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Abstract

Fourier spectra are powerful tools to analyse the scale behavior of turbulent flows.
While such spectra are mathematically based on regular periodic data, some state-of-
the-art ocean and climate models use unstructured triangular meshes. Observational
data is often also available only in an unstructured fashion. In this study, scale anal-
ysis specifically for the output of models with triangular meshes is discussed and the
representable wavenumbers for Fourier analysis are derived. Aside from using different
interpolation methods and oversampling prior to the computation of Fourier spectra,
we also consider an alternative scale analysis based on the Walsh—Rademacher basis,
i.e. indicator functions. It does not require interpolation and can be extended to gen-
eral unstructured meshes. A third approach based on smoothing filters which focus
on grid scales is also discussed.

We compare these methods in the context of kinetic energy and dissipation power
of a turbulent channel flow simulated with the sea ice-ocean model FESOM2. One
simulation uses a classical viscous closure, another a new backscatter closure. The
latter is dissipative on small scales, but anti-dissipative on large scales leading to
more realistic flow representation. All three methods clearly highlight the differences
between the simulations as concerns the distribution of dissipation power and kinetic
energy over scales. However, the analysis based on Fourier transformation is highly
sensitive to the interpolation method in case of dissipation power, potentially leading
to inaccurate representations of dissipation at different scales. This highlights the
necessity to be cautious when choosing a scale analysis method on unstructured grids.

Plain Language Summary

To better understand the physical processes that drive and define the circulation
in our oceans, it is necessary to analyse the temporal and spatial scales on which these
processes act. The classical method to investigate the spatial scale behaviour is Fourier
analysis which splits any given data into waves of different amplitudes and wave-
lengths. Mathematically this requires data on an equidistantly spaced grid. However,
many ocean models apply triangular or other irregular grids for their computations of
oceanic flows. In this study, we describe the advantages and disadvantages of applying
Fourier analysis for models that use triangular meshes, with prior interpolation of data
to regularly spaced rectangular meshes. We also introduce two other methods that can
analyse the distribution of kinetic energy and kinetic energy dissipation across scales
without interpolation. The results show that one needs to be very careful when choos-
ing a specific scale analysis and, potentially, an interpolation method for triangular
grids, especially when it comes to analysing the process of kinetic energy dissipation.
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1 Introduction

Improving our understanding of scaling laws in geophysical fluid dynamics is of
fundamental importance when analysing crucial scale interactions or, in the context
of model development, when designing parameterizations for the unresolved subgrid
scales (e.g. Danilov et al., 2019). Scale analysis of turbulent flows is a classical
approach to investigate the dynamics simulated by numerical models (e.g. Soufflet
et al., 2016; Schubert et al., 2020) and to compare them to observational estimates
(e.g. Wang et al., 2019). A variety of methods is available to separate out specific
scales in multiscale flows (e.g. Kumar & Foufoula-Georgiou, 1997) or to coarse-grain
or filter the information from smaller scales to larger scales (e.g. Aluie et al., 2018;
Aluie, 2019; Berloff, 2018; Grooms et al., 2021; Sadek & Aluie, 2018). These methods
generally involve spatial or temporal filters to remove specific scales, or projectors
which split the data into a hierarchy of Hilbert-subspaces. Such coarse-graining is less
straight forward on unstructured triangular meshes, but can nevertheless be designed
to achieve conservation of certain quantities or derivatives (Patching, 2022).

For the distribution of energy over scales in eddy-resolving simulations, a com-
monly applied scale separation method relying on basis decomposition is Fourier anal-
ysis which separates the data into waves of different wavelengths. However, Fourier
analysis relies on a set of assumptions that are not always met by model or observa-
tional data. Two of the most common discrepancies are the potential lack of regular,
equidistant data points in case of unstructured data and the lack of periodicity along
boundaries in case of complex domains. In this study, we will discuss some of the
issues related to Fourier analysis in the context of a model with triangular rather than
rectangular spatial discretization. We will also introduce and discuss the possibility
of an alternative analysis that uses the Walsh-Rademacher basis (indicator functions)
instead of the Fourier basis which, in many respects, is more suitable for unstructured
data.

Observational data is often inherently unstructured due to the nature of local
measurements. When it comes to numerical modelling, on the other hand, some models
are also formulated on unstructured triangular meshes and place the degrees of freedom
(DoF) on vertices or triangles. They include, e.g., global-scale models such as FESOM
(Danilov et al., 2017), ICON (Korn, 2017) and coastal models such as FVCOM (Chen
et al., 2003), SCHISM (Zhang et al., 2016), or SUNTANS (Fringer et al., 2006).
Concerning Fourier analysis, the first question that arises for such models is: Which
wavenumbers can be represented on triangular meshes? Relying on well-known facts
from solid-state physics (e.g. Kittel, 2004), one can link the representable wavenumbers
to the notion of primitive translation vectors. They define a primitive mesh cell, a
reciprocal lattice in wavenumber space, and the smallest resolved wavelengths (see
illustration in Fig. 1). On regular triangular meshes the primitive cell is a rthombus
consisting of two triangles with opposite orientation. Importantly, the number of
triangles is approximately twice that of the mesh vertices, which creates an illusion
that the DoF placed on triangles resolve larger wavenumbers than the DoF placed at
vertices. It turns out that the increased number of DoF leads to modes of variability
inside of the unit cells of the respective grid (i.e. internal variability modes), leaving
the representable wavenumbers without changes. Irregular triangular grids further
complicate the definition of the highest resolved wavenumber and the spectral density.
In this study, however, we will focus on the resolution of regular triangular grids, while
the definition and theory for the resolution of irregular triangular grids will be left for
future studies.

In order to compute classical Fourier spectra on general (unstructured) meshes,
one cannot rely on a regular placement of the DoF and has to interpolate to a regular
quadrilateral grid. This leads to some (arbitrary) sampling of original data, which gen-
erally does not create ambiguities for the spectra of variance which are rapidly decaying



at large wavenumbers. However, larger uncertainties may occur for the power spec-
tra of dissipation (due to horizontal viscosity or diffusion). Such spectra are needed,
for example, to judge on the effective resolution, which is the smallest scale where
dynamics are unaffected by (numerical) dissipation (Soufflet et al., 2016). They are
also necessary to intercompare different types of momentum closures. The dissipation
power on unstructured meshes is computed as a dot product between a field and its
dissipation tendency which depends on the numerical operator that parameterizes the
small scales in the momentum equation. The dissipation tendency is often noisy and
has a large grid scale contribution, generally because the commonly applied harmonic
or biharmonic operators emphasize large wavenumbers. The placement of DoF on
triangles may further emphasize the grid-scale variability because of the difference in
the orientation of computational stencils for any two adjacent triangles. Interpolation
can be further affected by this geometrical mode in the placement of triangle centers
as illustrated in Fig. 1. Computations are still possible, but require care. This study
will both illustrate the difficulties in the computations as well as possible remedies.
New alternative methods that avoid interpolation will be discussed and compared to
the results of traditional Fourier analysis. They can be seen as an extension to already
existing methods such as Aluie et al. (2018); Grooms et al. (2021) which mostly focus
on scale analysis and scale separation for structured meshes and for scales considerably
larger than the grid scale.

