question to which
degree backscatter schemes are capable of rectifying the spatial structure and
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strength of the mean flow will need to be addressed in follow-up studies.
Aside from KE and EKE, backscatter also considerably improves other

layer mean quantities such as the standard deviation of w and of T (Fig. 3).
While the improvement is not quite strong enough to totally alleviate errors in
these fields in BACK1/4, the results in BACK1/6 show a remarkably good
match with REF1/12. This is especially noteworthy since the backscatter
scheme injects KE only into the horizontal momentum equation (Eq. 4); it
does not directly affect the variability of T or w. Nonetheless, the improved
representation of eddies in the system leads to a corresponding improvement
in the variability of other fields as well. On the other hand, the horizontal
mean flow biases which are still present in the backscatter simulations are also
visible in these other flow variables as they are affected by the position of the
mean current (not shown). However, many flow properties can be represented
on a 1/4◦ mesh with backscatter nearly as well as on a 1/12◦ mesh without
backscatter. The additional computational costs for backscatter are around
50% in this setup with only one tracer equation and including all the high
frequency output. This is a very small amount of additional costs compared
to those resulting from a resolution increase from 1/4◦ to 1/12◦. The 1/12◦ is
at least 30 times more expensive in theory, and is often even more expensive
in practice.

3.3.2. Unresolved kinetic energy details

The UKE of the backscatter scheme nicely scales with resolution as ex-
pected (Fig. 7b). Although the general horizontal structure of the subgrid
energy is quite similar between the resolutions, the difference between the
northern and southern part of the domain is more pronounced in BACK1/4

than in BACK1/6. This might be one of the reasons why in BACK1/4 the
mean flow representation looks better than in BACK1/6. Another notewor-
thy aspect is that UKE drops to about one third its maximum value from
surface to bottom (Fig. 7a), justifying the use of a vertically variable UKE.

As designed, the backscatter parametrization tends to act on larger scales
than the viscosity parametrization (compare Fig. 7h and Fig. 7i). The
smoothing of the two energy tendency contributions to the UKE equation
(Fig. 7e,f) ensures that the UKE field is sufficiently smooth and mostly pos-
itive at each timestep (Fig. 7d) and positive when layer averaged (Fig. 7a).
Both contributions are large at similar locations, following the flow struc-
ture but smoothed in time and space. The energy contribution from the
backscatter term (Eq. 13) to the momentum equation has a very similar
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Figure 7: Unresolved kinetic energy and its tendency contributions for BACK1/4. Top
row: 9-year (a) layer averaged UKE, (b) zonally averaged surface UKE and (c) backscatter
energy tendency. (b) also includes UKE for BACK1/6. Bottom two rows: Daily mean
surface snapshots taken at the same instance in time. Tendencies are the integrated
contributions to (e and f) the UKE equation or (h and i) the momentum equation, and
(c and g) the discrete backscatter energy tendencies, for a time interval of 15min (i.e.
the timestep size of the low resolution setup). Note that the grid mode is visible in the
viscosity tendency (h).
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Figure 9: Daily mean snapshots of (top row) REFm and (bottom row) BACKm for
(left column) surface temperature, (middle column) surface vorticity and (right column)
vertical velocity at 100m depth. All snapshots are taken at the same instance in time.

form as the sink term in the UKE equation (Eq. 11b), with the exception of
being spatially slightly more distinct in structure (compare Fig. 7f to 7g).

The actual energy injection by the backscatter has a very similar uni-
modal structure at the surface compared to the surface total KE and EKE
of REF1/12 (Fig. 7c). Only the peak of the energy injection is slightly more
northward (around 40◦N–41◦N) compared to the reference simulation KE
peak (around 38◦N) and the EKE peak (around 38◦N–40◦N). The zonally
averaged backscatter energy tendency of the momentum equation also looks
much smoother in space than the actual UKE (compare Fig. 7b to 7c).

4. Variable grid simulations

We test the effect of backscatter on a grid with zonally varying resolu-
tion. The zonal extent is increased to 40◦ where about half of the domain is
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Figure 10: 9 year averaged mean state of (top row) REFm and (bottom row) BACKm for
(left column) mean surface KE, (middle column) mean surface EKE, and (right column)
standard deviation of sea surface height.

eddy-permitting while the other half is eddy-resolving, with transition zones
between the two grid resolutions (Fig. 8). These transition zones are rela-
tively sharp in this setup and therefore present a somewhat extreme testcase.
As a high resolution reference for the mixed resolution simulations we keep
the equidistant grid REF1/12 simulation with zonal extent of 20◦ used in the
previous section.

