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Abstract. We consider semilinear evolution equations for which the linear

part generates a strongly continuous semigroup and the nonlinear part is suf-
ficiently smooth on a scale of Hilbert spaces. In this setting, we prove the

existence of solutions which are temporally smooth in the norm of the lowest

rung of the scale for an open set of initial data on the highest rung of the
scale. Under the same assumptions, we prove that a class of implicit, A-stable

Runge–Kutta semidiscretizations in time of such equations are smooth as maps

from open subsets of the highest rung into the lowest rung of the scale. Under
the additional assumption that the linear part of the evolution equation is

normal or sectorial, we prove full order convergence of the semidiscretization

in time for initial data on open sets. Our results apply, in particular, to the
semilinear wave equation and to the nonlinear Schrödinger equation.
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1. Introduction

We study numerical schemes for evolution equations on Hilbert spaces by first
looking at the properties of a semidiscretization in time only; discretization in
space is then treated as a perturbation within the Hilbert space setting. This
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approach was introduced by Rothe [28]. When successful, results so obtained are
naturally uniform in the spatial discretization parameter. In contrast, when first
discretizing in space, the resulting finite dimensional system of ordinary differential
equations (ODEs) can be treated with ODE-based techniques which avoids the
difficulty arising from the analysis of equations on infinite-dimensional spaces, but
where uniformity in the spatial mesh size is not immediate.

In this paper, we consider semilinear evolution equations of the form

∂tU = AU +B(U)

on a Hilbert space Y. The linear operator A is assumed to generate a strongly
continuous, not necessarily analytic semigroup and B is a bounded nonlinear op-
erator on Y. The examples we have in mind are semilinear Hamiltonian evolution
equations such as the semilinear wave equation or the nonlinear Schrödinger equa-
tion with periodic, homogeneous Dirichlet, or homogeneous Neumann boundary
conditions, or on the line. However, the results in this paper do not depend on a
Hamiltonian structure.

We analyze the differentiability properties in initial value and time step of the
semiflow of the evolution equation and of a large class of A-stable Runge–Kutta
methods, including the Gauss–Legendre methods, when applied to the evolution
equation. To be able to differentiate the semiflow and the numerical method we
formulate conditions that guarantee uniformity of the time-interval of existence
(for the semiflow) and the maximum step size (for the numerical methods) over
bounded sets of parameters. We present two versions of such uniformity results:
Whenever existence can be achieved, uniformity holds on sufficiently small balls of
initial data; we will label results of this type by “local version.” Assuming more
regularity for the initial data, we also obtain results which are uniform on bounded
open sets so long as B is well-defined and bounded. We will label results of this
type by “uniform version.”

Note that differentiation in time results in multiplication with the unbounded
operator A and is only well-defined when considered as a map from a subset of
D(A) to Y; this is easily seen by taking B ≡ 0 and differentiating the exact semi-
flow etAU0. To be able to differentiate repeatedly in time we assume that B is
CN−k as map from some open set Dk ⊂ Yk ≡ D(Ak) to Yk for k = 0, . . . ,K and
N > K. Whether or not this condition is satisfied depends on the given evolu-
tion equation, and in particular on the boundary conditions; it is satisfied for the
equations mentioned above in the case of periodic boundary conditions and smooth
nonlinearities. We also give examples of PDEs with Neumann boundary conditions,
Dirichlet boundary conditions, and on the line where this condition is true. We then
prove that the semiflow of the evolution equation and the numerical method are of
class CK jointly in time (resp. step size) and initial data when considered as a map
from DK to Y. Both results require carefully tracking the domains of definition of
B. Moreover, under the additional assumption that A is normal (or, more gener-
ally, normal up to a perturbation which is a bounded linear operator on each of the
Yk) or that A is sectorial, we show convergence of the semidiscretization in time at
its full order p provided K = p and for initial data U0 ∈ DK+1.

The exact solution U(t) of the semilinear evolution equation is obtained as a
fixed point of a contraction map. Similarly, the Runge–Kutta methods we consider
are implicit as they are functions of the Runge–Kutta stage vectors, which in turn
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are obtained as fixed points of contraction maps. As for the exact solution, differ-
entiation in the step size of the Runge–Kutta method results in multiplication by
the unbounded operator A. Hence, these derivatives are also only well-defined on
the scale of Hilbert spaces Yk. An additional difficulty arises from the fact that
the semiflow, the numerical method, the contraction maps for semiflow and stage
vectors, and their derivatives with respect to the initial data are only strongly con-
tinuous in the time-like parameter, but not continuous in the operator norm. Hence,
these maps do not fit into the usual setting of contraction mapping theorems with
parameters. We therefore address these issues by providing an abstract theory for
the differentiability properties of fixed points of contraction mappings on a scale of
Banach spaces. This theory provides a unified framework for the time-continuous
and time-semidiscrete case.

Let us mention some related results in the literature. Le Roux [23] studies con-
vergence results for strongly A-stable approximations S(hA) of holomorphic semi-
groups ehA on Hilbert spaces, an example of which are strongly A-stable Runge–
Kutta methods applied to linear parabolic systems. Palencia [26] and Crouzeix et
al. [12] study stability of A-acceptable rational approximations S(hA) of holomor-
phic semigroups ehA on Banach spaces; they show that when Re(specA) ≤ ω for
some ω > 0, then ‖Sn(hA)‖ ≤ ΘS eωSnh for some ωS > 0, ΘS > 0, and all n ∈ N.
Lubich and Ostermann [24] prove convergence results for Runge–Kutta methods
applied to semilinear parabolic equations on Banach spaces, cf. [11]. Variable step
size schemes applied to fully nonlinear parabolic problems have been studied in [16].
González and Palencia [17] study stability of A-stable Runge–Kutta methods in the
initial value, as we do, but they study quasilinear parabolic problems and do not
consider the differentiability properties of the solution. Akrivis and Crouzeix [3]
discuss multistep semidiscretizations in time for parabolic problems; see references
therein for further related work.

In [21], quoted above, Hersh and Kato prove convergence of A-acceptable ra-
tional approximations S(hA) of non-analytic C0-semigroups ehA for smooth initial
data. Brenner and Thomée [6] show that A-acceptable rational approximations
S(hA) of non-analytic C0-semigroups ehA with Re(specA) ≤ 0 in general grow like
‖Sn(hA)‖ = O(n1/2) and study fractional order convergence for non-smooth initial
data of linear evolution equations, see also [22]; for extensions to variable step size,
see [4]. Brenner et al. [7] study convergence of rational approximations of inhomo-
geneous linear differential equations on Banach spaces, assuming stability of the
approximation. Colin et al. [8, 9] study modified Crank–Nicolson semidiscretiza-
tions in time of nonlinear Schrödinger equations and Zakharov wave equations.
They prove convergence as h→ 0, but do not analyze the order of convergence.

In this paper we have a related, but different objective. Similarly as in [6, 21, 22]
we consider semidiscretizations in time of evolution equations which are not para-
bolic, i.e., equations whose linear part does not generate an analytic semigroup. But
whereas the main issue in [6, 21, 22] is that the spectral theorem is not available for
the linear operator A so that stability estimates of the form ‖Sn(hA)‖ ≤ ΘS eωSnh,
as required for the standard convergence analysis, are not available, we assume here,
like [7], that this estimate holds true, e.g. due to normality of A on the Hilbert space
Y. Our focus is rather on semilinear problems as were considered by Lubich and
Ostermann [24] in the parabolic case; the class of Runge–Kutta schemes considered
here is the same as in their work. However, while [24, 11] assume the existence of
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a temporally smooth solution U(t) of the semilinear evolution equation (or a per-
turbation of it) to obtain higher order convergence, we provide a detailed analysis
under which conditions this assumption holds true.

Our conditions on B yield, in particular, CK smoothness of the semiflow jointly
in time and in the initial data for initial values in an open set of a Hilbert space
YK . If the conditions on B are not satisfied, the set of initial values of temporally
smooth solutions is generally a complicated set which is characterized by nonlinear
conditions; hence such initial data are in general difficult to prepare numerically.
We illustrate this for the semilinear wave equation with generic nonlinearity and
Dirichlet boundary conditions; see Section 2.5.3. Under the same conditions on B,
differentiability of the numerical method in the step size h and in the initial data
holds on open sets. This allows us to prove convergence of the numerical method
without additional stage order conditions as have been assumed in [24]. Moreover,
we obtain full order convergence, whereas e.g. the convergence results for semilinear
PDEs of [24] provide an order of convergence that is determined by the stage order
and that, in general, is smaller than the order of the method.

Lubich and Ostermann [24], in the parabolic setting, also obtain convergence re-
sults when only a perturbation of the continuous solution U(t) is temporally smooth,
and their estimate of the trajectory error then also depends on this perturbation
error. In practice, such a perturbation would typically be a space discretization; if
the continuous solution lacks temporal smoothness, the assumption of a temporally
smooth solution of a perturbation tending to zero with the step size h typically
imposes mesh conditions that exclude order p convergence of the semidiscretization
in time.

In contrast to [6, 24], our interest in this paper is not on fractional order con-
vergence for non-smooth initial data. Rather, since we are interested in obtaining
higher order differentiability of the numerical method in the time step, we restrict
attention to regular initial data U0 ∈ YK+1; in particular, we assume enough reg-
ularity to have full order of convergence, i.e., K ≥ p where p is the order of the
numerical method. Our convergence result extends the corresponding classical re-
sult for linear evolution equations of Hersh and Kato [21] to nonlinear systems.

There has been a lot of recent activity in the application of split step time-
semidiscretizations of nonlinear Schrödinger and wave equations: Besse et al. [5]
and Lubich [25] study convergence of split step time-semidiscretizations for nonlin-
ear Schrödinger equations; also see [18] for a general framework in the linear case
and more references, and [15, 14] for long-time preservation of actions of nonlinear
Schrödinger equations under split step time-semidiscretizations. While splitting
methods are very effective for simulating evolution equations for which the linear
evolution etA can easily be computed explicitly, Runge–Kutta methods are still
a good choice when an eigendecomposition of A is not available, as for example
for the semilinear wave equation in an inhomogeneous medium; see Section 2.5.5.
Moreover, the simplest example of a Gauss–Legendre Runge-Kutta method, the
implicit mid point rule, appears to have some advantage over split step time-
semidiscretizations for the computation of wave trains for nonlinear Schrödinger
equations [20, 32] because the latter introduce an artificial instability while the
former reproduces recurrences well.

In this paper, we shall hence restrict our attention to Runge–Kutta methods
which have a long history as robust and effective time integrators for both ODEs
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and PDEs; see, e.g., [29, 30]. Gauss–Legendre Runge–Kutta methods, in particular,
have attracted attention as they are symplectic and yield multisymplectic space-
time schemes for PDEs [2].

While we restrict attention to evolution equations on Hilbert spaces Y, our results
on differentiability of the semiflow and of the numerical method also hold true when
Y is a Banach space. However, the stability condition ‖Sn(hA)‖ ≤ ΘS enωSh, which
we need for our convergence result, is quite restrictive in the Banach space setting,
as discussed above.

The paper is organized as follows. In Section 2, we introduce the class of semi-
linear evolution equations considered, and study the differentiability properties of
the semiflow of these evolution equations. We also present a general result on
the differentiability of superposition operators. We then show how the semilin-
ear wave equation and the nonlinear Schrödinger equation with different types of
boundary conditions fit into this framework. In Section 3, we derive correspond-
ing statements on the well-posedness, differentiability properties, and convergence
of A-stable Runge–Kutta methods when applied to such evolution equations. In
Appendix A, we present a number of technical results, most notably a contraction
mapping theorem on a scale of Banach spaces, which are needed in the main body
of the paper.

2. Semilinear evolution equations

In this section, we set up the framework for a class of semilinear evolution equa-
tions whose time discretization we analyze subsequently. After introducing some
notation (Section 2.1) and setting up the general functional framework in Sec-
tions 2.2, we provide a setting in which the semiflow is differentiable with respect
to the initial data as well as time (Section 2.3). In many examples, the nonlineari-
ties are superposition operators of nonlinear functions; we collect their fundamental
properties in Section 2.4. These results enable us to fit our two main examples,
the semilinear wave equation (Section 2.5) and the nonlinear Schrödinger equation
(Section 2.6), into the abstract framework.

2.1. Some notation. Let Y be a Banach space. We write

BYR(U0) = {U ∈ Y : ‖U − U0‖Y ≤ R}

to denote the closed ball of radius R around U0 ∈ Y. (If no confusion about the
space is possible, we may drop the superscript, or write BR(U0) ⊂ Y instead of
BYR(U0).) Let D ⊂ Y be open. We define

D−δ = {U ∈ D : distY(U, ∂D) > δ} , (2.1)

where distY(U,D) = infW∈D‖U−W‖Y denotes the distance between a point U ∈ Y
and the set D ⊂ Y measured in the Y-norm.

For Banach spaces X and Y, and j ∈ N0, we write Ej(Y,X ) to denote the vector
space of j-multilinear bounded mappings from Y to X ; we set Ej(X ) ≡ Ej(X ,X ).