We ran into issues raised above in our earlier attempt to compute spectra of
dissipation power for runs with different momentum closures. Classical, purely vis-
cous closures such as the Smagorinsky (Smagorinsky, 1963) or Leith parametrizations
(Leith, 1996) are designed to be entirely dissipative on all scales with an emphasis on
small scale dissipation (see discussions in e.g., Fox-Kemper & Menemenlis, 2008; Bach-
man et al., 2017; Pearson et al., 2017). A variety of other approaches have emerged
in recent years, among which are kinetic energy backscatter parameterizations (e.g.,
Jansen & Held, 2014; Jansen et al., 2015; Klower et al., 2018; Perezhogin, 2019; Ju-
ricke et al., 2019; Juricke, Danilov, Koldunov, Oliver, & Sidorenko, 2020; Juricke,
Danilov, Koldunov, Oliver, Sein, et al., 2020). Contrary to purely viscous closures,
energy backscatter parameterizations enable energy injection on large scales but dis-
sipation on small scales. They still retain an overall dissipative nature when averaged
across all scales. Scale analysis of dissipation power can highlight this scale depen-
dence of momentum closures and is, therefore, an important diagnostic to investigate
the behaviour of momentum closures, especially close to the grid scale. However, as
illustrated in this study, one can easily get a substantially distorted result if one is
not careful. Practical illustrations of these issues rely on data obtained with FESOM?2
(Danilov et al., 2017) for the zonally reentrant channel test case of Soufflet et al. (2016)
which focuses on the simulation of mesoscale turbulence and was run with two differ-
ent momentum closures, one purely dissipative parametrization (following Leith, 1996)
and one kinematic backscatter parametrization (following Juricke, Danilov, Koldunov,
Oliver, Sein, et al., 2020).

In this study, we caution against using interpolation methods for unstructured
data without considering the properties of the underlying data and the respective
interpolation method. We seek to develop new diagnostic methods that enable scale
analysis under five specific constraints:

» The method needs to be applicable both to global (spherical) data as well as
confined regions to allow a focus on specific local dynamics.

e The diagnostic should be able to deal with ocean data, i.e., coastlines of conti-
nents and islands should not pose a fundamental problem and should not lead
to substantial aliasing of the spectrum.

¢ Unstructured data will be difficult to assess in terms of the highest resolved
wavenumber, but the diagnostic should be extendable to this kind of data with



minimal impact and deterioration of the spectrum only for the highest wavenum-
bers.

« The diagnostic should not implicity assume smoothness of the data if it is not
supported by theory. In particular, scale analysis of dissipation power must not
assume smoothness, so that we need a method that works well for both smooth
(e.g. kinetic energy) as well as non-smooth fields.

¢ When the data comes from a model or source where it is treated in the finite
volume sense, the diagnostics should respect this interpretation. In fact, this is

the most we can assume when the data does not represent samples of a smooth
field.

Some existing methods address some of these aspects. Tools such as SHTools
(Wieczorek & Meschede, 2018) allow for spherical harmonic transforms that are specif-
ically suited for global data on the sphere, but can also be applied to more or less ar-
bitrary domain data via windowing. The routine SHExpandLSQ (https://shtools
.github.io/SHTOOLS/pyshexpandlsq.html) also allows to use unstructured data by
expanding irregularly spaced data into spherical harmonics using a least squares inver-
sion. However, for confined local or complex domains spherical harmonics are not the
ideal expansion. Even for spherical global ocean data, such methods need to deal with
the complex topography of the oceans. As already mentioned for SHTools, this neces-
sitates some form of windowing or padding of, e.g., continents which may introduce
additional errors. As a global analysis, the relation between wavenumber and wave-
lengths is also not straight forward for spherical harmonics when it comes to different
regions around the globe, i.e., same wavenumbers at the poles correspond to different
wavelengths than those in the tropics. A least squares inversion is a good approach
for smooth data such as kinetic energy spectra, but introduces bias for non-smooth
fields due to the fact that it treats the data as point-wise and reduces its variance,
i.e. smooths the data. We will address a similar issue regarding smooth interpolation
methods in this study.

For local domains, 2D Fourier transforms may be more suited. However, they will
have to deal with periodicity constraints at the boundaries and respective windowing.
Furthermore, while nonuniform Fourier transforms exist, in practice for fast imple-
mentation they also necessitate some form of interpolation and oversampling (e.g.,
Ruiz-Antolin & Townsend, 2018) which tends to smooth discontinuous data. It is also
generally necessary to avoid complex boundaries, so it is commonly applied to rect-
angular regions without islands or continents (e.g., Khatri et al., 2018). Finally, the
aforementioned smoothing filter of e.g. Aluie (2019) can potentially be applied to the
global ocean (Storer et al., 2022), but one still needs to deal with complex boundaries
via, e.g., padding. Furthermore, extending these approaches to unstructured data is
not straight forward.

The methods and issues we present here are focused on the aspect of local do-
mains, regular triangular grids and their application to both smooth as well as non-
smooth data. Extensions to fully irregular triangular grids and global spherical geom-
etry with complex boundaries is conceptually possible, but will need further research.
We will discuss such research perspectives in the last section. As a reference to com-
pare our new methods with, we will use 2D Fourier spectra with interpolations to
a rectangular grid as such spectra are commonly used and suitable for the limited
domains discussed in this study.

This study is structured as follows. We begin with Fourier analysis in section 2.
We discuss which wavenumbers can be represented on triangular meshes and explain
some of the consequences for the computation of spectra on interpolated regular grids.
In section 2.4, we provide a short description of an alternative approach, the resize-
and-average (R-a-A) method, which does not rely on the Fourier basis, but on the
Walsh—Rademacher basis instead. A third diagnostic based on the applications of
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Figure 1.
troids (black circles). There are two types of triangles (pointing upward and downward). The

distances between centroids in the y-direction alternate between 2h/3 and 4h/3, where h is the

(Left) Regular equilateral triangular mesh with vertices (black squares) and cen-

height (dashed lines), creating a geometrical pattern in data placed at centroids. The side length

of the equilateral triangles is a (dotted line).

(Right) Triangular mesh and its reciprocal lattice in k-space. Unit cells are shown in orange. The
first Brillouin zone is the Voronoi hexagon around an origin point of the reciprocal lattice. Small

green and blue circles correspond to zm,,, and g, s respectively. Vectors x1,x2 and k1, k2 are

defined by mesh geometry, and not by the placement of discrete degrees of freedom.

smoothing filters is also introduced. Section 3 describes simulations with two different
momentum closures, the Leith and kinematic backscatter parametrizations, for which
we will assess kinetic energy and dissipation power spectra. The next section 4 applies
all three scale diagnostics to the aforementioned simulation data. The paper closes
with discussions and conclusions in section 5.

2 Spectra on triangular meshes
2.1 Resolved wave numbers for a regular triangular mesh

Consider an infinite regular triangular mesh composed of equilateral triangles.
We introduce coordinates @ = (x, y) with origin at one of the mesh vertices and orient
the triangles so that all vertices are obtained from (0, 0) through the set of translations

Zmn =mx+nx2, T =a(1,0), x>=a(l/2,V3/2),

where a is the triangle side length (see also Fig. 1), and m,n are integers. The vectors
x1 and xo are referred to as primitive translation vectors. The mesh is invariant to
translation by z,,,. A rhombus, defined by vectors x; and x3, is a primitive unit
cell of the triangular lattice. The selection of vectors &1 and x2 and the unit cell is
not unique. For example, one can select ©; and x5 — 21, and take a rhombus that
corresponds to them. However, all possibilities represent the same group of translations

Zm,n-

The values of a Fourier harmonic of any scalar or vector field T' = T e*® with
amplitude T and wave vector k = (k,l), sampled at vertices or centers of similarly
oriented triangles do not change if k is replaced by k + g, where q is such that

el® =1,
This implies that
q =4qrs =rk; +3k27
where r and s are integers and the vectors k; and ks are such that
;- k?j = 271'5”‘,

which gives

ki =2n/a(1,-1/V3), ky=27/a(0,2/V3).



The translations g, s define the reciprocal lattice in k-space (Fig. 1).

Because k can be determined up to the translation g, , it is sufficient to consider
only k-points that are closer to the origin gg o than to any other g, ;. These points
lie in the Voronoi polygon obtained by the Voronoi tesselation of the lattice {g, s} in
k-space. This hexagon is referred to as the first Brillouin zone and is shown in Fig. 1.

The reciprocal lattice and the Brillouin zone are defined by the geometry of the
triangular mesh and do not depend on how discrete DoF are placed, unless the DoF
and discretization correspond to a refinement of the given triangular mesh. As a result,
one deals with k constrained to the first Brillouin zone independent of whether the
discrete DoF' are placed on vertices or cells or edges.