4.1. Reference simulation without backscatter

In the reference simulation without backscatter, REFm, an imprint of the
local resolution is clearly visible in the daily means of all fields (Fig. 9a,b,c).
The high resolution part of the domain is also visible in the temporal means
of, for example, surface EKE (Fig. 10b) and in the standard deviation of sea
surface height (Fig. 10c). Further imprints of the resolution change can also
be found in the vertical structure of mean EKE (Fig. 11a), and standard
deviation of temperature (Fig. 11b) and w (Fig. 11c). Once the flow enters
the high resolution part of the domain, all these fields become more intense
and reach deeper down. Once they leave the high resolution part, they return
back to much smaller values. For a detailed discussion of these observations,
see Danilov and Wang (2015).

The mean flow shows an artifact of the resolution change, visible for
example in the mean KE (Fig. 10a) in the low resolution region just upstream

30



0 10 20 30
1400
1200
1000

800
600
400
200

0

RE
F m

De
pt

h 
[m

]

a) Mean eddy kinetic energy

0 10 20 30
1400
1200
1000

800
600
400
200

0 b)
Temperature, T,

standard deviation

0 10 20 30
1400
1200
1000

800
600
400
200

0

BA
CK

m

De
pt

h 
[m

]

d)

0.000 0.075 0.150 0.225 0.300
m2/s2

0 10 20 301600
1400
1200
1000

800
600
400
200

0 c)
Vertical velocity, w,
standard deviation

0 10 20 30
1400
1200
1000

800
600
400
200

0 e)

0.500 0.625 0.750 0.875 1.000
C

0 10 20 301600
1400
1200
1000

800
600
400
200

0 f)

0.000000 0.000075 0.000150
m/s

Figure 11: 9 year averaged mean state of (top row) REFm and (bottom row) BACKm

for layer averaged (left column) mean KE and standard deviation of (middle column)
temperature and (right column) vertical velocity.

of the high resolution part (around 0◦–5◦ longitude): The flow shows a wave-
like excursion as if confronted with an obstacle. Further, the length of the
high resolution domain in this grid configuration does not seem sufficient
to saturate the vertical structure of, for example, EKE, since there is still
a zonal slope in this field at the downstream end of the high resolution
domain (Fig. 11a). This suggests that equilibrium amplitudes, i.e. those
corresponding to a purely high resolution simulation, of this and other fields
are not reached.

Compared to REF1/12, REFm underestimates the amplitudes of the flow
fields when looking at zonal averages (Fig. 12a,b,c,d) and the vertical struc-
ture of layer averages (Fig. 12e,f,g,h). Furthermore, even though REFm does
reproduce the unimodal structure of the mean flow, the peak in the mean
flow is slightly too far north. This is caused by the northward excursion of
the spurious wave pattern described above, from which the flow cannot fully
recover even in the high resolution domain.

4.2. Impact of default backscatter setup

4.2.1. Simulated flow

The effect of backscatter in the mixed resolution setup, BACKm, is very
similar to the effect in the equidistant mesh configurations. Generally, KE
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Figure 12: 9 year (top row) zonally averaged surface mean states and (bottom row) layer
averaged mean states of the mixed resolution simulations REFm (blue) and BACKm

(green), and the 1/12◦ reference 20◦ periodicity simulation REF1/12 (black), for (left
column) mean KE and (second column from left) EKE, and standard deviation (c) of
sea surface height, (d) of vertical velocity at 100m depth, (g) of temperature, and (h) of
vertical velocity.

32



and EKE are considerably increased, especially in the low resolution part
of the channel (Fig. 10d,e). The pattern of KE, and also of T and SSH
variability is much more zonally uniform forBACKm (Fig. 10d,e,f), reducing
the visible imprint of the resolution change on these fields. This is also true
for the vertical structure of the flow, i.e. meridionally averaged KE and EKE,
and meridionally averaged standard deviation of T and w (Fig. 11d,e,f).
Daily means of w at 100m depth, SST and surface vorticity are also much
more uniform (Fig. 9d,e,f) to the point where the visible imprint of the change
of resolution is substantially reduced.