For Banach spaces X , Y, and Z, and open subsets U ⊂ X , V ⊂ Y, and W ⊂ Z,
we write

F ∈ C(m,n)(U × V;W)
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to denote a continuous function F : U × V → W whose partial Fréchet derivatives
Di
XDj

Y F (X,Y ) exist and are such that the maps

(X,Y,X1, . . . , Xi) 7→ Di
XDj

Y F (X,Y )(X1, . . . , Xi) (2.2)

are continuous from U ×V ×X i into Ej(Y,Z) for i = 0, . . . ,m and j = 0, . . . , n. In
particular, all directional derivatives are continuous. We write

F ∈ C(m,n)
b (U × V;W)

if, in addition, the partial Fréchet derivatives are bounded and the maps (2.2)
extend continuously to the boundary. (The latter is important as we will apply the
contraction mapping theorem to maps in such classes.) As usual, we write

F ∈ C(m,n)(U × V;W)

to denote that the partial Fréchet derivatives up to order (m,n) exist and are con-
tinuous in the norm topology; we write C(m,n)

b if these derivatives are, in addition,
bounded and extend continuously to the boundary. If any of the sets is not open,
we define

C(m,n)(U × V;W) ≡ C(m,n)(int(U)× int(V); int(W)) ,
where int(U) denotes the interior of U , with analogous notation for the Cb-spaces.
The spaces Cm(U ;W) and Cmb (U ;W) are defined likewise.

Note that C(m,n)(U × V;W) = C(m,n)(U × V;W) only if X is finite-dimensional.
In general,

C(m,n)
b (U × V;W) ⊃ C(m+1,n)

b (U × V;W) ∩ C(m,n+1)
b (U × V;W) (2.3a)

because any differentiable function is continuous. Moreover,

C(0,k)
b (U × V;W) = C(0,k)

b (U × V;W) . (2.3b)

In the above, V will typically be some interval of time.

2.2. General setting. We consider semilinear evolution equations on a Hilbert
space Y,

∂tU = F (U) = AU +B(U) , (2.4)
where U : [0, T ] → Y. Equation (2.4) formally looks like an ODE, but will be
thought of as being posed on an infinite-dimensional function space Y.

Our main examples are the following.

Example 2.1 (Semilinear wave equation). For the semilinear wave equation

∂ttu = ∂xxu− f(u) , (2.5)

we write v = ∂tu and U = (u, v)T which, for t fixed, shall be an element of a Hilbert
space Y to be specified later, so that

A =
(

0 id
∂2
x 0

)
and B(U) =

(
0

−f(u)

)
. (2.6)

Example 2.2 (Nonlinear Schrödinger equation). For the nonlinear Schrödinger equa-
tion

i ∂tu = −∂xxu+ ∂uV (u, u) , (2.7)
we set U ≡ u, so that

A = i ∂2
x and B(U) = −i ∂uV (u, u) . (2.8)
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In the following, we introduce the framework in which we obtain smooth solutions
of (2.4). Later, in Sections 2.5 and 2.6, we show how the semilinear wave equation
and the nonlinear Schrödinger equation as formally introduced above fit into this
framework. It is well known that the following conditions imply the existence of a
semiflow of (2.4).

(A0) A is a closed, densely defined linear operator on Y and generates a C0-
semigroup on Y.

(B0) B : D → Y is Lipschitz on some open set D ⊂ Y.
For the definition of strongly continuous semigroups (C0-semigroups) and detailed
proofs, see, e.g., [27]. For our purposes, the main points can be summarized as
follows.

Condition (A0) implies, in particular, that there exist constants ω and Θ such
that for every t ≥ 0

‖etA‖ ≤ Θ eωt (2.9)
with Re(specA) ≤ ω. Moreover, for every λ ∈ C with Reλ > ω,

‖(λ−A)−1‖ ≤ Θ
Reλ− ω

. (2.10)

After reformulating (2.4) in its mild formulation

U(t) = etAU0 +
∫ t

0

e(t−s)AB(U(s)) ds , (2.11)

the contraction mapping theorem applies and we obtain local-in-time well-posedness
of our abstract semilinear evolution equation.

Let Φt denote the semiflow of (2.4), i.e. the map U0 7→ Φt(U0) such that U(t) =
Φt(U0) satisfies (2.11) with U(0) = U0. We sometimes write Φ(U0, t) in place of
Φt. When U0 ∈ D(A), then t 7→ Φt(U0) is differentiable.

2.3. Regularity of the semiflow. When B = 0, then t 7→ Φt(U) is k-times
differentiable as a map from D(Ak) to Y for every k ∈ N. In this section, we
extend this result to semilinear evolution equations under suitable assumptions on
the nonlinearity B and provide bounds on the derivatives.

For k ∈ N0, we define
Yk = D(Ak)

endowed with the inner product

〈U1, U2〉Yk = 〈AU1, AU2〉Yk−1 + 〈U1, U2〉Yk−1 . (2.12)

Then
‖A‖Y`+1→Y` ≤ 1 and ‖U‖Y` ≤ ‖U‖Y`+1

(2.13)

for all U ∈ Y`+1.
Given δ > 0 and a hierarchy of open sets D` ⊂ Y` for ` = 0, . . . , L for L ∈ N

with D0 ≡ D, we define D−δ0 ≡ D−δ as in (2.1) and, for ` = 1, . . . , L,

D−δ` ≡ {U ∈ D` : distY`(U, ∂D`) > δ} .

Then, by construction and due to (2.13), BY`δ (U) ⊂ D` for all U ∈ D−δ` and
` = 0, . . . , L.

Let Y1 be a Banach space continuously embedded into the Banach space Y.
Then D1 ⊂ Y1 is called a δ∗-nested subset of D ⊂ Y if D−δ1 ⊂ D−δ for all δ ∈ [0, δ∗].
Furthermore we say that the family D0, . . . ,DL is δ∗-nested if D−δ` ⊂ D−δ`−1 for all
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δ ∈ [0, δ∗] with δ∗ > 0 and ` = 1, . . . , L. For example, the family Dk = BYkR (U0) is
δ∗-nested for every δ∗ ∈ (0, R) and U0 ∈ YL. However, an arbitrary nested family
D` ⊂ Y` may not be δ∗-nested for any δ∗ > 0.

To state a differentiability result for higher time derivatives, we need the following
specific assumptions on the regularity of B on the scale Yj . The same assumptions
will also be required for the convergence analysis of A-stable Runge–Kutta schemes
in Section 3.

(B1) There exist K ∈ N0, N ∈ N with N > K, and a sequence of δ∗-nested Yk-
bounded and open sets Dk such that B ∈ CN−kb (Dk;Yk) for k = 0, . . . ,K.

We denote the bounds on B : Dk → Yk and its derivatives by constants Mk, M ′k,
etc., for k = 0, . . . ,K, and identify M = M0, M ′ = M ′0, and D = D0. In addition
to the domains D0, . . . ,DK defined in this assumption, we will sometimes need to
refer to DK+1, which may be any δ∗-nested subset of DK which is bounded and
open in YK+1.

We note that nonlinear continuous operators B ∈ C(D;Y) do not generally map
closed bounded sets into closed bounded sets, see Remark 2.3 below. However, the
boundedness requirements can always be met on balls inside the domain of B, i.e., if
B is Cn from some open set D ⊂ Z to Z then, by continuity, for every U0 ∈ D there
is some R > 0 such that B : BR(U0) ⊂ D → Z and its derivatives are uniformly
bounded so that B ∈ Cnb (BR(U0);Y).

Remark 2.3. The existence of continuous unbounded nonlinear functionals on an
infinite-dimensional Banach space X can be seen by the following construction.
It is a standard result that there exists a sequence xj ∈ X such that ‖xj‖ = 1
and ‖xj − xk‖ ≥ 3/4; on a Hilbert space, an orthonormal basis will do. Now let
hj ∈ C(X ,R) have support on BX1/4(xj) with hj(xj) = 1. Then F defined by

F (x) =
∞∑
j=0

j hj(x)

satisfies F ∈ C(X ,R), since we have hj(x) = 0 for all but at most one j. But F
does not map the closed bounded set BX1 (0) into a bounded set.

Superposition operators of smooth functions f : D ⊂ Rd → Rm on Sobolev spaces
as occur in Examples 2.1 and 2.2 above are bounded. Indeed, for superposition
operators we can construct δ∗-nested domains such that condition (B1) holds, see
Theorem 2.12 and Sections 2.5 and 2.6 below.

Under assumptions (A0) and (B1), the semiflow Φt of (2.4) exists on each Yk.
In the following, we show that a time derivative of order ` maps ` rungs down this
scale of Hilbert spaces.

Theorem 2.4 (Regularity of the semiflow, local version). Assume (A0) and (B1).
Choose R ∈ (0, δ∗] such that D−RK 6= ∅ and pick U0 ∈ D−RK . Let R∗ = R/(2Θ)
with Θ from (2.9). Then there is T∗ = T∗(R,U0) > 0 such that the semiflow
(U, t) 7→ Φt(U) of (2.4) satisfies

Φ ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (BYKR∗ (U0)× [0, T∗];B
Yk−`
R (U0)) . (2.14a)

In particular,
Φ ∈ CKb (BYKR∗ (U0)× [0, T∗];BYR(U0)) . (2.14b)
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The bounds on Φ and T∗ depend only on the bounds afforded by (B1), (2.9), R, and
U0.

Proof. Writing t = τT for some fixed T > 0, we see that a solution to the mild
formulation (2.11) is a fixed point of the map

Π(W ;U, T )(τ) = eτTAU + T

∫ τ

0

e(τ−σ)TAB(W (σ)) dσ . (2.15)

This reformulation is useful because we want to quote the contraction mapping
theorem on a scale of Banach spaces, Theorem A.9, to prove the differentiability
properties of Φ as claimed. We work on the scale Zj = Cb([0, 1];Yj) and seek a
fixed point of Π in Wj = Cb([0, 1];BYjR (U0)) for j = 0, . . . ,K, with parameter sets
U ≡ int(BYKR∗ (U0)) ⊂ X = YK and I = (0, T∗). Clearly, Π maps Wj × U × I into
Zj . To bound the range of Π, we estimate, for j = 0, . . . ,K,

‖Π(W ;U, T )− U0‖Yj

≤ ‖eτTAU0 − U0‖Yj + ‖eτTA(U − U0)‖Yj + T

∫ τ

0

‖e(τ−σ)TAB(W (σ))‖Yj dσ

≤ ‖eτTAU0 − U0‖Yj + Θ eωT R∗ + T Θ eωT Mj . (2.16)

With the choice R∗ = R/2Θ, we observe that for sufficiently small T∗ and all
T ∈ [0, T∗] the right hand side can be made less than R for j = 0, . . . ,K independent
of τ ∈ [0, 1]. We can thus take the supremum over τ ∈ [0, 1], which altogether proves
that Π maps Wj ×U ×I into Wj . Condition (i) of Theorem A.9 then follows from
our assumptions on A and B.

Similarly, we estimate

‖DWΠ(W ;U, T )‖E(Cb([0,1];Yj)) ≤ T Θ eωT M ′j , (2.17)

so that Π is a uniform contraction for all U ∈ U , W ∈ W, and T ∈ I = (0, T∗) with
a possibly smaller value of T∗. Here we used that B is at least C1 on the highest
rung of the scale due to the requirement that N > K in (B1). Hence, condition (ii)
of Theorem A.9 is verified.

Theorem A.9 then implies that the fixed point W of Π satisfies

W ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (BYKR∗ (U0)× [0, T∗];Wk−`) .

To infer (2.14a), we recall that ΦτT (U) = W (U, T )(τ); hence ∂mU ∂
n
TΦT (U) =

∂mU ∂
n
TW (U, T )(1). Finally, (2.14b) follows from Lemma A.2. �

Remark 2.5. With the choice of norm (2.12), the fundamental estimates in this pa-
per which carry named constants, in particular Θ in (2.20) and Λ, cS in Lemma 3.11,
are the same on all Yk for k ∈ N0 as these constants are norms of operators like etA

which commute with A. Thus, if Yk for k ∈ N were endowed with a different, but
equivalent set of norms, these and consequent constants would need to be adopted
and possibly become dependent on the rung.

Theorem 2.4 does not guarantee that the time of existence of the solution can be
chosen uniformly over D or even over D−δ for some δ > 0. The following theorem
shows that such uniformity can be obtained along with improved regularity over
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bounded domains other than balls on the expense of requiring the initial data to
lie in a set one step up the scale.

In the following, define

RK+1 = sup
U∈D−δK+1

‖U‖YK+1
. (2.18)

Theorem 2.6 (Regularity of the semiflow, uniform version). Assume (A0) and
(B1). Choose δ ∈ (0, δ∗] small enough such that D−δK+1 6= ∅. Then there exists
T∗ = T∗(δ) > 0 such that the semiflow (U, t) 7→ Φt(U) of (2.4) satisfies (2.14) with
uniform bounds for all U0 ∈ D−δK+1, with R = δ, and such that

Φ ∈
⋂

j+k≤N
`≤k≤K+1

C(j,`)

b (D−δK+1 × [0, T∗];Yk−`) . (2.19a)

In particular, when N > K + 1,

Φ ∈ CK+1
b (D−δK+1 × [0, T∗];D) . (2.19b)

The bounds on Φ and T∗ depend only on δ and on the bounds afforded by (B1),
(2.18), and (2.9).