The smallest distance from go o to the boundary of the first Brillouin zone is
|k|max = 27/(\/&1) =m/h,

i.e., the geometric resolution of the equilateral triangular mesh is defined by the height
of triangles h. This can be compared with |k|nax = 7/a for the quadrilateral mesh
with the side a.

On triangular meshes there are nearly twice as many cells as vertices. If discrete
DoF are placed on cells, an obvious question is how the increased number of DoF can
be reconciled with the statement that the wave vector is constrained in the same way
to the first Brillouin zone as for the vertex placement. The answer is that the increased
number of DoF in this or similar cases creates additional modes of variability inside the
unit cells, as explained, e.g., in Danilov and Kutsenko (2019). The origin of the mode
is related to the difference in the orientation of the stencil of the nearest neighbors. For
a triangle pointing upward in the plane of Fig. 1 the stencil of three nearest neighbors
points downward, and vice versa. Consequently, discrete operators have different rep-
resentation on u (upward pointing) and d (downward pointing) triangles, and different
truncation errors, hence a mode of variability between the nearest triangles. As a rule,
this mode of variability is well controlled in the existing numerical codes (see, e.g.,
the discussion of viscous operators in Juricke, Danilov, Koldunov, Oliver, Sein, et al.
(2020) for FESOM), but can contribute to the apparent grid-scale patterns seen in the
dissipation tendency (see section 4.1.2).

2.2 Fourier spectra of interpolated fields

Triangular meshes used in practice are generally non-uniform. The most com-
mon way to compute spectra in this situation is to interpolate the fields onto a regular
quadrilateral mesh, then sample and apply the discrete Fourier transform in the stan-
dard way. The theoretical consideration above gives an argument on the resolution of
the sampling mesh (finer than 7/ky.x). Due to interpolation, some variance can be
lost on small scales.

Consider, for definiteness, a scalar discrete field ¢. known on mesh cells. When
computing spectra of vector fields, such as kinetic energy spectra, the expressions
stated here apply component-wise in the respective dot products. We write ¢ € T
to denote the cell index and 7 to denote the set of mesh triangles. If ¢,,, is the
result of interpolation of the cell-based ¢. to some regular grid, with 1 < m < M and
1 < n < N, covering the domain of interest, to compute the power spectrum of ¢, one
needs to ensure variance preservation in the sense

M,N
LAY Sl
MN ZCET|AC|

(for simplicity, we assume that the respective field ¢ has zero mean when averaged
over the entire domain or all frequencies). Here, |A.| denotes the area of cell c.

m,n=1



This is easy to achieve if ¢, is a primitive variable (velocity, temperature or
salinity) with commonly available linear or cubic spline interpolation because such
fields are commonly smooth. They are generally known in a finite-volume sense as
mean over the respective control volumes. The nearest point interpolation method to
a sufficiently fine mesh tends to respect this sense, yet emphasizes discontinuities in
interpolated data, which leads to an artificial spectral pile-up at small scales. Linear
and cubic interpolation methods are free from such a drawback, but treat the finite-
volume data as point values. Although this is appropriate for smooth fields, it leads
to artifacts in the case of spectra of horizontal dissipation power as discussed later.

To compute dissipation power spectra, one has to interpolate both ¢. and the
dissipation tendency, which is either due to the horizontal diffusion or horizontal vis-
cosity, apply the Fourier transform to both, and compute their inner product. The
dissipation tendency on cells will be written as (L¢)., where L is a discrete Laplacian
operator in the simplest case, but can be a more complicated operator for more sophis-
ticated viscous or backscatter closures if these are applied in a given simulation. On
regular meshes, one can use a discrete analog of the divergence theorem in the form

/ngSAquV:—/Q|V¢>|2dv+/m¢n-v¢d5,

where the second integral is over the boundary 02 of the integration domain €2 and
is negligible if the domain is large enough, as averaged boundary fluxes for sufficiently
smooth fields tend to zero for sufficiently large areas. If the boundary conditions for
the entire domain are posed in a no-flux form this statement holds exactly, but it
generally also holds in an approximate sense for sufficiently large areas smaller than
the total domain. As a result, one can compute a power spectrum of V¢ instead of
computing the cross-spectrum. While discrete analogs of similar transformations are
maintained on unstructured meshes, they are not always straightforward (see Juricke
et al., 2019, for FESOM operators), and may be not available in model output.

In applications, the field ¢.. is generally smooth while (L¢). often has a noticeable
grid-scale component. Indeed, if the power spectrum of ¢ scales as k~%, the envelope
of the Fourier transformed ¢y, scales as k—(®t1)/2 The dissipation tendency scales as
E—(@+1)/2+2 for the harmonic operator L and as k—(@t1)/2+4 for the biharmonic one.
Thus, when a = 3, the envelope of the Fourier transform of the dissipation tendency
is flat even for a harmonic operator. This amplification of small scales is common to
all discretizations, and explains why the pattern of L¢ can look noisy. For cell-based
quantities on triangular meshes there is one more factor, namely the difference of L on
uw and d triangles. Here, the internal degree of freedom is another source of small-scale
noise not present in the case of vertex-based quantities on triangular meshes or in the
case of cell-based quantities on quadrilateral meshes.

Because of the grid-scale pattern, even oversampling may fail to ensure that L¢
is properly sampled. Writing (L¢),,, to denote the interpolation of the cell-based
quantity (L¢). to the sampling grid, we need to achieve

(RN Seer @ (Lo)e | Al
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This approximation is prone to fail, depending on the method of interpolation. For
FESOM2, we will show in section 4.1.2 that scale analysis of kinetic energy dissipation
is very sensitive to the specific choice of interpolation onto a regular grid, especially
for simulations that use the backscatter parameterization (Juricke, Danilov, Koldunov,
Oliver, Sein, et al., 2020). For those simulations, dissipation spectral density is neg-
ative in the vicinity of kpax, but can be positive at smaller wavenumbers. The total
dissipation power is negative, but this picture is easily distorted through interpolation.
The accuracy in representing the dissipation power by the interpolated field (such that



equation (8) approximately holds) may serve as a check for the appropriateness of inter-
polation. Furthermore, angular averaging of two-dimensional spectra, collapsing them
to one-dimensional spectra helps to reduce the side effects of interpolation errors.

2.3 On 1D spectra

1D spectra are a convenient characteristic in test cases that use periodic boundary
conditions in one direction (e.g., zonally-reentrant channels). Data are taken along
zonal lines, and no windowing is needed. The spectra computed at different meridional
locations are then averaged. On regular equilateral triangular meshes such lines are
drawn through centroids of w or d triangles. Since the distance between the nearest
data point is a, not all wave numbers are resolved (7/a instead of 7/h). Taking data
points along a zigzag line passing through centroids of v and d triangles is potentially
resolving higher wavenumbers, but may create aliasing. If one interpolates to a regular
set of points along a zonal line, the result will depend on the line (and interpolation
method). If the line is drawn through the centers of triangles, only the data at these
centers will be used for linear interpolation. Spectral density at wavenumbers larger
than 7/a will still be uncertain.

There is a simple, fundamental reason why especially one-dimensional spectra of
dissipation are questionable: In the continuous 2D case for L = A,

$Ap =V - (6 V)~ Vo],

so that the first (flux divergence) term on the right-hand side does not contribute to 2D
spectra (being the divergence of the product), leading to a negative-definite spectral
density. However, it will always contribute to 1D spectra of dissipation, and may even
give a dominant contribution. Averaging of 1D spectra over the other direction will
not necessarily fully eliminate this contribution, leading to an unpredictable result.