Backscatter does, however, not reduces the wave-like disturbance up-
stream of the high resolution subdomain (Fig 10a) – if anything, it reen-
ergizes this flow anomaly. As the structure is already present in REFm, the
inclusion of backscatter just strengthens it rather than removing it from the
flow. Backscatter-enhanced imprints of the anomaly are also visible in the
vertical flow structure for layer averaged EKE and for the variability of T
(Fig. 11d,e).

BACKm is slightly more energetic in terms of total KE and slightly more
variable in fields such as T , SSH and w when compared to REF1/12 (see the
zonal surface layer averages and the vertical structure of total layer averages
in Fig. 12). The reason is that BACKm also allows for backscatter in the
part of the domain which is resolved at 1/12◦, whileREF1/12 does not include
any backscatter. In general, backscatter reenergizes the flow not only at the
surface, but at all vertical layers. The typical increase of layer KE is about
30% between REFm and BACKm, and brings the backscatter simulation
close to REF1/12 (Fig. 12e).

4.2.2. Unresolved kinetic energy details

Backscatter is especially active in regions with low resolution, hence
strong dissipation (Fig. 13d). In the high resolution part of the domain,
backscatter is more active in the northern central part of the domain, where
the mean flow is strong and eddy scales are small, therefore even pushing the
limits of an eddy-resolving simulation at 1/12◦ resolution (Fig. 13d). The
same pattern is visible in daily mean snapshots of UKE (Fig. 13c). Inter-
estingly, time-averaged UKE actually exhibits slightly negative values near
the surface in the middle of the channel in the high resolution part of the
domain (dark blue areas in Fig. 13a,b). While backscatter is sometimes ac-
tive to energize the flow in this region (Fig. 13c,d), there are substantial
periods where the backscatter scheme is switched off due to local depletion
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of UKE. The 1/12◦ resolution is already so high that backscatter is inactive
more often than not. Backscatter is also active in the high resolution part of
the domain because (a) the mean flow transports under-resolved eddies from
the low-resolution part into the high resolution part, and (b) the mean flow
distortion is rectified when the flow enters the high-resolution region.

The vertical UKE structure shows a slight increase of UKE when mov-
ing from mid-depth of about 1000m further down towards the bottom. As
discussed above, the flow reaches higher energy levels and flow variability
once it enters the high resolution region, even though it does not saturate
before it returns to the low resolution region. For mean EKE this is espe-
cially pronounced at depth (see Fig. 11a for REFm). This in turn affects
local dissipation. Consequently, UKE is affected in BACKm as well. Such
visible variations in UKE with depth highlight the necessity to maintain a
three-dimensional UKE field to capture the varying dissipation rates between
vertical layers.

5. Discussion and outlook

We developed an energy backscatter parametrization based on previous
studies by Jansen et al. (2015) and Klöwer et al. (2018). The parametriza-
tion is energetically more consistent and less dissipative than classical eddy-
viscosity parametrizations. At the same time, it maintains sufficient dissi-
pation of enstrophy to preserve numerical stability. Our sensitivity studies
showed that energy backscatter is able to balance the viscosity energy ten-
dencies and that it reinjects the right amount of energy back into the flow,
on larger scales, without violating model stability. The nonlinear upscale
energy transfer of the resolved flow then distributes the reinjected energy in
a physically realistic way.

An important aspect both for the theoretical design of backscatter and for
the observed numerical stability of the scheme is the necessity of temporal
and spatial smoothing. Temporal smoothing simulates the delay of UKE
release back into the mean flow; spatial smoothing is necessary to release the
energy on larger scales than where it is dissipated. Certainly, the existence
of a grid mode in our finite volume discretization adds to the amount of
smoothing cycles that are needed to keep the model numerically stable and
the unresolved energy smooth and mostly positive.