Proof. We apply Theorem 2.4 for each U0 ∈ D−δK+1 with R = δ. We note that in
the proof of Theorem 2.4, even in the case K = 0, the guaranteed time of existence
T∗ cannot be chosen uniformly for U0 ∈ D−δ because the first term on the right of
(2.16) cannot be made uniformly small. However, we may alternatively estimate,
using (2.13) and (2.18), that for j = 0, . . . ,K

‖eτTAU0 − U0‖Yj ≤ T max
t∈[0,T ]

‖AetAU0‖Yj ≤ T Θ eωT R1+j . (2.20)

Inserting this estimate into (2.16), we see that we can choose T∗ > 0 small enough
such that Π( · ;U, T ) maps Wj = BZjR (U0) into itself for all U0 ∈ D−δK+1 and T ∈
[0, T∗]. Following the proof of Theorem 2.4, we find that (2.14a) holds with uniform
bounds for all U0 ∈ D−δK+1 when R = δ, thereby implying

Φ ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (D−δK+1 × [0, T∗];Dk−`) (2.21)

with bounds which only depend on the bounds afforded by (B1), (2.9), (2.18), and
on δ. Next, we prove that Φ maps into a space one step up the scale, namely

AΦ ∈
⋂

j+k≤N−1
`≤k≤K

C(j,`)

b (D−δK+1 × [0, T∗];Yk−`) . (2.22)

Note that by [27, Theorem 6.1.5], a mild solution U(t) of (2.4) satisfies U(t) ∈
D(A) if U(0) ∈ D(A) and B ∈ C1(D,Y); thus, the formal identity dW (τ)/dτ =
T (AW (τT ) + B(W (τ))) for W (τ) = U(τT ) holds true. Hence, by applying A to
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the fixed point equation (2.15) and integrating by parts, we find

AW (τ) = eτTAAU + T

∫ τ

0

Ae(τ−σ)TAB(W (σ)) dσ

= eτTA (AU +B(U))−B(W (τ))

+ T

∫ τ

0

e(τ−σ)TA DB(W (σ))(AW (σ) +B(W (σ))) dσ .

This is a linear fixed point equation

W̃ = Π̃(W̃ , U, T )(τ) = eτTA (AU +B(U))−B(W (τ))

+ T

∫ τ

0

e(τ−σ)TA DB(W (σ))(W̃ (σ) +B(W (σ))) dσ (2.23)

for W̃ (U, T ) = AW (U, T ). We consider the fixed point equation (2.23) for W̃ = AW

with Wj = BrZj (0) for j = 0, . . . ,K with r > 0 big enough such that Π̃ maps each
Wj into itself. Applying Lemma A.6 (chain rule on the scale of Banach spaces)
and Lemma A.7 to the right hand side of the fixed point equation (2.23), we verify
once more the assumptions of Theorem A.9 with N replaced by N − 1. This yields
(2.22).

It remains to be shown that we can translate improved spatial regularity into
differentiability in time by invoking the semilinear evolution equation (2.4). Due
to (2.21), Lemma A.6 implies that B ◦ Φ is in the same class (2.22) as AΦ and,
since ∂tΦ = AΦ + B ◦ Φ, so is ∂tΦ. Combining this result, (2.21), and (2.22) via
Lemma A.4 implies (2.19a).

Finally, (2.19b) follows from Lemma A.2 with K replaced by K + 1. �

Remark 2.7. It is worth noting that, even though we find that Φt maps into YK+1,
the proof, being based on the fixed point problem (2.23), requires B to be defined
only up to rung K. The same pattern occurs when studying the Runge–Kutta
numerical time-h maps in Section 3.

Remark 2.8 (Image of semiflow). The proof of Theorem 2.6 shows that, actually,

Φ ∈
⋂

j+k≤N
`≤k≤K+1

(k,`)6=(K+1,0)

C(j,`)

b (D−δK+1 × [0, T∗];Dk−`) .

Remark 2.9. If A = −A∗ is skew-symmetric on the Hilbert space Y, as for the
nonlinear Schrödinger equation (see Section 2.6), then A is normal, iA is self-adjoint
and, by Stone’s theorem, generates a unitary group etA. More generally, if A is skew-
symmetric up to a perturbation which is bounded on all Yk, as for the semilinear
wave equation (see Section 2.5), then A generates a C0 group etA on each Yk. In
both cases, (2.9) and (2.10) may be replaced by the following statement: There
exist a constant ω with |Re(specA)| ≤ ω and a constant Θ such that for every
t ∈ R and for every λ ∈ C with |Reλ| > ω

‖etA‖ ≤ Θ eω|t|, ‖(λ−A)−1‖ ≤ Θ
|Reλ| − ω

,

see [27]. Then the semiflow Φt is also a flow with interval of existence [−T∗, T∗] and
regularity as specified in Theorem 2.4 and Theorem 2.6.
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2.4. Superposition operators. To study the well-posedness of evolution equa-
tions such as (2.5) and (2.7), we need to consider superposition operators f : G` ⊂
H` → H` of functions f : G ⊂ Rd → Rd. This concept is widely used; see, e.g.,
[19, 27] for specific examples. In this section, we characterize superposition opera-
tors in sufficient generality for later use.

Let I = [a, b] ⊂ R be a bounded closed interval. We write H`(I; Rd) to denote
the Sobolev space of functions u : I → Rd whose weak derivatives up to order ` are
contained in L2(I; Rd).

Lemma 2.10 ([1]). The space H`(I; R) is a topological algebra for every ` > 1/2.
Specifically, there exists a constant c = c(`) such that for every u, v ∈ H`(I; R) the
product uv ∈ H`(I; R) satisfies

‖uv‖H`(I,R) ≤ c ‖u‖H`(I;R) ‖v‖H`(I;R) . (2.24)

Armed with this result, we can characterize more general superposition operators
where a function f : G→ Rm for some open G ⊂ Rd induces a mapping u 7→ f(u)
between function spaces. The kth derivative of f as a function on Rd is a k-
linear map on Rd. As such, it induces a k-linear superposition operator between
function spaces. A priori, it is not clear whether the kth Fréchet derivative of the
superposition operator of f equals the superposition operator of the kth derivative
of f on Rd. The following lemma and theorem provide a setting in which this is
true, so that we use the symbol Dkf for both these objects.

Lemma 2.11. Let G ⊂ Rd be open, let f ∈ CNb (G; Rm) for some N ∈ N0, and set

G = {u ∈ C(I; Rd) : u(I) ⊂ G} .
Then f ∈ CNb (G, C(I; Rm)) and the derivatives of f as an operator from C(I; Rd)
to C(I; Rm) are the superposition operators of the derivatives of f as a function on
Rd.

Proof. We proceed iteratively for n = 0, . . . , N . The Taylor theorem with integral
remainder asserts that for fixed z0 ∈ G∣∣∣∣f(z)−

n∑
i=0

Dif(z0)
i!

(z − z0)i
∣∣∣∣ ≤ ρ(z0, z) |z − z0|n (2.25)

(when d > 1, Dif is an i-linear map acting on the tensor product (z − z0)i), where

ρ(z0, z) =
1
n!

max
θ∈[0,1]

|Dnf(z0 + θ(z − z0))−Dnf(z0)|

is continuous in z0, z ∈ G and uniformly continuous for z0, z ∈ K whenever K ⊂ G
is compact.

We now fix u0 ∈ G and let u ∈ G. Clearly, u0(I) and u(I) are compact subsets of
G, so that, setting z0 = u0(x) and z = u(x) in (2.25), we may take the supremum
over x ∈ I, thereby obtaining∥∥∥∥f(u)−

n∑
i=0

Dif(u0)
i!

(u− u0)i
∥∥∥∥
C(I;Rm)

≤ ‖ρ(u0, u)‖C(I;Rm) ‖u− u0‖
n

C(I;Rd)
.

Since ρ(u0, u0) = 0, this proves that f ∈ Cn(G; C(I; Rm)) and identifies the Fréchet
derivative of order n as the superposition operator of the derivative of order n on
Rd.
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Since f ∈ Cb(G,Rm), the set f(G) is a bounded subset of C(I; Rm). Moreover f
extends continuously to the boundary of G since f : G→ Rm does.

To prove boundedness of Dkf as a map from G to Ek(C(I; Rd), C(I; Rm)) for
k = 1, . . . , N , we employ its identification with the superposition operator of the
k-linear map Dkf on Rd and estimate

‖Dkf(u)(u1, . . . , uk)‖C(I;Rm) ≤ c ‖D
kf(u)‖

C(I;Rmdk )

k∏
i=1

‖ui‖C(I;Rd)
(2.26)

for some c > 0, noting that Dkf ∈ Cb(G; C(I; Rmdk)) by the argument for the case
k = 0. �

The corresponding result on the Sobolev scale is as follows.

Theorem 2.12. Let f ∈ CNb (G; Rm) for some N ∈ N0 and open set G ⊂ Rd. For
each ` = 1, . . . , N , let G` denote an H`-bounded and open subset of G ∩ H`(I; Rd)
with G as in Lemma 2.11. Then

f ∈ CNb (G1;L2(I; Rm)) ∩
⋂

k+`≤N
`≥1

Ckb(G`;H`(I; Rm)) .

The derivatives of f as an operator on H` are the superposition operators of the
derivatives of f as a function from Rd to Rm.

Proof. The statement f ∈ CNb (G1;L2(I)) is a direct consequence of Lemma 2.11
and the continuity of the embeddings H1(I; Rm) ⊂ C(I; Rm) ⊂ L2(I; Rm). (The
first inclusion is due to the Sobolev embedding theorem.)

Next, we show that f ∈ C`b(G; Rm) is bounded as an operator from G` to
H`(I; Rm) for `= 1, . . . , N . We proceed inductively in `. Since, for some C` > 0,

‖w‖H` ≤ C` (‖w‖H`−1
+ ‖wx‖H`−1

) (2.27)

for w ∈ H`(I), the inductive step is achieved by taking w = f(u) and showing that
‖∂xf(u)‖H`−1 is bounded over u ∈ G`. Indeed, when ` = 1, ‖f(u)‖L2 is uniformly
bounded in u ∈ G1 by the argument above, and there is a constant c1 > 0 such that

‖∂xf(u)‖L2(I;Rm) ≤ c1 ‖Df(u)‖C(I;Rdm)
‖ux‖L2(I;Rd)

is uniformly bounded for u ∈ G1 by Lemma 2.11. We conclude that f is bounded
as map from G1 to H1(I; Rm). When ` ≥ 2, applying the algebra inequality (2.24)
component-wise, we estimate

‖∂xf(u)‖H`−1(I;Rm) ≤ c2 ‖Df(u)‖H`−1(I;Rdm)
‖ux‖H`−1(I;Rd)

,

for some constant c2 > 0, where the right side is uniformly bounded for u ∈ G` since
‖Df(u)‖H`−1(I,Rdm) is uniformly bounded for u ∈ G`−1 by induction hypothesis.
Thus, by (2.27) with w = f(u), using the induction hypothesis once more, we
obtain boundedness of f : G` → H`(I; Rm).

To prove continuity and continuous differentiability of f : G` → H`, we introduce,
for k = 0, . . . , N − 1,

Fk(u0, u) = f(u)−
k∑
i=0

Dif(u0)
i!

(u− u0)i
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and write ∂xFk(u0, u) in the form

∂xFk =
[
Df(u)−

k∑
i=0

Di+1f(u0)
i!

(u− u0)i
]
∂xu+

Dk+1f(u0)
k!

(u− u0)k ∂x(u− u0) .

When ` = 1, we estimate for every k = 0, . . . , N − 1, using Lemma 2.11 and the
Sobolev embedding theorem again, that, for u ∈ G`,

‖∂xFk‖H`−1(I;Rm) ≤ c3
∥∥∥∥Df(u)−

k∑
i=0

Di+1f(u0)
i!

(u− u0)i
∥∥∥∥
C(I)
‖u‖H`

+ c3
1
k!
‖Dk+1f(u0)‖Cb(I) ‖u− u0‖

k

C(I) ‖u− u0‖H`(I)

≤ σ(u0, u) ‖u− u0‖
k

H`(I) (2.28)

for some σ ∈ C(G`×G`; R+
0 ) with σ(u0, u) = 0 and some constant c3 > 0. Moreover,

since f ∈ CN (G1;L2), there exists a function ω ∈ C(G1 × G1; R+
0 ) with ω(u0, u) = 0

such that ‖Fk‖L2 ≤ ω(u0, u) ‖u− u0‖kH1
. Hence, (2.27) with w = Fk(u0, u) implies

f ∈ CN−1(G1;H1).
When ` ≥ 2, we obtain, by applying (2.24) recursively and component-wise to

the second term of ∂xFk, an estimate as on the first and second line of (2.28)
with H`−1(I) in place of C(I) for every k = 0, . . . , N − `. Applying the induction
hypothesis to both f and Df shows, as before, that f ∈ CN−`(G`;H`) and that its
derivatives are the superposition operators of the derivatives of f as a function on
Rd.

Due to this identification, we can prove boundedness of Dkf as a map from G`
to Ek(H`(I; Rd),H`(I; Rm)) by applying (2.24) recursively and component-wise to
Dkf(u)(u1, . . . , uk). In this way we obtain an estimate of the form (2.26) with H`
in place of Cb. The bound is then achieved by noting that Dkf : G` → H`(I; Rmdk)
is a bounded operator by the argument provided earlier in this proof for k+ ` ≤ N .

Finally, we need to show that Dkf : G` → Ek(H`(I; Rd),H`(I; Rm)) extends
continuously to the boundary of G` when k + ` ≤ N . For k = 0 this follows
recursively from (2.28) and f ∈ CNb (G; C(I)) as above. Applying this result to
Dkf : G` → H`(I; Rmdk) and using once again the identification of derivatives of
the superposition operator with the superposition operators of the derivatives, we
complete the proof. �

2.5. Example: the semilinear wave equation. In the case of the semilinear
wave equation (2.5), the operators A and B are given by (2.6).