In our experience, meridionally averaged 1D spectra are highly sensitive to the
choice of interpolation method and the location of the interpolation grid, especially
for dissipation power spectra which are relatively flat. We found that interpolation
such as linear or cubic may actually lead to considerably distorted line structures on
the interpolated grid, depending on the orientation of the triangles. Consequently, the
result for cubic and linear interpolation and zonal 1D dissipation power spectra turns
out to be fundamentally wrong (not shown), as the linear and cubic interpolations
smooth out the small scales and project them onto much large scales in the zonal
direction. Even by averaging in the meridional direction, this error is not alleviated
and, instead, we produce spectra that show substantially distorted dissipation powers
on large scales. Kinetic energy spectra, one the other hand, are not much affected
by this due to the rapidly decaying high wavenumber contribution and can also be
computed using 1D spectra averaged in the meridional direction. While we will not
discuss one-dimensional line spectra any further, we would like to highlight that these
details and consequences need to be kept in mind when considering 1D spectra on
interpolated meshes.

2.4 Scale analysis based on characteristic functions

In this section and section 2.5, we present two alternative approaches to scale
analysis that avoid interpolation and preserve the finite-volume sense in which the data
is represented in the model. The first method is called resize-and-average method (R-
a-A) and we will present it in its original and a modified version. In the following,
we describe the general concept relying on averaging operators on successively smaller
subdomains of the model domain using the Walsh-Rademacher basis, i.e., a basis
generated by indicator functions of cells of the triangular grid. A detailed mathematical
analysis of this method and a comparison of Fourier spectra and Walsh-Rademacher



spectra for random fields with a power-law rate of spectral decay can be found in
A. Kutsenko et al. (2022). This paper also describes the limitations of R-a-A and
discusses strategies for overcoming these limitations.

We identify the data on cells, ¢., with the piecewise-constant function

$(x) =Y e xa.(®@), (10)

ceT

where x4, () is the indicator function of mesh cell A, so that ¢(x) = ¢, for & within
A.. Generally, the A, may be triangles or unions of triangles.

Now consider a submesh S with elements B, composed of unions of several
neighboring A, i.e.,
B. = U Aw (11)

c'eTe

for ¢ € S, where T = U.esT. is a partition of the initial mesh. The initial mesh 7
generates the Hilbert space
Ly =span{xa.: c€ T}. (12)

The coarser sub-mesh generates the Hilbert subspace
Ls =span{xp,: c € S}. (13)
The orthogonal projector onto Lgs is given by
Eso)@) = L 1B (X 60 1401) o (o). (1)
ceS c'€Te

This gives a decomposition, orthogonal with respect to the standard L2-inner product

0.0) = [ ola) v(@) da. (15)
of the space Lt into the coarse subspace Ls with a remainder denoted by L5
Lt =Ls® Lyys. (16)
A field ¢ then decomposes into the orthogonal sum

¢ =Pro =Ps¢d+Pr/sé, (17)

so that
(#,9) = (Pro,Prv) + (P59, Pr/sv), (18)

where the contribution of the remainder subspace is given by
(Pr/s0, Pr/sy) = (¢, 9) — (P1o,P1))

=S avvelad =S 1d (X oo lanl) (X wladl). a9

ceT ceS €T, c'eTe

Through subsequent coarsening, we can construct a hierachy of subspaces, with the
original mesh 7 at the small-scale end going to larger and larger scales.

To compute a spectrum using this construction, we proceed as follows. Consider
a sufficiently large square box B! with side length L, covering some part of the com-
putational mesh. L is generally chosen to be sufficiently large to create a square box
that covers most of the area of interest. As the coarsest mesh, denoted 7', we take
the union of those triangles from 7 whose centroids lie inside B!. Now introduce a
sequence of child bounding boxes obtained by splitting the box B! into equal-sized



smaller boxes. The smaller boxes will be denoted as Bj},, where the index n indicates
that the length of the side of the respective box is L/n, and m is the shortcut for a
pair of indices m = (my, my), 1 < my, m, < n, describing the position of B}, within
B!. For each child box, we look for a subset 7, of 7' including the indices of triangles
with centers within B?,. For every fixed n, {7,2} is a partition of 7!, and we set

T =T (20)

We stop at n = N such that all 7,7 include not more than one triangle. Subsequent
refinement will be excessive.

When n; is a divisor of ngy, the subspaces associated with 7™ and 7 "2 are orthog-
onal so that the norm of the projection to Lyn,/7n: is a measure of the contribution
from the scale range [L/n1, L/ns) to the total energy.

There is some arbitrariness in this construction as the areas occupied by triangles
belonging to different 7, are not equal. The relative differences will be small when
n is small, but may be large for n ~ N. It is possible to get an estimate on the
resulting uncertainty by slightly displacing the box B! and repeating computations.
The advantage of this method is that it works for structured as well as unstructured
meshes.

Here, to obtain a finer separation at smaller scales, we chose nqy = n and ng =
n + 1, define the scale points

b, = o (21)
the spectral energy density of the field ¢,
E(t,) = (Prnu— Proviu, Prou — Pratiu), (22)
and the spectral dissipation power density
Eais(€n) = (Prou — Propiu, PraLlu — PrngaLu). (23)

The dissipation tendency is given by Lu and depends on the velocity field v and the
momentum closure represented by the operator L. Fig. 8 shows examples of an energy
spectrum (£, E(¢,)), left, and a dissipation power spectrum (¢, Eqis(¢)), right.

In the orthogonal case, when ny divides no,
(Prrow = Prmaw, Proau — Prou) = (Proaw, Prosu) — (Proaw, Proaw), (24)
and
(Prnat — Progu, Proo Lt — Pros Lu) = (Prnou, Prna Luy — (Prny w, Pyeg Lu). (25)

When n; = n and ny = n + 1 and these identities no longer hold, experiments show
that the left-hand expressions in (24) and (25) are less noisy than the respective right-
hand expression, which motivates their choice for the diagnostics (22) and (23). A
theoretical justification for this choice and a mathematical analysis along the lines of
A. Kutsenko et al. (2022) of this modified extended version of the R-a-A method is
open and a topic of current research.

The practical implementation of the modified R-a-A method used in the remain-
der of this paper was done as follows.

(1) We organize the velocity data as a 2D array, i.e., as a matrix U. The most
accurate way to do this is by computation of the area of intersection between the
irregular grid and a regular square or rectangular grid, i.e., by projecting the irreg-
ular grid onto the regular grid. However, any organization of irregular data into the
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matrix which satisfies the condition that (almost) neighboring cells in the matrix cor-
respond to (almost) neighboring points or elements in the irregular grid will still give
relevant results. Of course, the accuracy of such approximation should be based on
synthetic tests done for known fields. Now, the whole matrix U corresponds to the
resolutions [0, L], i.e., from scale 0 to scale L. (For convenience, we use scales instead
of wavenumbers which are proportional to 1/scales.)

(2) We divide U into m x m sub-matrices U;; with equal sizes and then replace
each of these sub-matrices by the constant submatrix U;; where all cells contain the
average value of Uy :

Uy - Uy Uy - U,

Uml e Umm Ij-ml e Ijmm

The resulting matrix, U,,, is the projection of U onto the scales [L/m, L]. The norm
U — Upsall®> = (Up — Upg1, Uy — Upygg) gives the energy corresponding to the
scales [L/(m + 1),L/m], see (22). The corresponding dissipation energy is (U,, —
U,t1, Dy — Dyyg1), where D contains the corresponding values of Lu, see (23).

(3) The matrices we compare, U,, and U,, 1, should have the same size. We
can achieve this by doubling, tripling, etc., the values in the initial matrix U. Indeed,
let us assume a square mesh for simplicity. Then the matrices

o0 2 9
o o0 8 2
QU >
QU

describe the same field if we assume that both correspond to the same scales and that
both matrices represent a piece-wise constant field. This assumption is natural in the
context of the R-a-A method since Walsh—Rademacher basis functions are piece-wise
constant functions. Note that for the triangular meshes the procedure of duplica-
tion, triplication, etc., is more complex. The explicit code for the original and the
modified R-a-A methods is available at https://doi.org/10.5281/zenodo.7270043
(A. A. Kutsenko, 2022).