In the reentrant channel setup of this study the low resolution simulations
without backscatter were far too dissipative, thus deficient in the level of to-
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tal kinetic energy and in the level of flow variability when compared to an
eddy-resolving 1/12◦ simulation. Without backscatter, the 1/4◦ simulation
had only about 60–70% of the reference kinetic energy, the 1/6◦ simulation
had an energy defect of around 20%. With backscatter, these energy deficits
are entirely rectified; moreover, the variability of, for example, temperature
and of vertical velocity improved to the point where they are nearly indistin-
guishable from the reference. While characteristics of the mean flow are also
improved, the backscatter parametrization cannot entirely rectify a mean
flow bias.

The next, more challenging step following this idealized channel setup will
be the implementation of backscatter in a global ocean configuration. We
expect that some adjustments will be necessary. First, the current test case
has no complex bottom topography. Along complex ocean floor structures,
physical dissipation is a relevant KE sink, so that backscatter would need to
be reduced or switched off entirely to prevent reinjection of the dissipated
energy. Backscatter might also lead to numerical instabilities if it is too
strong. Similar considerations apply to complex boundaries, e.g., along to
the western flanks of the strong western boundary currents. The parameter
Rdis might take care of such backscatter damping in a physically consistent
way as reported by Klöwer et al. (2018). But it might become necessary to
adapt Rdis to the basin geometry or to otherwise redesign the part of the
parametrization that defines how much dissipated energy is actually entering
the UKE regime and is available for backscatter.

Second, changes in resolution on unstructured grids might still become a
problem. Although we showed that the scheme works well for rapidly chang-
ing grid resolution, a more complex structure of the transition zones might
still lead to issues that are not covered by our current study. While UKE
should scale with resolution, issues might still arise for very high resolution
parts of a global mesh configuration, where backscatter is no longer desired
at all.

Future studies will have to address issues regarding model stability brought
about by the coupling with the UKE equation. While the highly spatially
and temporally varying viscosity coefficient employed in this study might be
a better subgrid eddy closure than the one varying only according to the
grid resolution – which has previously been applied in the context of kinetic
energy backscatter – it also is more difficult to combine with the backscat-
ter scheme. This is evidenced by the overenergizing of the mean flow when
combining backscatter with the harmonic Leith and biharmonic background
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viscosity. Adding vertical layers to the UKE field requires extra effort, but
was found necessary for reasons of stability and model performance. Further-
more, there is a strong interplay between the details of the numerical scheme
and the details of the backscatter closure. Different schemes will raise addi-
tional questions that need to be solved more or less individually. Smoothing
in this context is a powerful tool to distinguish between the large scale flow
and eddy and backscatter scales, as also discussed by Berloff (2018).

One aspect that is certainly worth further investigation is the question
with what kind of spatial structure the energy should be backscattered.
While we need to have a scale separation between dissipation and backscat-
ter, it is not clear what the exact structure of the respective operators or
the related smoothing should be. It seems sensible that energy should be
backscattered close to where it is dissipated, unless UKE advection is sig-
nificant, which is currently not clear. Generally, energy should mostly be
injected where the model is dynamically active or should be active compared
to higher resolutions; the latter is not necessarily predictable.

Alternative approaches to ocean backscatter also include stochastic im-
plementations (Jansen and Held, 2014; Mana and Zanna, 2014; Cooper and
Zanna, 2015; Cooper, 2017) where the unresolved eddy effects are simulated
by stochastic patterns. A combination of a stochastic and the here presented
deterministic approach are feasible, where the deterministic part tracks the
backscatter amplitude and approximate location, while the stochastic pat-
terns distribute the energy locally in a random fashion. Furthermore, certain
parameters as part of the backscatter scheme are related to high uncertainties
that could be tackled by stochastic components, following implementations
by, for example, Juricke et al. (2017, 2018). An example in this context would
be the parameter Rdis which – when chosen in a specific regime – does not
seem to affect model stability very much but would affect the total amount
of backscattered energy.

Additionally, it is of interest to study how backscatter affects higher order
eddy statistics such as eddy size and life time. These properties are not
directly included in the backscatter scheme, but are certainly affected by the
backscatter forcing of the flow. Furthermore, the impact of backscatter on
the mean flow deserves much closer attention.