2.5.1. Periodic boundary conditions. Since the Laplacian is diagonal in the Fourier
representation, it is easy to see that the spectrum of A is given by specA = {ik : k ∈
Z} and that the group generated by Q0A is unitary on any

Y` = H`+1(I; R)×H`(I; R) for ` ∈ N0 .

Here P0 is the spectral projection associated with eigenvalue 0 and Q0 = id−P0.
Hence, A generates a C0-group on Y` and assumption (A0) is met. The full group
etA, however, is not unitary due to the secular term from the Jordan block of A
when restricted to P0Y`.
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Assume that the nonlinearity f of the semilinear wave equation (2.5) satisfies
f ∈ CNb (G; R) for some N ∈ N and some open set G ⊂ R, and let D = Du×Dv where
Du is the set G1 from Theorem 2.12 and Dv denotes an open bounded subset of
L2(I). Then, by Theorem 2.12, the nonlinearity B satisfies assumption (B1) on the
scale defined above with K < N if we recursively define Dk = D−δ∗k−1 ∩ int(BYkR (0))
for some R > 0 with D ⊂ BYR(0) and choose δ∗ > 0 small enough to ensure that all
Dk are non-empty. Hence, Theorems 2.4 and 2.6 give regularity of the flow of the
semilinear wave equation on the scale Yk defined above.

2.5.2. Neumann boundary conditions. In the case of Neumann boundary conditions
on I = [0, π], we set Y = H1(I,R)×L2(I,R) as before; the operator A then has the
same spectrum and etQ0A is again unitary. In this case, Yk = Hnb

k+1(I,R)×Hnb
k (I,R)

with

Hnb
k (I,R) = {u ∈ Hk(I,R) : u(2j+1)(0) = u(2j+1)(π) = 0 for j = 0, . . . , bk/2c − 1} .

When G ⊂ R is open and f ∈ CNb (G; R), assumption (B0) holds as before on the
open bounded set D ⊂ Y defined above. We claim that (B1) also holds for K < N .
To prove the claim, we must show that f maps Hnb

k+1(I,R) ∩ Du into Hnb
k (I,R)

for k = 0, . . . ,K. When k = 1, no boundary conditions need to be checked.
When k = 2, we observe that (∂xf(u))(x) = f ′(u(x))ux(x) = 0 for x = 0, π and
u ∈ Hnb

2 ∩ Du, so f(u) ∈ Hnb
1 . Further, when k = 3, . . . ,K, all terms in the sum

obtained from computing ∂2j+1
x f(u) contain at least one odd derivative of u of order

at most 2j + 1, so the boundary conditions remain satisfied.

2.5.3. Dirichlet boundary conditions. When endowed with Dirichlet boundary con-
ditions, A generates a unitary semigroup. We take I = [0, π] as before and set
Yk = H0

k+1(I,R)×H0
k(I,R), where

H0
k(I,R) = {u ∈ Hk(I,R) : u(2j)(0) = u(2j)(π) = 0 for j ∈ N0 with 2j ≤ k − 1} .

Let G ⊂ R be open with 0 ∈ G and let f ∈ CNb (G,R) as before. Then condition (B0)
is satisfied with D = Du ×Dv, as before. Condition (B1) is satisfied if f (2j)(0) = 0
for 0 ≤ 2j ≤ K − 1.

When f does not satisfy these boundary conditions, necessary conditions for the
existence of time derivatives take a complicated structure. To see this, it suffices
to consider differentiability at t = 0. For U ′(0) to exist, we have the obvious
requirement that v(0, 0) = v(0, π) = 0. For U ′′(0) to exist, the non-homogeneous
boundary condition ∂2

xu(0, 0) = ∂2
xu(0, π) = −f(0) needs to be satisfied. For U ′′′(0)

to exist, ∂2
xv(0, 0) = ∂2

xv(0, π) = 0 must hold. Finally, for U (4)(0) to exist, a
straightforward computation shows that ∂4

xu(0, x)+f ′′(0)u2
x(0, x) = f ′(0) f(0) must

hold at x = 0, π. This nonlinear boundary condition is difficult to handle, and in
this situation the space of initial conditions allowing temporally smooth solutions is
not an open set in a suitable Hilbert space. Therefore, we restrict our attention to
nonlinearities B of the semilinear evolution equation (2.4) which satisfy condition
(B1).

2.5.4. The semilinear wave equation on the line. When I = R, we take Y = H1(R)×
L2(R). Using the Fourier transform, we verify that etA is unitary on Y. Lemma
2.10 remains valid with I = R, but the assertions of Theorem 2.12 only hold true
provided 0 ∈ G and f(0) = 0. For example, when f is a polynomial without
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constant term and Dk = BYkR (0) for some R > 0, then B satisfies condition (B1)
and Theorem 2.4 applies.

2.5.5. A semilinear wave equation in an inhomogeneous material. Instead of (2.5),
let us consider the non-constant coefficient semilinear wave equation

∂ttu = ∂x(a ∂xu) + b u+ f(u)

where a, b ∈ CNb (I; R) with a(x) > 0 and b(x) ≤ 0 for x ∈ I. For periodic boundary
conditions and on the line, the setting and conclusions of Sections 2.5.1 and 2.5.4
apply. For Dirichlet boundary conditions on I = [0, π], the spaces Yk also carry
over from Section 2.5.3 and it is straightforward to verify that (B1) is satisfied with
K = 4 provided f(0) = f ′′(0) = 0 and N > K.

We remark that the semilinear wave equation in inhomogeneous media can,
in principle, be solved numerically by splitting methods (see the introduction for
references). Here, however, splitting methods lose their advantage because the
explicit computation of etA is expensive for operators with non-constant coefficients.

2.6. Example: the nonlinear Schrödinger equation. We first consider peri-
odic boundary conditions. In this case, the Laplacian is diagonal in the Fourier
representation with eigenvalues −k2 and A generates a unitary group on L2(I; C)
and, more generally, on H`(I; C) with ` ∈ N0.

In the notation of Section 2.2, we choose Y` = H2`+1(I; C). Then (A0) is sat-
isfied. If the potential V (u, u) satisfies V ∈ CK+2+N

b (G; R) with K < N for some
open subset G ⊂ R2 ≡ C then, by Theorem 2.12, the nonlinearity B defined in (2.8)
satisfies assumption (B1) with D = G1 from Theorem 2.12 and Dk defined recur-
sively as for the semilinear wave equation (Section 2.5.1). Therefore, Theorem 2.4
and Remark 2.9 assert the existence of a flow Φ on Y and specify its regularity.

In the case of Neumann boundary conditions, we choose Y` = Hnb
2`+1(I; C) with

I = [0, π] and Hnb
2`+1 defined in Section 2.5.2, so that (B1) is satisfied.

In the case of Dirichlet boundary conditions, we choose Y` = H0
2`+1(I; C) as

defined in Section 2.5.3. Then (B1) is satisfied for any V (u, ū) = v(|u|2) where
v ∈ CK+2+N

b (R+
0 ; R), in particular for the standard case where V (u) = |u|4/2.

On the line, Y` = H2`+1(R; C) and condition (B1) is satisfied if, for example,
V (u) is a polynomial in u1 = Re(u) and u2 = Im(u) with no linear term, so that
f(0) = ∂ūV (0, 0) = 0.

Remark 2.13. While the setup in this section concern PDEs in one spatial dimen-
sion, our results on superposition operators can be extended to “nice” n-dimensional
spatial domains since Lemma 2.10 holds on H`(Ω,Rd) for ` > n/2 [1], when, e.g.,
Ω ⊂ Rn is a domain with smooth boundary or Ω = Rn. So we could also consider
the nonlinear Schrödinger equation on R2 and R3.

Remark 2.14 (Inhomogeneous boundary conditions). We can treat inhomogeneous
time-independent mixed linear boundary conditions of the form BC(U) = g for the
above examples by solving Av = 0, BC(v) = g and then applying a Runge–Kutta
method to U − v. This is equivalent to applying a Runge-Kutta method to U with
boundary conditions BC(U) = g, cf. the discussion in [24].
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3. A-stable Runge–Kutta methods on Hilbert spaces

In this section, we first prove an abstract convergence result for discretizations
of evolution equations on Hilbert spaces. Then, in Section 3.2, we introduce a
class of A-stable Runge–Kutta methods which are well defined when applied to the
semilinear PDE (2.4) under assumptions (A0) and (B0). In Section 3.3, we study
the regularity of A-stable Runge–Kutta methods under the additional condition
(B1) and finally apply the abstract convergence result to those schemes.

3.1. An abstract convergence theorem on Hilbert spaces. In this section
we prove an abstract convergence result for evolution equations on Hilbert spaces,
Theorem 3.1. Although this theorem is modeled after the basic local convergence
result for ODEs and there are a lot of results on the convergence of time discretiza-
tions of specific PDEs in the literature, see Section 1, we are not aware of any result
that is as general as this theorem.

In the classical setting of ordinary differential equations ẏ = f(y), a one-step
method yn+1 = ψh(yn) is of order p if, formally, y(h)−ψh(y0) = O(hp+1). In other
words, the local error is controlled by the Taylor integral remainder of order p+ 1.
It is then easy to show that the method is globally convergent of order p; see, e.g.,
[13].

The situation is more subtle in the case of a differential equation

U̇ = F (U) (3.1)

on a Hilbert space X : First, it is not clear whether the time-h map Ψh associated
with a given one-step method applied to (3.1) is well defined as map from an open
subset of X to itself. It depends on the equation and on the chosen one-step method,
and typically fails for explicit Runge–Kutta methods. Second, even if U 7→ Ψh(U)
is well defined and continuous, its derivatives with respect to h will usually fail
to be defined on the same set. Thus, in order to control the Taylor remainder
U(h) − Ψh(U0) in the case of a discretization of a PDE (3.1), we must consider
the remainder as a map from a space Z of high regularity into a space X of low
regularity. In this setting, the usual proof that consistent one-step methods are
convergent applies under the following assumptions.

Let X and Z ⊂ X be Hilbert spaces, where Z is continuously embedded in X
and let Ψh be a one-step discretization of (3.1) which is of classical order p. Assume
there exist sets DX ⊂ X and DZ ⊂ Z such that DX is open in X , DZ ⊂ DX , and
there exist constants h∗ > 0, Θ∗ > 0, such that the following hold.

(C1) For fixed h ∈ [0, h∗], the map U 7→ Ψh(U) is C1(DX ;X ). Moreover, there
exists a possibly h-dependent norm ‖ · ‖X ,h on X with

‖U‖X ≤ ‖U‖X ,h ≤ Θ∗ ‖U‖X (3.2)

for all U ∈ X and h ∈ [0, h∗] such that

sup
U∈DX

‖DΨh(U)‖E(X ),h = 1 +O(h) (3.3)

for all h ∈ [0, h∗]. Here, ‖·‖E(X ),h denotes the operator norm induced by
‖·‖X ,h.
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(C2) For fixed U ∈ DZ , the map h 7→ Ψh(U) is in Cp+1([0, h∗];X ), and

sup
U∈DZ
h∈[0,h∗]

‖∂p+1
h Ψh(U)‖X <∞. (3.4)

Condition (C1) can be seen as a stability condition, whereas condition (C2) ensures
consistency.

Theorem 3.1. In the setting above, fix U0 ∈ DZ and suppose that there exists a
solution

U ∈ C([0, T ];DZ) ∩ Cp+1([0, T ];DX ) (3.5)
to the initial value problem (3.1) for some T > 0 with U(0) = U0. Let Ψh be a
one-step discretization of (3.1) of order p ≥ 1; let Um = (Ψh)m(U0) denote the
associated numerical solution.

Then there exist constants h∗ > 0, c1, and c2, depending only on T , the norm
of U in Cp+1([0, T ];X ), distX ({U(t) : t ∈ [0, T ]}, ∂DX ), and on the constants from
(3.2), (3.3) and (3.4), such that for every h ∈ [0, h∗],

‖Um − U(mh)‖X ≤ c2 ec1mh hp

so long as mh ≤ T .

Proof. Since DX is open, there is some δ > 0 such that BXδ (U(t)) ⊂ DX for each
t ∈ [0, T ]. Setting

Em = ‖Um − U(mh)‖X ,h ,
we estimate, with Φt(U(s)) = U(t+ s),

Em+1 ≤ ‖Ψh(Um)−Ψh(U(mh))‖X ,h + ‖Ψh(U(mh))− Φh(U(mh))‖X ,h
≤ sup
θ∈[0,1]

‖DΨh(U(mh) + θ (Um − U(mh)))‖E(X ),hEm

+
Θ∗ hp+1

(p+ 1)!
sup
s∈[0,h]

(
‖∂p+1
s Ψs(U(mh))‖X + ‖∂p+1

s Φs(U(mh))‖X
)

≤ sup
U∈DX

‖DΨh(U)‖E(X ),hEm

+
Θ∗ hp+1

(p+ 1)!
sup
t∈[0,T ]

(
sup

h∈[0,h∗]

‖∂p+1
h Ψh(U(t))‖X + ‖∂p+1

t U(t)‖X
)

≤ (1 + c1 h)Em + c3 h
p+1 .