The method can be easily adapted to non-square (rectangular) initial matrices
U., and we expect that it can be further extended to unstructured grids by comput-
ing the intersections of such grids with structured square grids for which the current
modified R-a-A already works well.

2.5 Scale analysis via discrete spatial filtering

The second method, which is in some respect related to the R-a-A method, is
based on the use of spatial filters. It also has conceptual overlap with, e.g., Sadek
and Aluie (2018); Grooms et al. (2021), but differs in the fact that it uses the natural
discrete filter operation used in FESOM2.

More specifically, we apply several cycles of a smoothing filter that was also used
by Juricke et al. (2019) and Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020) to
enhance the spatial scale of the backscatter term of their backscatter parametrization.
It projects via an area weighted average the field under consideration a., which is

stored on cell centroids, first from the cell centroids to the vertices using the operator
X

(Xa)y = 3 ac(4cl/3)/ 3 (1A:l/3),

ceC(v) ceC(v)
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where C(v) is the set of cells containing vertex v. After that, the new quantity b,
defined on vertices is then averaged back to the centroids using the operator C

(Cb)c = % Z by ,

veV(c)

where V(c) is the set of vertices of cell ¢ (see Juricke, Danilov, Koldunov, Oliver,
Sein, et al., 2020, for more details). In this way, nearest neighbor averaging enhances
the scale of the fields and filters out smaller scales. However, while the combined
smoothing filter F = CX is the same as the one used in the computational design of
the viscous closure and it conserves globally integrated quantities, the smoothed fields
are not orthogonal to each other, i.e. larger scales are consecutively mixed with each
iteration of the filter. Nevertheless, when one is specifically interested in the grid scale
behaviour and differences therein between different momentum closures, this method
is quite useful when only few iterations are applied, as it focuses first on the smallest
resolved scales. Furthermore, it allows to investigate the spatial structure of dissipation
power for a single time instance, rather than relying on spatial and temporal averaging
as is the case for Fourier analysis. This method was already used by Juricke, Danilov,
Koldunov, Oliver, Sein, et al. (2020, their Fig. 4 and 5) and we add this diagnostic
here for completeness.

3 Data setup

We use data generated by the ocean model FESOM2 in a channel setup described
in Soufflet et al. (2016) with periodic boundaries in the east-west direction and fixed
boundaries in the North and South. The domain has a zonal length of 500 km and a
meridional length of 2000 km. The grid spacing, i.e., the edge length a of a triangular
cell, is 20km. Despite the ability of FESOM2 to locally refine the grid, we employ
a regular triangular grid in this study (see Fig. 1) as it corresponds to the idealized
setup also used by Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020).

Following the discussion in section 2, the smallest resolved wavelengths corre-
sponding to wavenumbers 7/h and 7/a for a maximum channel length of \KSOO2 +
20002) are approximately 34.64 km and 40 km. However, the highest wavenumber that
can be ideally represented is along a zigzag line in the zonal direction between merid-
ionally slightly shifted centroids (see Fig. 1). In that case, the controids are in zonal
direction only a/2 apart and the corresponding maximum wavenumber and minimal
wavelength are 27/a and 20km, respectively. However, as mentioned in section 2,
part of the information for these higher wavenumbers beyond 7/h and up to 27/a
may already be a reflection of the spectrum from second and higher Brillouin zones
and may be part of the internal mode of variability inside the unit cell, i.e. inside a
rhombus consisting of two triangles of opposite orientation. We nevertheless plot the
Fourier spectra up to these high wavenumbers in section 4.1 to discuss the behaviour
at the grid scale.

In the channel simulations, a South-North temperature gradient is reinforced
through relaxation of the mean density profile, with warm temperatures in the South
and cooler temperatures in the North. A mean current runs from West to East and
mesoscale turbulence develops in the middle of the channel (see Fig. 2). Simulations
with different viscosity closures are available, using classical viscous closures such as
Leith (1996), as well as recently developed backscatter closures, following, for example,
the kinematic backscatter of Juricke, Danilov, Koldunov, Oliver, Sein, et al. (2020). In
this study, we will focus on these two simulations, i.e. one with a Leith viscosity closure
(LEITH) and one with kinematic backscatter (KBACK). The data was generated in
the context of the recent study by Juricke, Danilov, Koldunov, Oliver, Sein, et al.
(2020) where a kinematic backscatter parametrization was introduced — see the detailed
discussion therein. We chose these two simulations as they are expected to behave
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fundamentally different when it comes to dissipation power spectra. While LEITH
is purely dissipative on all scales (when taking into account the entire simulation
domain), KBACK is expected to anti-dissipate on large scales and dissipate on small
scales. Averaged over all scales, it is still dissipative. As we intend to investigate the
detailed differences in dissipation behavior of various momentum closures in future
studies, these two simulations serve as a testbed to assess the merits of the different
scale analysis methods.

17.5 4 17.5 4
15.0 A 15.0 A
12.5 12546 4 . &
hig s ¥
10.0 A 10.0 A
WA
7.5 1 7.5 -
4
5.0 5.0 - ’
2.5 - 2.5 -
0.0 - 0.0 -
0.0 2.5 0.0 2.5
[ —— | [ — |
15 17 19 21 23-107° 0 1073
surface temperature surface rel. voriticty
°C [1/s]

Figure 2. A daily mean of surface (left) temperature [°C] and (right) relative vorticity [1/s]
from the LEITH simulation at 20 km resolution, illustrating the eastward flow and enhanced tur-
bulence in the center of the channel.

Given the data on the triangular grid, we employ several interpolation meth-
ods before computing classical 2D energy spectra. The interpolation methods be-
tween the triangular and the rectangular mesh vary in both the chosen interpolation
scheme (nearest neighbor, linear, cubic) and the resolution of the interpolated grid
(0.09° = 10km, 0.045° = 5km, 0.01° ~ 1.1km). While a large variety of alternative
interpolation methods are available, the three chosen schemes are widely used and
cover different degrees of smoothness of the resulting estimate which is of fundamen-
tal relevance in this study. We compare smooth interpolation with different degrees of
differentiability (linear and cubic) with discontinuous interpolation (nearest neighbor).
Further details of the consequences of the interpolation scheme and the resolution of
the interpolated grid will be discussed in the results section below.
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The final spectra are always computed as an average of daily spectra for 9 years of
simulation after the initialization year, i.e., we neglect the first year after initialization
from the mean state as the turbulence needs time to develop. To initiate the devel-
opment of turbulence, a small perturbation is applied to the originally balanced mean
state. Furthermore, in the spectra discussed below, we only show results for wavenum-
bers up to the grid resolution of a = 20km. As we substantially oversample in the
case of the interpolation grids with higher resolution, e.g. at 0.01° ~ 1.1 km, the high-
est wavenumbers above a wavelength of the nominal grid resolution of 2k =~ 34.64 km
partly correspond to a reflection of the spectrum. They contain some of the information
from the resolved spectrum due to the reflection as well as the effects of the interpo-
lation method. However, the even higher wavenumber part of the spectrum (which
corresponds to oversampling of the interpolated grid) especially for lower wavelengths
than @ = 20km does generally not contribute much and is therefore not considered
further.

4 Results
4.1 Fourier scale analysis

We investigate the properties of Fourier spectral analysis obtained via equidistant
sampling of interpolated data. Interpolation is done via nearest-neighbor, linear spline
interpolation, or cubic spline interpolation. Sampling rates range from 2 times the
triangular grid resolution a = 20km (i.e. 10km) to 18 times the grid scale (i.e. around
1.1km). Even though the data is not strictly periodic in the meridional direction,
turbulence is mostly restricted to the center of the channel and velocities are close
to zero near the northern and southern boundaries. We verified that the use of a
Hanning window to periodize the data did not change the results; all results shown
are computed without windowing.

Spectra are shown as a function of inverse wavelength, obtained by summation
over a wave number shell of width one in integer wavenumbers.