Finally, there are other aspects of the energy cycle that are not addressed
by our backscatter parametrization. One example is numerical energy dis-
sipation through time stepping and horizontal discretization. This loss of
kinetic energy is not captured by the UKE equation. Other examples are the
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generally underestimated growth rates of baroclinic instabilities (Barham
et al., 2018) and the conversion of potential to kinetic energy, which are also
affected by the resolution and the capability of the model to fully resolve
mesoscale and even submesoscale structures. With backscatter, the conver-
sion might be improved by increased EKE, but we will have to investigate
the full energy cycle including potential energy conversion in future studies
with more realistic forcing.

The current results suggest that there is potential for savings in terms of
computing cost of more than one order of magnitude without degrading the
level of mean kinetic and eddy kinetic energy on a lower resolution grid.
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Appendix A. Leith viscosity scheme

An alternative to the biharmonic Reynolds viscosity with coefficient fol-
lowing Eq. 5 relies on the Leith and modified Leith viscosities (Fox-Kemper
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and Menemenlis, 2008)

νL0
c = 0.2 min

{

Sc

√

Sc (cD |∇∇ · u|2c + cL |∇q|2c) + ν0
√

Sc/Sr, Sc/∆t
}

,
(A.1)

with the minimum function serving to taper the viscosity to ensure that the
CFL condition is not violated. Here, q = k · (∇ × u) denotes the vertical
vorticity and cD, cL are constants on the order of one. The term ν0

√

Sc/Sr

provides a resolution-scaled minimum viscosity where ν0 is the constant min-
imum viscosity coefficient and Sr = 5.8 ·109 m2 as before. The Leith viscosity
can be associated with the scaling laws for 2D turbulence in the enstrophy
range (Fox-Kemper and Menemenlis, 2008). Since it is already scale selec-
tive, it is used with the harmonic operator. A recent study by Pearson et al.
(2017) shows that this form of viscosity generally leads to smaller total dissi-
pation than the biharmonic one with quasi-uniform coefficient. However, it is
nonuniform in space, and may be insufficient to damp a grid mode where νL0

c

is small. It is therefore run in combination with small background biharmonic
viscosity with coefficient

νbb
c = max(0, ubb

0 S1/2
c − νL0

c ) (A.2)

where ubb
0 = 0.01ms−1 so that the background viscosity is active only when

the harmonic Leith viscosity is small.
The numerical factors in the formulas above are obtained experimentally

as to prevent buildup of grid-scale noise in the vertical velocity field. They
differ from those in Pearson et al. (2017) because of the differences in mesh
geometry and discretization. The Leith viscosity coefficient is rather patchy
in our simulations and is smoothed with a spatial filter F defined in Eq. C.3,
so that νL

c = (F2)cc′ ν
L0
c′ . Here, F2 denotes the composition of F with itself,

and Einstein summation over the repeated index c′, running over neighbors
of c, is implied.

Appendix B. Approximate viscosity operators

Appendix B.1. Approximate harmonic viscosity operator

To compute the viscous force in the discrete case, one needs to estimate
the components of the stress tensor σ at the edges of the triangular cell. The
components can be easily computed either at cell centroids or at vertices, and
then averaged to edges. As it turns out, the resulting divergence of σ on the
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triangle c involves the velocities at neighboring triangles – i.e. those sharing
the same edges – only with small weights, which reduce to zero on equilateral
meshes. As a consequence, the difference between the velocities on triangle c
and neighboring triangles c′ only weakly contributes to the viscous force. It
will therefore fail to damp a grid mode (for a discussion on spurious modes
on triangular grids see, e.g., Roux, 2012).

For this reason, we define an approximate viscous operator V which acts
dissipatively on the grid mode via

(Vu)c =
1

Sc

∑

c′∈N (c)

(uc′ − uc)
ℓc′c
|rc′c|

νc′ + νc
2

(B.1)

where N (c) is the set of triangles having a common edge with c, ℓc′c is the
length of the edge between cells c′ and c, rc′c is the vector pointing from the
centroid of cell c′ to the centroid of cell c, and Sc as before.

When the mesh cells are equilateral triangles, (uc′ − uc)/|rc′c| is the ve-
locity gradient in the direction of the outward normal to the edge between c
and c′, so that the right of Eq. B.1 is the sum of viscous fluxes leaving cell c,
thus defining a consistent discretization of the harmonic viscosity operator
V (u) = ∇ · (ν∇u). Although this interpretation is only approximate on
general meshes, we use the formula above as a substitute for the harmonic
viscosity operator (see also the discussion of different viscosity operator op-
tions for FESOM2 in Danilov et al., 2017).