The suprema in the estimate above are finite due to (3.3), (3.4) and (3.5), respec-
tively, so long as Em < δ since then, due to (3.2), U(mh) + θ (Um−U(mh)) ∈ DX .

Thus, since E0 = 0,

Em ≤ c3 hp+1 (1 + h c1)m − 1
h c1

≤ c3
c1

(
1 +

mhc1
m

)m
hp ≤ c2 ec1mh hp .

Thus, we can choose h∗ small enough such that Em < δ for all m ≤ T/h∗. This
concludes the proof. �

Remark 3.2. The proof of Theorem 3.1 does not use any Hilbert space structure,
so that the result holds true when X and Z are Banach spaces. However, condition
(C1) is rather restrictive on general Banach spaces, see Remark 3.7 below and the
discussion in the introduction.



A-STABLE RUNGE–KUTTA METHODS FOR SEMILINEAR EVOLUTION EQUATIONS 19

3.2. Regularity of A-stable Runge–Kutta discretizations. Applying an s-
stage Runge–Kutta method to the semilinear evolution equation (2.4), we obtain

W = U0
1 + h a

(
AW +B(W )

)
, (3.6a)

U1 = U0 + h bT
(
AW +B(W )

)
. (3.6b)

We write, with U ∈ Y,

1U =

U...
U

 ∈ Ys , W =

W
1

...
W s

 , B(W ) =

B(W 1)
...

B(W s)

 ,

where W 1, . . . ,W s are the stages of the Runge–Kutta method,

(aW )i =
s∑
j=1

aijW
j , bTW =

s∑
j=1

bjW
j ,

and A acts diagonally on the stages, i.e., (AW )i = AW i for i = 1, . . . , s.
Written this way, it is not transparent that, under certain conditions, this class

of methods results in a well defined numerical time-h map Ψh on a Hilbert space
Y. A more suitable form is achieved by rewriting (3.6a) as

W = Π(W ;U, h) ≡ (id−haA)−1 (1U + haB(W )) . (3.7)

Noting that
(id−haA)−1 = id +haA (id−haA)−1 (3.8)

and inserting (3.7) into (3.6b), we obtain

Ψh(U) = U + hbT
(
AW (U, h) +B(W (U, h))

)
= S(hA)U + hbT (id−haA)−1B(W (U, h)) , (3.9)

where S is the so-called stability function

S(z) = 1 + zbT (id−za)−1
1 . (3.10)

We now make a number of assumptions on the method and its interaction with
the linear operator A. First, we assume that the method is A-stable in the sense of
[24]. Setting C− = {z ∈ C : Re z ≤ 0}, the conditions are as follows.
(RK1) The stability function (3.10) is bounded with |S(z)| ≤ 1 for all z ∈ C−.
(RK2) The s× s matrices id−za are invertible for all z ∈ C−.
Sometimes, we will also assume that a is invertible.

Remark 3.3. The matrix id−za is invertible for all z ∈ C− if and only if a has no
eigenvalues in C− \ {0}. Its inverse is then bounded uniformly for z ∈ C− by a
constant Λ ≥ 1 (insert, in particular, z = 0).

Remark 3.4. In general, Runge–Kutta methods are called A(θ)-stable for some
θ ∈ [0, π/2] if |S(z)| ≤ 1 for all z ∈ C with |arg(−z)| ≤ θ; see, e.g., [13]. A
definition of A(θ)-stability that requires, in addition, invertibility of id−za was
introduced by Lubich and Ostermann [24] in the context of parabolic equations;
their results also depend, to a large extent, on the invertibility of a. Thus, our
assumptions can be described as A(θ)-stability for θ = π/2 in the sense of [24].
Note that the requirement θ = π/2 arises as we include operators A which are not
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necessarily sectorial, but whose spectrum may, for example, contain a strip about
the imaginary axis, cf. Sections 2.5 and 2.6.

Example 3.5. The implicit midpoint rule has stability function S(z) = (1+z/2)/(1−
z/2), s = 1, a11 = 1

2 , and b1 = 1. Conditions (RK1) and (RK2) are readily verified;
moreover, a is invertible.

Lemma 3.6. Gauss–Legendre Runge–Kutta methods satisfy (RK1) and (RK2)
with a invertible.

Proof. Condition (RK1) is the classical notion of A-stability; it is proved for Gauss–
Legendre methods in [13, Theorem 6.44], for example.

To verify condition (RK2), write S(z) = P(z)/Q(z) as the quotient of polynomials
P and Q with no common roots. We claim that Q(z) = det(id−za). To see this, note
first that det(id−za) arises naturally as the common denominator when solving for
the terms of an explicit rational expansion of (id−za)−1 by Cramer’s rule; see the
proof of [13, Lemma 6.30]. The claim follows if we can show that the numerator does
not have any factor in common with det(id−za). Since p = 2s for Gauss–Legendre
methods [13, Theorem 6.43], deg Q ≤ s and deg P ≤ s for s-stage implicit Runge–
Kutta methods [13, Lemma 6.30] and, generally, p ≤ deg P+deg Q [13, Lemma 6.4],
we conclude that deg P = deg Q = s so that indeed Q(z) = det(id−za).

Since, by (RK1), the rational function S is nonsingular on C−, all eigenvalues
of a must lie outside of C− \ {0}. This proves invertibility of id−za on C−, cf.
Remark 3.3. Finally, since Q(z) = det(id−za) has degree s, a must also be nonsin-
gular. �

For the convergence analysis in Section 3.3, we need the following additional
assumption on the operator A and on the scheme.

(A1) Assumption (A0) holds, and there exist constants ωS,ΘS, h∗ > 0 such that
for all h ∈ [0, h∗] and n ∈ N,

‖Sn(hA)‖Y→Y ≤ ΘS eωSnh . (3.11)

If assumption (A1) holds, we define, for U ∈ Y,

‖U‖Y,h ≡ sup
n∈N0

e−nωSh ‖Sn(hA)U‖Y . (3.12)

Then ‖ · ‖Y,h is equivalent to the Y-norm in the sense of (3.2) with Θ∗ = ΘS.
Moreover, there is some σ > 0 such that

‖S(hA)‖E(Y),h ≤ eωSh ≤ 1 + σ h (3.13)

for h ∈ [0, h∗].

Remark 3.7. When an A-stable Runge–Kutta is applied to discretize a general
C0-semigroup etA on a Banach space, estimate (3.11) is in general false. A coun-
terexample is the implicit midpoint rule applied to A = ∂x on L1(R) [21]. When A
is a sectorial operator, then (3.11) is satisfied [26].

Remark 3.8. In the time-continuous case discussed in Section 2, the estimate corre-
sponding to (3.11) is (2.9). Note that, by replacing the Y-norm with the equivalent
norm ‖U‖ = supt≥0 e−ωt ‖etAU‖Y the constant Θ in (2.9) becomes 1, analogous to
(3.13).
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We state the following sufficient condition for (A1), which is often satisfied in
applications.

(A2) Assumption (A0) holds, Y is a Hilbert space, and A = An + Ab with An

normal and Ab bounded as a linear operator on each Y0, . . . ,YK .
(Recall that an operator A is normal if it is closed and AA∗ = A∗A.) Condition
(A2) implies that the non-normal part Ab of A can be included with B as it satisfies
the sufficient condition (B1). Note that Ab is a bounded linear operator on each Yk
if, for example, Ab = PA and An = QA is normal, where P is a spectral projector
of A onto a finite dimensional subspace and Q = id−P.

Remark 3.9. In the case of the semilinear wave equation, see Section 2.5, assump-
tion (A2) is satisfied with Ab = P0A, where P0 denotes the spectral projection
corresponding to the eigenvalue 0 of A. In the case of the nonlinear Schrödinger
equation, see Section 2.6, the operator A is normal, so that (A2) holds trivially.

Lemma 3.10. Assume that (RK1) and (RK2) hold and that A satisfies conditions
(A2). Then (3.11) is satisfied with ΘS = 1.

Before we can prove Lemma 3.10, we need some technical estimates on the
operators which appear on the right of Eq. (3.9) and Eq. (3.7). In the following,
we denote s copies of Y by Ys and use the norm

‖W‖Ys = max
j=1,...,s

‖W j‖Y .

Lemma 3.11. Assume (RK2) and (A0). Then, for h∗ > 0 small enough, there
exist Λ ≥ 1 and cS ≥ 1 such that

‖(id−haA)−1‖Ys→Ys ≤ Λ (3.14a)

and

‖haA(id−haA)−1‖Ys→Ys ≤ 1 + Λ (3.14b)

for all h ∈ [0, h∗]. Moreover, for any `, n,∈ N0,

(W,h) 7→ (id−haA)−1W is a map of class C(n,`)
b (Ys` × [0, h∗];Ys) , (3.15a)

(W,h) 7→ haA(id−haA)−1W is a map of class C(n,`)
b (Ys` × [0, h∗];Ys) , (3.15b)

and

(W,h)→ h(id−haA)−1W is a map of class C(n,`+1)
b (Ys` × [0, h∗];Ys) . (3.15c)

Remark 3.12. Estimates of the form (3.14) were proved in [24] under the assumption
that A is sectorial.

Proof. Transforming a into Jordan normal form, we see that there exists a constant
c = c(a) such that

‖(id−haA)−1‖Ys→Ys ≤ c max
i=1,...,k

‖(id−hλiA)−1‖miY→Y

where λ1, . . . , λk are the eigenvalues of a with algebraic multiplicities m1, . . . ,mk.
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Hence, let λ be one of the eigenvalues of a; we know that Reλ > 0 due to
assumption (RK2) and Remark 3.3. Referring to (2.10), we estimate, for h ≥ 0,

‖(id−hλA)−1‖Y→Y ≤
1
|hλ|

Θ
Re 1

hλ − ω
=

Θ
|λ|

Reλ − |hλ|ω
.

Thus, the right hand bound is positive and finite for all h ∈ [0, h∗] provided that
h∗ > 0 is small enough. This proves estimate (3.14a). Due to identity (3.8),
estimate (3.14b) follows immediately.

To prove continuity of the map (id−haA)−1W : [0, h∗] → W for fixed W ∈ Ys,
we proceed as follows. Let ε > 0. Then for every W1 ∈ Ys1 , h, h′ ∈ [0, h∗],

‖(id−haA)−1W − (id−h′aA)−1W‖Ys

≤ ‖((id−haA)−1 − (id−h′aA)−1)W1‖Ys + ‖(id−haA)−1(W −W1)‖Ys

+ ‖(id−h′aA)−1(W −W1)‖Ys

≤ ‖((id−haA)−1 − (id−h′aA)−1)W1‖Ys + 2Λ ‖W −W1‖Y , (3.16)

where the second inequality is based on (3.14a). Now, since A is assumed to be
densely defined and Y1 = D(A), we can choose W1 so close to W that the last term
on the right is less than ε/2. Then, since W1 ∈ Ys1 , there exists a δ = δ(W1) such
that the first term on the right is less than ε/2 whenever |h− h′| < δ. This proves
continuity of h 7→ (id−haA)−1W on the interval [0, h∗].

To complete the proof of (3.15), we must compute the h-derivatives of the map
(3.15a). Once we have shown (3.15a), estimate (3.15b) follows immediately via
(3.8). First,

∂`h(id−haA)−1 = `! (aA)` (id−haA)−`−1 .

Using estimates (2.13) and (3.14a), and noting the continuity of h 7→ (id−haA)−1W
proved above, (3.15a) follows. Finally, noting that

∂h[h(id−haA)−1] = (id−haA)−1 + haA(id−haA)−2 = (id−haA)−2 ,

we obtain

∂`h[h(id−haA)−1] = ∂`−1
h (id−haA)−2 = `! (aA)`−1 (id−haA)−`−1 ,

which implies (3.15c). �

Proof of Lemma 3.10. Recall that Re(specA) ≤ ω for some ω > 0 so that the
spectrum of A− ω is contained in C−. Moreover, by assumption (A2) we can split
A into a normal part An and a bounded part Ab. Now decompose A = A1 + A2

with A1 = An − ω and A2 = Ab + ω. We now apply the Runge–Kutta scheme to
the linear problem ∂tU = AU in two different ways. First, we take the full A and
B ≡ 0; second we take A replaced by A1 and B(U) = A2U . Since the respective
numerical time-h maps given by (3.9) must be the same, we obtain the identity

S(hA) = S(hA1) + hbT (id−haA1)−1A2W (3.17a)

where

W = (id−haA1)−1 (1 + haA2W ) . (3.17b)

Rewrite (3.17b) as W = MW +G with

M = (id−haA1)−1 haA2 and G = (id−haA1)−1
1 .
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Since A2 is bounded and, by Lemma 3.11, (id−haA1)−1 is uniformly bounded for
h ∈ [0, h∗], the matrix M has norm smaller than one for h ∈ [0, h∗] with some
possibly smaller h∗ > 0. Consequently, we can solve for W = (id−M)−1G, whence
the second term on the right of (3.17a) is O(h) in the norm of E(Y).

As A1 is normal with specA1 ⊂ C−, we have, referring to (RK1),

‖S(hA1)‖Y→Y ≤ sup
λ∈specA1

|S(hλ)| ≤ 1 .

Altogether, this proves that there exists σ > 0 such that ‖S(hA)‖Y→Y ≤ 1 + σ h
for h ∈ [0, h∗]. This in turn implies (3.11) with ΘS = 1. �

Next, we describe the differentiability properties of S(hA) which will be needed
later on.