4.1.1 Kinetic energy spectra

As a first sanity check to assess the accuracy of the interpolation with respect
to the area-averaged kinetic energy, we compute the ratio between the right and left-
hand side of equation 6, i.e., the ratio of total kinetic energy on the original vs. the
interpolated grid. Deviations from 1 correspond to an error in total area-averaged
kinetic energy through interpolation.

We find that the ratio is close to one in all cases (Fig. 3). It is largely independent
of the sampling ratio and only weakly dependent on the method of interpolation, with
nearest-neighbor doing best, and linear interpolation the worst with a maximum error
of around 5.5 %. Furthermore, the method seems to be more or less independent from
the choice of simulation, i.e. whether we compute KE spectra for LEITH or KBACK,
with slightly larger values and therefore differences for KBACK (about +0.01, i.e.
+1%). Finally, slightly varying offsets of the original starting point for the interpo-
lation (as illustrated by the boxes and whiskers in Fig. 3) only lead to a noticeable
variance in the ratios for the lowest resolution interpolation (i.e. 0.09° = 10km).

Thus, on this measure, all methods are qualitatively suitable, even though quan-
titative differences already emerge. Whether the deviations from ratio 1 are acceptable
is difficult to say, as the judgement also depends on the scales on which the differences
eventually occur. If only the smallest scales are affected, moderate deviations may still
be reasonable for kinetic energy as the small scales close to the grid scale in a model
simulation are least reliable when it comes to their physical realism.
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Figure 3. Ratio of average KE averaged for one year on original triangular vs interpolated
grid for (left) the LEITH simulation and (right) the KBACK simulation and various interpolation
methods and interpolation grid resolutions. The boxes extend from the lower to upper quartile
values generated by 9 interpolations with different origins to assess the sensitivity to the horizon-
tal starting point of the interpolation. The upper whiskers end below Q3 + 1.5(Q3 - Q1) and the
lower whiskers end above Q1 - 1.5(Q3 - Q1) with Q3 and Q1 the third and first quartile.

To further assess this question, we turn to actual spectra, choosing the highest
oversampling ratio to be on the safe side for representing grid-scale features. First, we
observe that the spectrum for LEITH has overall less KE on all scales when compared
to KBACK (Fig. 4). This is in line with the discussion of Juricke, Danilov, Koldunov,
Oliver, Sein, et al. (2020) who developed kinetic energy backscatter for precisely the
reason to reduce overdissipation and loss of KE in the KBACK simulation. This leads
to a lift of kinetic energy levels especially for small wavenumbers by kinetic energy
injection at scales sufficiently removed from the grid scale.
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Figure 4. Kinetic energy spectra for simulations with Leith (orange) and kinematic
backscatter (blue) momentum closures for (a) nearest neighbor, (b) linear and (c) cubic inter-
polated data to a 1.1 km grid, averaged for 9 years of simulation.

The choice of interpolation methods does not affect the large scales, but leads to
substantial differences near the grid scale. This can be explained by the spectral slope
of KE in our simulations, with expected power laws of slope between —5/3 and —3.
Thus, an interpolation that acts discontinuously on the data, like nearest-neighbor
interpolation, creates spurious contribution to the energy near the grid scale even
though it remains closest to the finite-volume interpretation of the data. Continuous
or smooth interpolation, on the other hand, will not change scaling laws near the grid
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scale. Consequently, linear or cubic interpolation retain the smoothness of the field
while still staying close — in an area averaged sense — to the original data. We conclude
that especially cubic interpolation is here a sensible choice, as it provides a smooth
high wavenumber spectrum as well as a close ratio representation between energy on
the original and interpolated grid (see Fig. 3).

Even though the choice of interpolation method is not critical for KE spectra,
it will be crucial for quantities that have steeper or more shallow spectral slope. The
shallow case is the main concern in this paper, and is discussed in detail in section 4.1.2.
On the other hand, when computing spectra of quantities that have less variation as-
sociated with high wavenumbers, the choice of a smooth interpolation method will be
crucial. For example, the spectral slope of sea surface height is, according to theory,
between (—5/3) —2 = —11/3 and —3 — 2 = —5 (e.g. Wang et al., 2019). Any rough-
ening of the high wavenumber part of the flow due to the interpolation can show up
as a strong peak at high wavenumbers that is emphasized by the logarithmic scaling
and the fact that only little variations are associated with small scales, so that relative
changes here turn out to be large. The use of nearest-neighbor interpolation would
create the impression of a build-up of power close to the cut-off scale of the grid, when
they are actually an imprint of the discontinuity of the field in the finite volume rep-
resentation. Such a build-up may be interpreted as a numerical instability, grid noise
or insufficient damping of unrealistic small scale grid artifacts rather than an artifact
of the interpolation method or the grid discretization itself. Such considerations are
especially important if one tries to investigate the effective resolution of a numerical
model (see also Soufflet et al., 2016), i.e., the minimal resolution at which the model
still performs reasonably close to reality. One way to define such a minimal resolution
is the wavenumber at which the modelled spectral slope significantly diverges from the
expected theoretical and/or observational slope of an idealized or even global simula-
tion. Therefore, one needs to be careful when interpreting the high wavenumber end
of an interpolated spectrum for data with steep spectral slopes and should be aware
of the consequences of the choice of interpolation method.

The resolution of the interpolated grid does not change the qualitative pic-
ture much. Using a lower resolution for the interpolation grid does change the high
wavenumber representation slightly (not shown), but the overall shape of the spectrum
and the qualitative difference between LEITH and KBACK is not affected. Such a
low level sensitivity to both interpolation method and resolution of interpolation grid
suggests a robust result for the KE spectra. Furthermore, slightly shifting the offset of
the interpolation grid, i.e. varying the position of the first grid point and consequently
the entire interpolated grid, does also not lead to large changes in the KE spectrum.
Only the high wavenumbers, which are affected by the interpolation method as well,
are also affected by these slight positional changes of the grid, and the effect is only
notable for coarse interpolation grids such as 0.09° = 10km (not shown).

Finally, the spectra on the oversampled grid exhibit a partial reflection about the
nominal resolution at 2h ~ 34.64 km. This is especially dominant for nearest-neighbor
interpolation where a clear peak occurs at 2h, after which the spectrum falls off again.
Therefore, a meaningful interpretation of the data is only possible up to a wavelength
of 2h as discussed in section 2.

4.1.2 Dissipation power spectra

Dissipation tendencies emphasize, by design, small scales. Consequently, spectra
of dissipation power — as a product of velocities and dissipation tendencies - are rel-
atively shallow. Further, dissipation power can be positive or negative. For both of
these reasons, dissipation power spectra are displayed on a linear scale.
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The methodology is very similar to the KE case. We check that the ratio between
the average dissipation power on the triangular grid and the average dissipation power
of the sampled interpolated field is close to 1. Fig. 5 shows that only nearest-neighbor
interpolation passes this test reaching ratios close to 1. All other interpolation schemes
are off by at least 30 % up to as much as a factor of almost 7. In those cases the
interpolated data is not at all representative of the original data and the results are very
sensitive to the viscosity operator used in the respective simulations, with substantially
larger ratios for KBACK.

DIS ORIG / INTERP Ratios for scheme: LEITH DIS ORIG / INTERP Ratios for scheme: KBACK
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Figure 5. Same as Fig. 3 but for total dissipation power. Note the different y-axis scaling

in the left and right panel. For the KBACK simulation with the linear and cubic interpolations,
only 95% of the days have been used to compute the ratios. Using 100% of the days would in-
crease the spread between different horizontal starting points even more due to some days where
the interpolated results are very close to zero or may even switch sign. Removing 5% of the data
does not affect the main interpretation of the results.

The reason for this is that the dissipation tendencies used for the computation
of dissipation power have a large grid scale contribution and need to be interpreted
in the discontinuous finite volume sense. In the finite volume model FESOM2 the
data is always associated to a volume or, at a certain vertical level, to a triangular
area. Linear or cubic interpolation, on the other hand, assume that the data is only
associated to a specific point and that a smooth curve exists between two neighboring
points, which the interpolation tries to estimate. This smoothing leads to a loss of
information on fine scales and, as these are important for dissipation tendencies, a loss
of information in an overall sense. This problem is also not alleviated when moving to
finer interpolation resolution, as the conceptual difference in the interpretation of the
finite volume data remains the same.