Since the geometric quantities in Eq. B.1 and the mean viscosity are
defined on edges, they can be incorporated into a generalized edge viscosity
νc′c, which is symmetric between c and c′, so that Eq. B.1 takes the form

(Vu)c =
1

Sc

∑

c′∈N (c)

(uc′ − uc) νc′c . (B.2)

Summing over all cells c,
∑

c Sc (Vu)c = 0 because the difference between
uc′ and uc appears with opposite signs in the expressions for cell c′ and c.
Hence, momentum is globally preserved. Furthermore, taking the total vis-
cous dissipation

∑

c ScV =
∑

c Sc uc ·(Vu)c, we observe that the contribution
from c′ and c appears twice, one time as νcc′ uc · (uc′ − uc) and the other
time as νc′c uc′ · (uc − uc′), which sum to −νc′c |uc′ − uc|

2. (Note that this
rearrangement is equivalent to operations in Eq. 7, with the flux contribution
disappearing because of the area sum.) This proves that area mean kinetic
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energy dissipation is non-positive and introduces a discrete equivalent of the
sign-definite dissipation rate V (see Eq. 7), namely

Vc′c = −
νc′c
Sc′c

|uc′ − uc|
2 , (B.3)

which is associated with the area Sc′c = (Sc′ + Sc)/3 around the edge c′c. It
is conservatively remapped to a cell dissipation rate

Vc =
1

3

∑

c′∈N (c)

Vc′c . (B.4)

If layer thicknesses vary, the coefficients must vary with volume rather than
area.

Appendix B.2. Approximate biharmonic viscosity operator

A discrete biharmonic viscosity operator is obtained by applying an ex-
pression of the form of Eq. B.1 twice.

To avoid splitting the viscosity coefficient between the two harmonic op-
erators, we define

(Lu)c =
∑

c′∈N (c)

(uc′ − uc) , (B.5)

which we can represent by a symmetric matrix Lc′c, where Lc′c = 1 if c′ 6= c
have a common edge and zero otherwise, and Lcc = −

∑

c′∈N (c) Lc′c. Then

(Lu)c = Lcc′ uc′ where summation over repeated indices is implied. We
further define an operator N whose matrix representation is diagonal with
Ncc = νb

c . Then the discrete biharmonic operator defined via

(Vb
u)c = −

1

Sc

(LNLu)c = −
1

Sc

Lcn Nnm Lmj uj (B.6)

is symmetric and negative, as can be shown by taking the dot product with
uc and summing over all cells. As for the case of harmonic viscosity, this
suggests a sign-definite expression for the energy dissipation rate, defined on
cells,

V
b

c = −
νb
c

Sc

|(Lu)c|
2 . (B.7)

It is convenient to specify the coefficient of biharmonic viscosity in terms of
its harmonic equivalent by setting νb

c = Sc νc (no summation implied), which
is assumed in our implementation.
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Appendix C. Smoothing filter

As discussed in the main text, we require smoothing filters in several
places of our implementation of backscatter: to smooth the Leith coefficient
of viscosity, to smooth the diagnosed dissipation rate V , and, most impor-
tantly, to ensure that the energy returned back to the flow is free of small
scales.

Our filters are powers of a single filtering operator: the composition of
averaging from cell centroids to common vertices, denoted X, with averaging
from vertices back to centroids, denoted C. Let ac be any quantity defined
at cells. Its vertex values āv are obtained as

āv = (Xa)v =
∑

c∈C(v)

ac Sc

/

∑

c∈C(v)

Sc , (C.1)

where C(v) denotes the set of cells containing vertex v. Letting Xvc denote
the associated matrix symbol, we can also write āv = Xvc ac.

Similarly, for a quantity bv defined on vertices, we define its cell values b̄c
via

b̄c = (Cb)c =
1

3

∑

v∈V(c)

bv , (C.2)

where V(c) is the set of vertices of cell c.
Finally, we set

F = CX . (C.3)

The effective spatial smoothing length of Eq. C.3 varies with grid resolution.
However, the filter can be applied several times to increase the smoothing
length. For example, the Leith viscosity is filtered twice, which can be written
as F2.
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