Lemma 3.13. Assume (RK2), (A0), and either that the Runge–Kutta matrix a is
invertible or that (A1) holds. Then there exist h∗ > 0 and cS ≥ 1 such that for all
h ∈ [0, h∗],

‖S(hA)‖Y→Y ≤ cS (3.18)

and, for all `, n ∈ N0,

(U, h) 7→ S(hA)U is a map of class C(n,`)
b (Y` × [0, h∗];Y) . (3.19)

Proof. First, (3.18) clearly holds when (A1) holds. To prove (3.18) when a is
invertible, we estimate, using (3.10) and (3.14b),

‖S(hA)‖Y→Y ≤ 1 + s ‖b‖ ‖a−1‖ (1 + Λ) ≡ cS .

Next, we show that S(hA)U : [0, h∗] → Y is continuous for every U ∈ Y as in the
proof of Lemma 3.11, replacing (id−haA)−1 by S(hA), Λ by cS, and Ys by Y in
(3.16). This proves (3.19) for ` = 0.

Finally, to prove (3.19) for ` ∈ N, we note that, due to (3.15c), the map (W,h) 7→
hA(id−haA)−1W is of class C(n,`)

b (Ys` × [0, h∗];Ys); the claim then follows directly
from the definition of S in (3.10). �

In Theorem 2.4, we studied differentiability in time of the semiflow Φt of (2.4).
An analogous result holds for differentiability of the discretization Ψh of (2.4) in
the step size h.

Theorem 3.14 (Existence and regularity of numerical method, local version).
Assume that the semilinear evolution equation (2.4) satisfies conditions (A0) and
(B1), and apply a Runge–Kutta method subject to condition (RK2) to it. Moreover,
assume that (A1) holds or that the Runge–Kutta matrix a is invertible. Choose
R ∈ (0, δ∗] such that D−RK 6= ∅ and pick U0 ∈ D−RK . Let R∗ = R/(2 max{cS,Λ})
with cS from (3.18) and Λ from (3.14). Then, for sufficiently small h∗ > 0, there
exists a unique stage vector W and numerical time-h map Ψ(U, h) = Ψh(U) which
satisfy

W i,Ψ ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (BYKR∗ (U0)× [0, h∗];B
Yk−`
R (U0)) (3.20)

for i = 1, . . . , s. In particular,

W i,Ψ ∈ CKb (BYKR∗ (U0)× [0, h∗];BYR(U0)) (3.21)
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for i = 1, . . . , s. The bounds on W , Ψ and h∗ depend only on the bounds afforded by
(B1), (3.14), (3.18), on the coefficients of the method, R, and U0. If, in addition,
(A1) holds, then there exists a constant σΨ, such that for h ∈ [0, h∗] with a possibly
smaller choice of h∗ > 0,

sup
U∈BYR∗ (U0)

‖DΨh(U)‖E(Y),h ≤ 1 + σΨh , (3.22)

where the norm on the left is defined by (3.12) and h∗ and σΨ depend only on the
above quantities and on the constants in (A1).

Note that statement (3.21) for Ψ is analogous to (2.14a) for the semiflow Φ.

Proof. We apply the contraction mapping theorem on a scale of Banach spaces,
Theorem A.9, to the map from (3.7),

Π(W ;U, h) ≡ (id−haA)−1
1U + ha (id−haA)−1B(W )

with u = U , w = W , and µ = h on the scale Zj = Ysj for j = 0, . . .K. We further
identify X = YK , Wj = BR(1U0) ⊂ Ysj , I = (0, h∗), and U = intBR∗(U0) ⊂ YK .
To verify condition (i) of Theorem A.9, we note that Eq. (3.15a) of Lemma 3.11
asserts that the map (U, h) 7→ (id−haA)−1

1U is, in particular, of class⋂
j+k≤N
`≤k≤K

C(j,`)

b (DK × [0, h∗];Ysk−`) .

The differentiability assumptions on B from (B1) are precisely such that the map
(W,h) 7→ ha (id−haA)−1B(W ) is of the same class.

First, we show that Π( · ;U, h) mapsWj , j = 0, . . . ,K, into itself for fixed U ∈ U
and h ∈ [0, h∗] with appropriate h∗ > 0. We begin by taking h∗ as in Lemma 3.11
and estimate, for W ∈ Wj ,

‖Π(W ;U, h)− 1U0‖Zj ≤ ‖(id−(id−haA)−1)1U0‖Zj
+ ‖(id−haA)−1‖Ysj→Zj ‖U − U

0‖Yj

+ h ‖(id−haA)−1a‖Ysj→Zj ‖B(W )‖Zj

≤ ‖(id−(id−haA)−1)1U0‖Zj + ΛR∗ + hΛ ‖a‖Mj ,

(3.23)

where, in the last step, we have used (3.14a) from Lemma 3.11 and Mj is the
bound on B from condition (B1). Since, again by Lemma 3.11, the map h 7→
(id−haA)−1W is continuous on each Zj , we can possibly shrink h∗ such that the
right hand side of (3.23) is less than R. This proves that Π( · ;U, h) maps Wj into
itself and implies condition (i) of Theorem A.9.

Next, for j = 0, . . . ,K,

‖DWΠ(W ;U, h)‖Zj→Zj ≤ h ‖(id−haA)−1a‖Zj→Zj ‖DB(W )‖Zj→Zj
≤ hΛ ‖a‖M ′j . (3.24)

Thus, by possibly shrinking h∗ again, the right hand bound can be made less
than 1. This proves that Π( · ;U, h) is a contraction on BY

s

R (1U0) uniformly for
U ∈ BYR∗(U

0) and h ∈ [0, h∗]. Here we used that B is at least C1 on the highest
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rung YK of the scale since, in condition (B1), we require N > K. This verifies
condition (ii) of Theorem A.9.

Theorem A.9 then applies and asserts the existence of a fixed point

W ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (BYKR∗ (U0)× (0, h∗);B
Ysk−`
R (U0

1)) .

Assertion (3.21) for the W i then follows from Lemma A.2.
To prove the corresponding estimates for Ψh, note that by (3.9), condition (B1),

Lemma 3.11, and Lemma 3.13 we can adapt h∗ > 0 such that for j = 0, . . . ,K,

‖Ψh(U)− U0‖Yj ≤ ‖S(hA)(U − U0)‖Yj + ‖S(hA)U0 − U0‖Yj + h‖b‖ΛMj

≤ R/2 + ‖S(hA)U0 − U0‖Yj + h‖b‖ΛMj ≤ R .

Further, the first term of (3.9) is of class (3.21) by Lemma 3.13. For the second
term of (3.9), we note that the map Σ defined as

Σ(W,U, h) = h(id−haA)−1B(W ) ,

satisfies
Σ ∈

⋂
i+j+k≤N
`≤k≤K

C(i,j,`)

b ((Dk)s × YK × I;Ysk−`) .

Lemma A.6 then implies (3.21) for Ψ. Assertion (3.21) for Ψ then follows from
Lemma A.2.

Finally, differentiating (3.9) and taking the operator norm on Y, we obtain

‖DΨh(U)‖E(Y),h ≤ ‖S(hA)‖E(Y),h

+ hsΘS ‖b‖ ‖(id−haA)−1‖E(Ys) ‖DB(W )‖E(Ys) ‖DUW (U, h)‖E(Y,Ys)

≤ (1 + σ h) + h sΘS ‖b‖ ΛM ′0 ‖W‖C(1,0)b (BYR∗ (U0)×[0,h∗];Ys)

≡ 1 + σΨ h ,

where we use (3.2), (3.13) and (3.14a), and refer to (3.21) for the bound on W .
This proves (3.22). �

While this theorem gives an existence and regularity result for the numerical
time-h map Ψh, it does not yield control over the maximum step size h∗ when we
want to define Ψh on a general open bounded domain. We address this issue in the
following theorem which is the discrete time analogue of Theorem 2.6.

Theorem 3.15 (Existence and regularity of numerical method, uniform version).
Let the semilinear evolution equation (2.4) satisfy conditions (A0) and (B1) and
apply a Runge–Kutta method subject to condition (RK2) to it. Moreover, assume
(A1) or that the Runge–Kutta matrix a is invertible. Choose δ ∈ (0, δ∗] small enough
such that D−δK+1 is non-empty. Then there exists h∗ > 0 such that (3.20) and (3.21)
and, under assumption (A1), (3.22) hold with bounds uniform for U0 ∈ D−δK+1 with
R = δ. Moreover, the stage vector W (U, h) satisfies

W ∈
⋂

j+k≤N
`≤k≤K+1

C(j,`)

b (D−δK+1 × [0, h∗];Ysk−`) (3.25a)
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and, if a is invertible, the numerical time-h map Ψ(U, h) = Ψh(U) satisfies

Ψ ∈
⋂

j+k≤N
`≤k≤K+1

C(j,`)

b (D−δK+1 × [0, h∗];Yk−`) . (3.25b)

In particular, when N > K + 1,

W j ∈ CK+1
b (D−δK+1 × [0, h∗];D), j = 1, . . . , s, (3.26a)

and, if addition a is invertible,

Ψ ∈ CK+1
b (D−δK+1 × [0, h∗];D) . (3.26b)

The bounds on W , Ψ and h∗ depend only on the bounds afforded by (B1), (2.18),
(3.14), (3.18), on the coefficients of the method, and on δ.

Proof. Let R = δ. We apply Theorem 3.14 for each U0 ∈ D−δK+1. Note that for
j = 0, . . . ,K,

‖(id−(id−haA)−1)1U0‖Ysj ≤ h max
s∈[0,h]

‖aA(id−saA)−2
1U0‖Ysj

≤ hΛ2 ‖a‖RK+1 .

Inserting this estimate into (3.23), we see that we can choose h∗ > 0 small enough
such that Π( · ;U, h) maps Wj(U0) ≡ BR(1U0) ⊂ Ysj into itself for j = 0, . . . ,K,
and, from (3.24), such that Π is a contraction onWj(U0) uniformly for U0 ∈ D−δK+1,
U ∈ BYK+1

R∗
(U0), and h ∈ [0, h∗], where R∗ = R/(2 max{cS,Λ}). As in the proof of

Theorem 3.14, we find that (3.20), (3.21) and (3.22) hold with uniform bounds in
U0 ∈ D−δK+1, and that

W i,Ψ ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (D−δK+1 × [0, h∗];Dk−`) (3.27)

for i = 1, . . . , s.
To prove that W actually maps into a space one step up the scale, we show that

AW i ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (D−δK+1 × [0, h∗];Yk−`) (3.28)

for i = 1, . . . , s. We apply A to (3.7), so that

AW = A(id−haA)−1
1U + haA(id−haA)−1B(W ) . (3.29)

The first term of (3.29) is of class (3.28) by Lemma 3.11. For the second term,
we note that, by (B1) and (3.15b),

Σ(W,U, h) = haA(id−haA)−1B(W )

is of class
Σ ∈

⋂
i+j+k≤N
`≤k≤K

C(i,j,`)

b ((Dk)s × YK+1 × I;Ysk−`) ,

so that (Σ◦W )i is of class (3.28) for i = 1, . . . , s by Lemma A.6. This proves (3.28).
To prove that, for a invertible, AΨ is also of class (3.28), we proceed analogously.

Applying A to (3.9), we obtain

AΨh(U) = S(hA)AU + hbTA(id−haA)−1B(W (U, h)) . (3.30)
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The first term on the right of (3.30) is of class (3.28) by Lemma 3.11. We already
proved above that V = Σ ◦W is of class (3.28). As a is invertible, bT a−1V and,
hence, (3.30) are of class (3.28).

Next, we show improved regularity of W and Ψ with respect to the step size in
the same way as in the proof of Theorem 2.6. Namely, we prove that

∂hW
i, ∂hΨ ∈

⋂
j+k≤N−1
`≤k≤K

C(j,`)

b (DK+1 × [0, h∗];Yk−`) .

Consider the (K+1)-scale of Banach spaces Zj = Ysj for j = 0, . . . ,K and ZK+1 =
YsK with Wj = Dsj for j = 0, . . . ,K and WK+1 = DsK . Set U = D−δK+1, X = YK+1,
and I = (0, h∗). Due to (3.15c) and (B1), the map Π from (3.7) satisfies the
assumptions of Theorem A.9 in this setting. This shows that ∂hW is of the above
class, and proves, with (3.27), (3.28) and Lemma A.3 claim (3.25a) for the stage
vector W . Then (3.15c), Lemma 3.13, (3.25a), Lemma A.6 and Lemma A.7 applied
to

∂hΨh(U) = ∂hS(hA)U + bT (id−haA)−2B(W (U, h))

+ hbT (id−haA)−1 DB(W (U, h)) ∂hW (U, h) ,

imply that ∂hΨ is of the same class as ∂hW i. When a is invertible, then, using that
AΨ is of class (3.28) and using Lemma A.3 as before, claim (3.25b) follows.

Statements (3.26a) and (3.26b) are, as before, a consequence of Lemma A.2. �

Remark 3.16. We actually showed in Theorem 3.15 that for a invertible

W i,Ψ ∈
⋂

j+k≤N
`≤k≤K

C(j,`)

b (D−δK+1 × [0, h∗];Yk−`+1),

i = 1, . . . , s, i.e. W i and Ψ have slightly higher regularity in U0 than the semiflow
Φt.