The effect of interpolation is obvious when looking at actual fields (Fig. 6). In-
terpolation smoothes grid scale fluctuations of dissipation power, but emphasizes row-
wise alternating patterns in the meridional direction due to the orientation of the
triangles. This issue persists even at a high oversampling ratio, with patterns that
depend strongly on the orientation and structure of the grid. It explains how small
scale fluctuations project onto large scale structures due to interpolation artifacts.
Only nearest-neighbor interpolation retains grid scale fluctuations in both directions,
especially for the dissipation tendency contribution, as it actually views the data as
discontinuous by construction.

Even though linear and cubic interpolation fail even the first sanity check, it
is instructive to look at actual dissipation power spectra for all three interpolation
methods (Fig. 7). All three methods show that LEITH is dissipative on all scales, while
KBACK dissipates on small scales but injects energy on large scale. For Leith, most of
the energy is dissipated on large scales due to the fact that most of the kinetic energy
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Figure 6. A daily mean of dissipation power for KBACK: a) on the original triangular grid
interpreted in the finite volume sense; after interpolation to a 10kmx10km and 1.1 kmx1.1km
grid using nearest neighbor (b and e), linear (¢ and f) and cubic (d and g) interpolation, respec-
tively. The grid scale structure is only retained by the nearest neighbor interpolation while linear
and cubic interpolation lead to smoothing, especially in the zonal direction.

can be found at large scales (see Fig. 4) and due to the insufficient scale separation
between the injection and dissipation scales in these simulations at eddy-permitting
resolution. The dissipation operator, while predominantly operating on small scales,
is therefore also interfering with the large scales which leads to pronounced dissipation
at large scales (see, e.g., Soufflet et al., 2016; Juricke et al., 2019). However, only
nearest-neighbor interpolation is able to show that there is significant dissipation near
the grid scale for both LEITH and KBACK. Worse, linear or cubic interpolated spectra
give the impression that the dissipation power in KBACK is predominantly positive,
which is physically wrong and numerically impossible.
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Figure 7. As 4 but for dissipation power spectra.

This example illustrates quite nicely, how an inconsistent interpolation of the
data can lead to a quite different and even opposing interpretation of the data. While
kinetic energy is expected to be a physically smooth field, such that cubic or linear
interpolation are acceptable choices, dissipation power is a field with very low regularity
and should be viewed, numerically, as discontinuous and treated in the finite volume
framework of the model discretization.
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4.2 Resize-and-average method

The spectra obtained via the R-a-A method are qualitatively similar to the
Fourier spectra (compare Fig. 8 with Fig. 4 and 7). The results show clearly the
distribution of (anti-)dissipation across scales for the backscatter vs. the Leith viscos-
ity and the higher levels of KE for KBACK.
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Figure 8. Energy and dissipation power spectra computed by the modified resize-and-average
method, see (22) and (23). Blue points correspond to backscatter parametrization, red points to
the Leith parametrization.

Note that the spectra obtained by Fourier and the modified R-a-A methods are
not directly comparable in terms of exact values for specific scales. For example, on
equilateral square meshes of the size 100 x 100, if the spectral slope in the Fourier basis
is —=5/3 = —1.66, then the R-a-A method gives —1.44. For rectangular or triangular
meshes of different sizes the R-a-A method may further deviate from the results of
Fourier analysis based on interpolated fields. All these aspects are discussed and
derived in detail in A. Kutsenko et al. (2022), where the exact correspondence between
values computed by Fourier and R-a-A methods is presented. We note that the original
R-a-A method determines the energy density for a specific subset of scales k ~ 2™,
n € N (see A. Kutsenko et al., 2022). The modified R-a-A can recover energy densities
for all k ~ n. The modified R-a-A method sacrifices orthogonality of subdomains
for a higher spectral resolution, but it retains aspects such conservation of domain
averages for every domain decomposition due to the nature of the Walsh—-Rademacher
basis. However, the difference between the slopes in the modified R-a-A and Fourier
methods is more noticeable than in the original R-a-A. For the spectral slope kg 3 in
the Fourier basis, the modified R-a-A gives a two times smaller slope as determined via
preliminary idealized tests (not shown). The theoretical underpinning of the modified
R-a-A is a topic of ongoing research.

One should refrain from directly comparing the scale diagnostics based on Fourier
and R-a-A analysis. It is more reasonable to compare the results made by the same
method for different simulations. In that case, the qualitative characteristics appear-
ing in spectral diagnostics of LEITH and KBACK are the same for both methods.
Another significant difference between Fourier and R-a-A diagnostics lies in the in-
terpretation of scales and actual amplitudes. In particular, the resolution x in the
original R-a-A method is about twice smaller than the corresponding wavelength in
the Fourier method, as we compare indicator functions with sine and cosine functions.
Unsurprisingly, it diverges from Fourier analysis quantitatively, as it relies on scale
averaging rather than trigonometric separation of the flow.
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The R-and-A method can be readily applied to any type of unstructured data
and does not suffer from the interpolation issue we faced for dissipation power as it
always interprets the data in a finite volume sense. But one needs to be aware of
the grid resolution to estimate the maximum resolved wavenumber. Analysing grid
scales becomes difficult, as the averaging operation is most effective for subsets with
sufficiently many samples inside.

4.3 Spectra via discrete spatial filtering

We applied the smoothing filter method of section 2.5 specifically to dissipa-
tion power to look at the grid scale differences between LEITH and KBACK (Figs. 9
and 10). We first look at the original field and compare it to the local distribution of
dissipation power after applying several smoothing filters C and X to see the instan-
taneous spatial distribution of dissipation on larger scales (Fig. 9). While the original
field is strongly influenced by the grid scale structure of the data, consecutive smooth-
ing cycles reduce the effect of the grid scales and highlight the differential behavior
of LEITH compared to KBACK on larger scales. While LEITH remains dissipative
on large scales with negative contributions dominating the dissipation power, KBACK
switches sign from mostly negative to positive after applying the filters. This illus-
trates that backscatter tends to dissipate at small scales, while it injects energy at large
scales. Furthermore, it demonstrates the sensitivity of overall dissipation to just one
single smoothing cycle and, therefore, the importance to retain small scales when using
interpolation for Fourier analysis. The smoothing filter diagnostic also does not only
provide an area averaged picture, but highlights the instantaneous regions of strong
dissipation or backscatter.

Averaging over the entire model domain for each smoothing cycle and then taking
the differences of consecutive smoothing cycles confirms this impression (Fig. 10).
While LEITH stays dissipative for all differences, i.e. for all scale ranges, KBACK
actually switches from negative to positive already after only one smoothing cycle
(Fig. 10). This provides a qualitative illustration of the grid scale behavior of these
two methods. However, one can also see that after several smoothing cycles, the
dissipation power for both simulations asymptotically tends to zero for large scales.
This is due to the fact that the smoothing operation is not orthogonal and therefore
does not clearly separate scales. After each iteration of the smoothing filter, more and
more large scales are mixed into the small scales and are removed. This is why we can,
with the current choice of smoothing filter, only apply the filter method to directly
compare two sets of simulations on the same mesh. Further extension in the spirit of
the previous section with the orthogonal Walsh-Rademacher basis can be developed
from here on. However, we want to stress that the main goal of this specific method is
the clear focus on the model grid scale in the context of effective resolution (Soufflet
et al., 2016), while the other R-a-A method predominantly focuses on slightly larger
up to the largest scales.

5 Conclusion

In this study we investigated several different methods with which to do scale
analysis of kinetic energy and dissipation power on the triangular quasi B-grid of the
FESOM2 model. Due to the triangular structure and the placement on centroids, the
amount of velocity points is about twice the amount of scalar points. In the specific
idealized structured triangular grid we consider in this first study, there are two sets
of translationally invariant triangle types, one with upward and one with downward
pointing triangles. Consequently, a classical spectral Fourier analysis as a simple 2D
spectrum is not fully sufficient. We are effectively dealing with an external mode of
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Figure 9.