Remark 3.17 (Image of the numerical method and stage vector). Analogous to the
situation for the semiflow noted in Remark 2.8, the proof of Theorem 3.15 actually
shows that, when a is invertible,

Ψ,W j ∈
⋂

j+k≤N
`≤k≤K+1

(k,`)6=(K+1,0)

C(j,`)

b (D−δK+1 × [0, T∗];Dk−`)

for j = 1, . . . , s.

Remark 3.18. The proof of Theorem 3.15 shows that, when (A0), (A1), (B1) and
(RK2) hold, but a is not assumed invertible, we still have

Ψ ∈
⋂

j+k≤N−1
k≤K

C(j,k+1)

b (D−δK+1 × [0, T∗];D).

Remark 3.19. If A generates a group rather than a semigroup, we may assume
(A1) for h ∈ [−h∗, h∗] for some h∗ > 0. Then Theorems 3.14 and 3.15 hold with
h ∈ [−h∗, h∗] (for some, possibly, smaller choice of h∗ > 0). Moreover, we can
then also weaken the requirement in (RK1) to |S(z)| ≤ 1 for z ∈ iR and still show
that (A2) implies (A1) for h ∈ [−h∗, h∗]. In this setting, the proof of Lemma 3.10
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proceeds by recalling that, according to Remark 2.9, there exists ω > 0 such that
|Re(specA)| ≤ ω. Hence, we can decompose QA into a skew-symmetric operator
A1 = Im(An) and a bounded operator A2 = Ab + Re(An).

3.3. Convergence analysis of A-stable Runge-Kutta methods. In this sec-
tion we present a convergence analysis of A-stable Runge–Kutta methods applied to
semilinear evolution equation (2.4). The main difficulty is to prove differentiability
in the step size h of the implicitly defined Runge–Kutta methods as maps from a
space of functions with higher regularity to a space with lower regularity.

Theorem 3.20 (Convergence). Apply a Runge–Kutta method of classical order p
subject to conditions (RK2) and (A1) to the semilinear evolution equation (2.4).
Assume further that (B1) holds with K ≥ p. Pick δ ∈ (0, δ∗] such that D−δp+1 is
non-empty and T > 0. Then there exist positive constants h∗, c1, and c2 which
only depend on the bounds afforded by (B1) and (A1), (3.14), on the coefficients of
the method, and on δ, such that for every U0 with

{Φt(U0) : t ∈ [0, T ]} ⊂ D−δp+1 (3.31)

and for every h ∈ [0, h∗], the numerical solution (Ψh)m(U0) lies in D and satisfies

‖(Ψh)m(U0)− Φmh(U0)‖Y ≤ c2 ec1mh hp

so long as mh ≤ T .

Proof. We invoke Theorem 3.1 with Z = Yp+1, DZ = D−δp+1, X = Y,

DX =
⋃

U∈D−δp+1

BYR(U) ⊂ D

where R = δ, and note that distX ({U(t) : t ∈ [0, T ]}, ∂DX ) ≥ δ. To verify the
assumptions of the theorem, we first note that local existence and regularity of a
solution to the evolution equation (2.4) in the appropriate spaces is always guar-
anteed by Theorem 2.6. In particular, for initial data U0 such that (3.31) holds,
we also have U ∈ C([0, T ];D−δp+1) ∩ Cp+1([0, T ];D−δ) with uniform bounds in the
norms of both spaces. Conditions (C1) and (C2) follow from Theorem 3.15 and
Remark 3.18. �

Remark 3.21. As explained in Sections 2.5 and 2.6, the semilinear wave equation
and the nonlinear Schrödinger equation satisfy the assumptions of Theorems 3.14–
3.20 provided the nonlinearity is sufficiently smooth.

In the following corollary we prove the convergence of the U -derivatives of the
numerical solution.

Corollary 3.22 (Convergence of derivatives). In the setting of Theorem 3.20 there
exist positive constants h∗, c1, and c2 which only depend on the bounds afforded by
(B1) and (A1), (3.14), on the coefficients of the method, and on δ, such that for
every U0 satisfying (3.31) and for every h ∈ [0, h∗]

‖Dj
U (Ψh)m(U0)−Dj

UΦmh(U0)‖Ej(Yp+1,Y) ≤ c2 ec1mh hp

for j ≤ N − p− 1 so long as mh ≤ T .
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Proof. We proceed by induction over j. The case j = 0 is already asserted by The-
orem 3.20. When j > 0, we note that Ũ(t) ≡ (U(t),W (t)) ≡ (Φt(U0),DΦt(U0)W 0)
satisfies

d
dt
Ũ(t) = ÃŨ + B̃(Ũ) (3.32)

where

Ã =
(
A 0
0 A

)
, B̃(Ũ) =

(
B(U)

DB(U)W

)
,

and we take W 0 ∈ Bk ≡ int(BYk1 (0)). Similarly, the Runge–Kutta method applied
to (3.32) satisfies

Ψ̃h(Ũ0) =
(

Ψh(U0)
DΨh(U0)W 0

)
where Ũ0 =

(
U0

W 0

)
.

Eq. (3.32) and the Runge–Kutta method applied to it again satisfy (A1), (B1) with
N replaced by N − 1 and Dk replaced by Dk × Bk for k = 0, . . . ,K and (RK2).
We can therefore apply the induction hypothesis to the extended system so long as
j + p ≤ N − 1. �

Appendix A. Contraction mappings on a scale of Banach spaces

In the appendix we present a contraction mapping theorem on a scale of Banach
spaces, our main technical tool. Our results are more general than precursor ver-
sions in [31, 33]. The proofs are technically involved for two reasons. First, there
is some combinatorial complexity in the estimates due to the implicitness of the
fixed point of the contraction map. For this reason we decided to derive estimates
in all required norms at once. Second, the maps we consider have derivatives with
respect to the parameters that are only strongly continuous, but not continuous in
the operator norm. This precludes a straightforward induction argument. What
we find is that this weaker notion of continuity is entirely sufficient, but requires
some extra care and notational effort.

For K ∈ N0, let Z = Z0 ⊃ Z1 ⊃ . . . ⊃ ZK be a scale of Banach spaces, each
continuously embedded in its predecessor, and let Vj ,Wj ⊂ Zj be nested sequences
of sets. Let X be a Banach space, and let U ⊂ X and I ⊂ R be open. We note
that all results in this section easily extend to the case where I is an open subset
of Rp. Without loss of generality, we may assume that ‖w‖Zj ≤ ‖w‖Zj+1 for all
w ∈ Zj+1. (If this is not the case, we inductively equip Zj+1 with the equivalent
norm ‖ · ‖Zj+1 + ‖ · ‖Zj .)

We use the following additional integer indices. The minimal regularity we guar-
antee for the image space of the function considered is the regularity of the lowest
scale index L of the image, the loss index S indicates how many rungs on the scale
the range of a function is down relative to its domain, and N denotes the maximal
regularity of the function. We assume 0 ≤ L ≤ K − S ≤ N − S. Taking the
dependence on parameters into account, we work with the family of spaces

CN,K,L,S({Vj},U , I; {Wj}) =
⋂

i+j+k≤N−S
L+`≤k≤K−S

C(i,j,`)

b (Vk+S × U × I;Wk−`) ,

endowed with norm

|||Π|||N,K,L,S = max
i+j+k≤N−S
L+`≤k≤K−S

‖Di
wDj

u∂
`
µΠ‖L∞(Vk+S×U×I;Ei(Zk+S ,Ej(X ;Zk−`)))
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for 0 ≤ L ≤ K − S ≤ N − S, and abbreviate

CN,K,L({Vj},U , I; {Wj}) = CN,K,L,0({Vj},U , I; {Wj}) ,
CN,K({Vj},U , I; {Wj}) = CN,K,0,0({Vj},U , I; {Wj})

with corresponding norms

|||Π|||N,K,L = |||Π|||N,K,L,0 ,

|||Π|||N,K = |||Π|||N,K,0,0 .
Note that any function of class CN,K,L,S has a maximal number of N − L − S
derivatives in its first and second argument on the lowest admissible domain scale
ZL+S .

Furthermore, let

CN,K,L(U , I; {Wj}) =
⋂

j+k≤N
L+`≤k≤K

C(j,`)

b (U × I;Wk−`) ,

endowed with norm

‖w‖N,K,L = max
j+k≤N

L+`≤k≤K

‖Dj
u∂

`
µw‖L∞(U×I;Ej(X ;Zk−`)) (A.1)

for 0 ≤ L ≤ K ≤ N , where we abbreviate

CN,K(U , I; {Wj}) = CN,K,0(U , I; {Wj})
with corresponding norm

‖w‖N,K = ‖w‖N,K,0 .
For future reference, we note the following.

Remark A.1. When a map Π ∈ CN,K,L,S({Vj},U , I; {Wj}) does not depend on w,
it can be interpreted as an element from CN,K,L(U , I; {Wj}) where

|||Π|||N,K,L,S = ‖Π‖N−S,K−S,L .

We simply write CN,K,L,S and CN,K,L when the arguments are unambiguous. We
also write

∂µΠ(w(u, µ);u, µ) = ∂µΠ(w;u, µ)
∣∣
w=w(u,µ)

= (∂µΠ ◦ w)(u, µ)

to denote partial µ-derivatives vs. Dµ(Π(w(u, µ), u, µ)) to denote full µ-derivatives.
We begin with four short technical lemmas. The first specifies the relation be-

tween the spaces CN,K and CK .

Lemma A.2. If N > K then, with W ≡W0,

CN,K(U , I; {Wj}) ⊂ CKb (U × I;W) .

Proof. Let w ∈ CN,K(U , I; {Wj}). Fixing ` = k in the definition of CN,K and
recalling (2.3b), i.e., strong and uniform continuity coincide if no derivative in u is
taken, we find that

w ∈ C(0,K)
b (U × I;W) ∩

⋂
j+`≤K+1
`≤K

C(j,`)

b (U × I;W) .

The claimed uniform continuity then holds because of (2.3a). �
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The following lemma captures the essence of the inductive step in N as needed
in the main results which follow.

Lemma A.3. If w ∈ CN,K,L(U , I; {Wj}) and the map (u, ũ, µ) 7→ Duw(u, µ)ũ is
of class CN,K,L(U × BX1 (0), I; {Zj}), then w ∈ CN+1,K,L(U , I; {Wj}) and

‖w‖N+1,K,L ≤ sup
‖ũ‖X≤1

‖Duw ũ‖N,K,L + ‖w‖N,K,L .

Proof. The claim is a direct consequence of the partitioning of the index set in the
definition of the (N + 1,K, L)-norm, see (A.1), into

{0 ≤ j + k ≤ N + 1} = {0 ≤ j + k ≤ N} ∪ {0 ≤ j̃ + k ≤ N}

where j̃ = j − 1, using the definition of the operator norm,

‖T‖E(X ,Y) = sup
‖x‖X=1

‖Tx‖Y ,

and the definition of the (N,K,L)-norm (A.1). �

The next lemma captures the essence of the inductive step in K. Namely, a scale
of length K + 1 can be broken up into two scales which have only length K, plus a
trivial remaining bit.

Lemma A.4. When N > K, w ∈ CN,K+1,L+1(U , I; {Wj}) ∩ CN,L,L(U , I; {Wj}),
and ∂µw ∈ CN−1,K,L(U , I; {Zj}), then w ∈ CN,K+1,L(U , I; {Wj}) and

‖w‖N,K+1,L ≤ ‖w‖N,K+1,L+1 + ‖w‖N,L,L + ‖∂µw‖N−1,K,L .

Proof. Translating the scale, i.e., setting Z̃j = Zj+L, K̃ = K −L, and Ñ = N −L,
we can reduce to the case L = 0. Since

{0 ≤ ` ≤ k ≤ K + 1} = {0 ≤ ` < k ≤ K + 1} ∪ {1 ≤ ` ≤ k ≤ K + 1} ∪ {k = ` = 0}

and ∂µw ∈ CN−1,K if and only if

w ∈
⋂

j+k≤N−1
`≤k≤K

C(j,`+1)

b (U × I;Wk−`) =
⋂

j+k≤N
1≤`≤k≤K+1

C(j,`)

b (U × I;Wk−`) ,

the claim follows directly from definition of CN,K,L and its norm (A.1). �

Finally, we prove that the space CN,K,0,S can be expressed in terms of CN,K-type
spaces with domains defined on a scale.

Lemma A.5. We have⋂
S≤κ≤K

CN−S,κ−S,L(Vκ × U , I; {Wj}) = CN,K,L,S({Vj},U , I; {Wj}) ,

and
|||Π|||CN,K,L,S({Vj},U ;I;{Wj}) ∼ max

S≤κ≤K
‖Π‖CN−S,κ−S,L(Vκ×U,I;{Wj}) ,

where ∼ denotes that left hand and right hand sides provide equivalent norms on
CN,K,L,S.
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Proof. Translating the scale, i.e., setting Z̃j = Zj+L, K̃ = K −L, and Ñ = N −L,
we can reduce to the case L = 0. Next, we identify⋂
S≤κ≤K

CN−S,κ−S(Vκ × U ; I, {Wj}) =
⋂

S≤κ≤K
j+k≤N−S
`≤k≤κ−S

C(j,`)

b ((Vκ × U)× I;Wk−`)

=
⋂

S≤κ≤K
i+j+k≤N−S
`≤k≤κ−S

C(i,j,`)

b (Vκ × U × I;Wk−`)

=
⋂

0≤k̃≤K−S
i+j+k≤N−S

`≤k≤k̃

C(i,j,`)

b (Vk̃+S × U × I;Wk−`)

=
⋂

i+j+k≤N−S
`≤k≤K−S

C(i,j,`)

b (Vk+S × U × I;Wk−`) ,

which equals CN,K,0,S . Noting that

max
S≤κ≤K
j+k≤N−S
`≤k≤κ−S

‖Dj
(w,u)∂

`
µΠ‖L∞(Vκ×U×I;Ej(Zκ×X ;Zk−`))

∼ max
S≤κ≤K

i+j+k≤N−S
`≤k≤κ−S

‖Di
wDj

u∂
`
µΠ‖L∞(Vκ×U×I;Ei(Zκ;Ej(X ;Zk−`))) ,

the statement about the norms follows analogously. �

The next lemma will be our main tool for obtaining estimates on the scale of
Banach spaces for compositions of maps of the form

(Π ◦ w)(u, µ) ≡ Π(w(u, µ);u, µ) .