Daily mean dissipation tendency based on:
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averaging to vertices
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A daily mean of dissipation power on (a+b) the original data, (c4+d) after apply-
ing the smoothing filter X to velocity and dissipation tendency component before evaluating the
scalar product, (e+f) after applying F =
LEITH and (b+d+f+h) KBACK.

CX, and (g+h) after applying XCX for (a+c+e+g)

variability defined by a rhombus as a unit cell and an internal mode controlled by the
two triangles with opposite orientation that make up the rhombus.
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Figure 10. Scale distribution of dissipation power based on globally averaged difference be-
tween consecutive smoothing cycles of F = CX (such that data is always placed on centroids) (a)
including the original data point without smoothing (i.e. 0 smoothing cycles) and (b) without the
original data point.

As alternative pathways to the relatively elaborate full diagnostic of two separate
spectra necessary to describe both modes of variability, we present different methods:
1) a spectral analysis on interpolated fields; 2) an alternative scale analysis based on
subdomain averaging; 3) a small scale analysis based on successive applications of
smoothing filters.

We apply the methods to two sets of data based on a zonally periodic channel
for simulations of a primitive equation flow on an equilateral triangular grid with
FESOM2. The first data set uses a classical viscous closure. The second one uses a
kinematic backscatter closure introduced by Juricke, Danilov, Koldunov, Oliver, Sein,
et al. (2020).

For the first method, i.e. 2D spectral analysis on interpolated fields, one needs to
choose both the resolution of the interpolated grid as well as the interpolation method.
Oversampling with a finer interpolation grid is necessary to capture the structure of
the original triangular grid up its nominal resolution.

Regarding the interpolation method, the result is, depending on the investigated
field, sensitive to the actual choice. As a first sanity check, one can compute the ratio
between the total area-weighted field on the original grid and on the interpolated grid.
If these two differ by more than a few percent, the respective interpolation method
should not be used. While this first test suggests that all three tested interpolation
methods - nearest neighbor, linear and cubic splines - can be used for kinetic energy,
only nearest neighbor interpolation should be considered for dissipation power. This is
related to the smoothness of the respective fields and the interpretation of the model
data. While kinetic energy is expected to have a certain degree of smoothness in
the framework of the theory of geostrophic turbulence, dissipation power, due to its
relation to numerical dissipation tendencies, is effectively discontinuous in the finite
volume discretization of FESOM2. Consequently, oversampling via nearest neighbor
interpolation stays close to the original data. This is also visible in the actual spectra
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for all three methods. The dissipation power spectra is most sensibly represented by
nearest neighbor interpolation, while it leads for linear and cubic interpolation to wrong
results for KBACK and LEITH, most noticeable, however, for the data of KBACK. In
those simulations, all three methods suggest energy injection at large scales and energy
dissipation at small scales, as expected. However, only nearest neighbor interpolation
shows sufficient dissipation at small scales, while linear and cubic interpolation actually
suggest too little dissipation at small scales and overall.

Looking at kinetic energy spectra, the three different interpolation methods pro-
vide very similar results. The kinetic energy backscatter simulation has more energy
on all scales compared to the classical viscous closure. Differences between the three
interpolation methods only appear close to the maximum resolved wavenumber. Here,
linear and cubic retain a negative slope, while nearest neighbor emphasises the small
scales and therefore leads to a small build-up of energy near the grid scale. This build-
up is visible due to the small amount of total energy at small scales, so that a small
increase in energy at those scales leads to a magnified signal in the spectrum. All
three interpolation methods provide reasonable spectra, and their difference lies in the
interpretation of the data as either a sampling of a naturally smooth field (linear or
cubic) or the discontinuous interpretation of the finite volume discretization (nearest
neighbor). Consequently, the high wavenumber end of the kinetic energy spectrum
should be interpreted with caution.

As our second method, the alternative R-a-A scale analysis based on subdomain
averaging introduced by A. Kutsenko et al. (2022) is not directly comparable with
Fourier analysis in a quantitative sense. The spectral slopes produced by the R-a-A
and the Fourier methods differ. The relationship between the spectral slopes of the
two methods is analyzed in detail by A. Kutsenko et al. (2022). Furthermore, the
scales in the R-a-A method and the wavelengths of Fourier analysis are different. The
difference in scales is about a factor 2: a wavelength in Fourier analysis contains two
peaks of the wave, a selected scale in the R-a-A method, however, only contains one
peak. Nevertheless, the R-a-A method reproduces the general shape of the kinetic
energy and the dissipation power spectrum found with the Fourier spectral method on
interpolated grids. The big advantage of the R-a-A method is that it does not depend
on the regularity of the mesh and can be easily extended to fully unstructured meshes.
Such meshes and data will be investigated in more detail in follow-up studies. However,
scales and amplitudes are not directly comparable between a Fourier spectrum and the
R-a-A scale analysis, as, for example, the scales for R-a~-A correspond to scales of at
least twice the size in Fourier analysis. The R-a-A method, however, does not directly
allow to investigate grid scale behaviour with high accuracy, as the elements of each
subdomain become fewer and fewer close to the grid scale.

In follow-up studies, we will apply selected methods to both regular and fully
unstructured grids and use them to more closely investigate aspects of different momen-
tum closures and flow simulations. In principle, the R-a-A method can be extended to
fully unstructured grids by choosing an adequate decomposition of the domain. Slight
variations to this choice of decomposition can then also account for uncertainties re-
lated to the area-averaging that constructs the Walsh-Rademacher basis. However,
the effect of such choices and the process for an adequate representation of uncer-
tainty will need to be investigated further. One important aspect in this context is the
maximum resolved wavenumber of an unstructured grid. Ideally we would aim for the
highest resolution, i.e., the smallest triangles of the unstructured grid. How this can
be theoretically and rigorously defined and derived is also an open question. However,
it is unlikely that any method can achieve this highest resolution, as the sample size of
such small triangles in a mesh with widely varying resolution is potentially small and
localized, which means that a domain decomposition for the R-a-A method as well as
the oversampling and interpolation for the Fourier transformation will introduce an
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aliasing of the high wavenumbers. Local filters following ideas of Aluie (2019); Grooms
et al. (2021) may be better suited due to their local stencils, but they involve some
arbitariness that may be hard to remove and may have issues with grid scale patterns
that appear in dissipation power. This needs to be explored and compared to results
of other methods in the future. Extensions to global meshes as is classically done via
spherical harmonics (e.g., Wieczorek & Meschede, 2018) will also need some further
work. However, the R-a-A method is generally applicable to arbitrary domains if one
takes into account specific spherical projections and uses suitable subdomains. How
to best define such subdomains and whether the method is sensitive to the choice of
subdomains, remains an open question at this point.

To analyze grid scale behaviour in a local sense and especially for dissipation
power, the third and final method presented here utilizes a smoothing operator acting
on the grid scale, with successive iterations of the filter removing the contribution from
small scales. However, as this operator does not divide the domain into orthogonal
subsets (contrary to the R-a-A method), successive applications of the filter tend to
mix scale contributions. This does not present a substantial issue, though, if only grid
scales are of interest, for which a few smoothing cycles are already sufficient.

In general, the methods described and tested in this study tend to complement
each other. Due the complex structure of the grid, the violation of translational
invariance of the triangular cells and a unit cell being defined by two triangular cells
and therefore creating an internal mode of variability, we cannot expect to get a good
description of the scale behavior of the flow with just one diagnostic. We need to
rely on the combination of different diagnostics. As a note of caution, one should be
aware that interpolation can lead to inaccurate or simply wrong results for spectra,
depending on the fields under consideration. One needs to carefully chose an adequate
interpolation method or a different diagnostic altogether, such as the R-a-A method
suggested here.
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