The essence of the result is very natural: When the outer function Π loses S rungs
on the scale, the inner function w must have minimal regularity L = S and the
composition maps at best into rung K − S.

The main difficulty in the proof of this lemma and of the subsequent results
is that the maps considered lose smoothness when derivatives in µ are taken. In
particular, these derivatives are only strongly continuous with respect to the pa-
rameters u and µ and, in our infinite-dimensional setting, are discontinuous with
respect to u and µ in the operator norm. As a result, in the proofs below the
induction hypothesis cannot be applied to the derivatives in a straightforward way.

Lemma A.6 (Chain rule on a scale of Banach spaces). Let Π = Π(w;u, µ) and
w = w(u, µ) satisfy

Π ∈ CN,K,L,S({Wj},U , I; {Zj}) and w ∈ CN,K,S+L(U , I; {Wj}) .
Then Π ◦w ∈ CN−S,K−S,L(U , I; {Zj}) and ‖Π ◦w‖N−S,K−S,L can be bounded by a
polynomial with non-negative coefficients in |||Π|||N,K,L,S and ‖w‖N,K,S+L.

Proof. Translating the scale, i.e., setting Z̃j = Zj+L, K̃ = K −L, and Ñ = N −L,
we can reduce to the case L = 0 as in the proof of Lemma A.4. We proceed by
induction in N and K as follows.
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For N = K = S, we have Π ∈ Cb(WS × U × I;Z0), w ∈ Cb(U × I;WS), hence
Π ◦ w ∈ Cb(U , I;Z0) with bound |||Π|||S,S,0,S .

Let us now increment N holding K and S fixed. Let B ≡ BX1 (0). We claim that
the map

(u, ũ, µ) 7→ Du(Π ◦ w) ũ is of class CN−S,K−S(U × B, I; {Zj}) (A.2)

with a bound which is a polynomial in |||Π|||N+1,K,0,S and ‖w‖N+1,K,S . The induc-
tive step is achieved by Lemma A.3 which then asserts that Π ◦ w ∈ CN+1−S,K−S
with its norm bounded as required.

To prove this claim, let ũ ∈ B, write

Du(Π ◦ w)(u, µ) ũ = ∂uΠ(w(u, µ);u, µ) ũ+ ∂wΠ(w(u, µ);u, µ) Duw(u, µ) ũ , (A.3)

and consider each term on the right of (A.3) separately. For the first term on the
right, set û ≡ (u, ũ) ∈ U × B ≡ Û and define

Π1(w; û, µ) = ∂uΠ(w;u, µ) ũ . (A.4)

By assumption, this map is of class CN,K,0,S({Wj},U ×B, I; {Zj}) . The induction
hypothesis, applied to the maps Π1 and w, then asserts that

Π1 ◦ w ∈ CN−S,K−S(U × B, I; {Zj}) (A.5)

and that its CN−S,K−S-norm is bounded by a polynomial with non-negative coeffi-
cients in |||Π|||N+1,K,0,S ≥ |||Π1|||N,K,0,S and ‖w‖N,K,S .

For the second term on the right of (A.3), we must proceed in stages. Fix
r = ‖w‖N+1,K,S and let Vκ = BZκr (0). For κ = S, . . . ,K and (u, ŵ) ∈ U × Vκ, we
set

Π2(w; (u, ŵ), µ) = DwΠ(w, u, µ) ŵ .
By assumption, this map is of class CN,κ,0,S({Wj},U ×Vκ, I; {Zj}). The induction
hypothesis, applied to the maps Π2 and w, then asserts that

Π2 ◦ w ∈ CN−S,κ−S(U × Vκ, I; {Zj}) (A.6)

and that its CN−S,κ−S-norm is bounded by a polynomial in ‖w‖N,K,S ≥ ‖w‖N,κ,S
and

|||Π|||N+1,K,0,S sup
ŵ∈Vκ

‖ŵ‖Zκ ≥ |||Π2|||CN,κ,0,S({Wj},U×Vκ,I;{Zj}) .

We now consider the composition Π2 ◦ w as a map

Π̂(ŵ;u, µ) = ∂wΠ(w(u, µ);u, µ) ŵ .

Recalling that (A.6) applies for all κ = S, . . . ,K, we can apply Lemma A.5 to
obtain that

Π̂ ∈ CN,K,0,S({Vj},U , I; {Zj})
and that its norm is bounded by a polynomial in r |||Π|||N+1,K,0,S and ‖w‖N,K,S .
(This is summarized in Lemma A.7 for later use.)

Now consider Π̂ as a function of ŵ, û = (u, ũ) ∈ U × B, and µ. Since

‖Duw(u, µ) ũ‖Cb(U×I;Zj) ≤ ‖w‖N+1,K,S ‖ũ‖X ≤ r

for j = S, . . . ,K, the function ŵ(û, µ) = Duw(u, µ) ũ is of class CN,K,S(U ×
B, I; {Vj}). Applying the induction hypothesis to Π̂ and ŵ, we conclude that Π̂◦ ŵ
or, written explicitly, the map

((u, ũ), µ) 7→ ∂wΠ(w(u, µ);u, µ) Duw(u, µ) ũ
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is of class CN−S,K−S(U × B, I; {Zj}), with norm bounded by an increasing poly-
nomial in |||Π|||N+1,K,0,S and ‖w‖N+1,K,S ≥ ‖ŵ‖N,K,S . Due to (A.3), (A.4), and
(A.5), this also holds for the map ((u, ũ), µ) 7→ DuΠ(w(u, µ);u, µ) ũ, thus proves
our claim (A.2); the inductive step in N is complete.

Next, we increment K − S keeping N fixed. Here the inductive step will be
achieved by Lemma A.4; we must hence verify its assumptions. First, applying the
induction hypothesis on the scale Z̃j = Zj+1 with j = 0, . . . ,K, we infer that

Π ◦ w ∈ CN−1−S,K−S(U , I; {Z̃j}) = CN−S,K+1−S,1(U , I; {Zj})

with the corresponding norm bounded by a polynomial with non-negative coef-
ficients in |||Π|||N,K+1,0,S ≥ |||Π|||N,K+1,1,S+1 and ‖w‖N,K+1,S+1. Second, by the
induction hypothesis applied on the trivial scale,

Π ◦ w ∈ CN−S,0(U , I; {Zj}) ,

with the corresponding norm bounded by a polynomial with non-negative coef-
ficients in |||Π|||N,K+1,0,S ≥ |||Π|||N,0,0,S,0 and ‖w‖N,K+1,S ≥ ‖w‖N,0,S . Third, we
claim that

Dµ(Π ◦ w) ∈ CN−1−S,K−S(U , I; {Zj}) , (A.7)

with the corresponding norm bounded by a polynomial with non-negative coeffi-
cients in |||Π|||N,K+1,0,S and ‖w‖N,K+1,S . Then Lemma A.4 applied to Π ◦w where
N and K there correspond to N−S and K−S here proves that Π◦w ∈ CN−S,K+1−S
with the required bound on its norm; this concludes the inductive step.

It remains to prove claim (A.7). Following the steps in the estimate of Du(Π◦w)
above, we write

Dµ(Π ◦ w)(u, µ) = ∂µΠ(w(u, µ);u, µ) + ∂wΠ(w(u, µ);u, µ) Dµw (A.8)

and consider each term on the right of (A.8) separately. For the first term, note
that the assumption on Π implies, in particular, that ∂µΠ ∈ CN,K+1,0,S+1 and
that, by assumption, w ∈ CN,K+1,S+1. Since K − S is not increased, the induction
hypothesis applies to this pair of maps and yields

∂µΠ ◦ w ∈ CN−S−1,K−S(U , I; {Zj}) (A.9)

with a polynomial bound in |||Π|||N,K+1,0,S ≥ |||∂µΠ|||N,K+1,0,S+1 and ‖w‖N,K+1,S ≥
‖w‖N,K+1,S+1.

For the second term on the right of (A.8), fix r = ‖w‖N,K+1,S and let Vj =
BZjr (0) for j = S, . . . ,K + 1. We saw above that the map Π̂ from (A.11) is of class
CN−1,K,0,S({Vj},U , I; {Zj}) with norm bounded as specified in Lemma A.7. The
assumption on w and the definition of r above imply, moreover, that

Dµw ∈ CN−1,K,S(U , I; {Vj}) .

Thus, the induction hypothesis applied once more to this pair of maps yields

Π̂ ◦ ∂µw = Dw(Π ◦ w)Dµw ∈ CN−1−S,K−S(U , I; {Zj}) (A.10)

with a polynomial bound in |||Π|||N,K+1,0,S and ‖w‖N,K+1,S ≥ ‖∂µw‖N,K,S . To-
gether, (A.9) and (A.10) imply (A.7) with the required bound. �

In the proof of Lemma A.6, we implicitly proved the following result which we
state here for later reference.
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Lemma A.7. Let Π and w satisfy the conditions of Lemma A.6 with L = 0; let
r > 0 and Vj = BZjr (0) for j = 0, . . . ,K. Then

Π̂(ŵ;u, µ) ≡ DwΠ(w(u, µ);u, µ) ŵ (A.11)

satisfies

Π̂ ∈ CN−1,K,0,S({Vj},U , I; {Zj})

with a polynomial bound in ‖w‖N−1,K,S and r |||Π|||N,K,0,S.

Remark A.8. The Faà di Bruno formula (see, e.g., [10]) can be used to compute
the derivatives of compositions of functions explicitly. However, it does not remove
the need to estimate complete CN,K norms. Thus, an inductive argument seems to
be the most manageable way of writing out a proof.

We now proceed to the crucial contraction mapping theorem for maps Π( · ;u, µ)
of class CN,K .

Theorem A.9 (Contraction mappings on a scale of Banach spaces). For N,K ∈ N0

with N ≥ K, let Z = Z0 ⊃ Z1 ⊃ . . . ⊃ ZK be a scale of Banach spaces, each
continuously embedded in its predecessor, let Wj ⊂ Zj be a nested sequence of
closures of open sets, let X be a Banach space, and let U ⊂ X and I ⊂ R be open.
Let (w, u, µ) 7→ Π(w;u, µ) be a nonlinear map such that

(i) Π ∈ CN,K({Wj},U , I; {Wj});
(ii) w 7→ Π(w;u, µ) is a contraction on Wj with contraction constant c′j < 1

uniformly for all u ∈ U , µ ∈ I, and j = 0, . . . ,K.

Then the fixed point equation Π(w;u, µ) = w has a unique solution

w ∈ CN,K(U , I; {Wj})

and ‖w‖N,K is bounded by a function which is a polynomial with non-negative
coefficients in |||Π|||N,K and (1− c′j)−1.

Similar theorems were proved in [31] for the case K = 1, U = ∅ and in [33]
for the case N = K ∈ N, U = ∅. Due to Lemma A.2, the theorem as stated
here implies, in particular, that w ∈ CKb (U × I;W). This simple statement on
CK differentiability is reminiscent of the standard form of the contraction mapping
theorem with parameters as, for example, stated in [19, p. 13].

Proof of Theorem A.9. The argument is once more an induction in N and K, fol-
lowing the combinatorial pattern of the proof of Lemma A.6. For N = K = 0, the
regular contraction mapping theorem with parameters asserts that w ∈ C(U×I;W).
Moreover, Π is a contraction uniformly for (u, µ) ∈ cl(U) × cl(I) so that Π has a
unique fixed point w(u∗, µ∗) also for (u∗, µ∗) on the boundary of U × I. From
this, a straightforward estimate yields continuity of w up to the boundary; thus,
w ∈ C0,0(U , I; {W0}).

Assume now that the conclusion of the theorem holds for fixed K and N ≥
K. We first employ Lemma A.3 to show that the conclusion also holds when we
increment N , holding K fixed.

As in the proof of Lemma A.6, we set B ≡ BX1 (0) and let (u, ũ) ∈ U × B ≡ Ũ .
Differentiating the fixed point equation w = Π ◦ w with respect to u, we find that
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Duw ũ formally solves the fixed point equation w̃ = Π̃(w̃; (u, ũ), µ), where

Π̃(w̃; (u, ũ), µ) = ∂wΠ(w(u, µ);u, µ) w̃ + ∂uΠ(w(u, µ);u, µ) ũ

≡ Π̂(w̃;u, µ) + ∂uΠ(w(u, µ);u, µ) ũ .

Using the chain rule Lemma A.6 and Lemma A.7, we infer that

Π̃ ∈ CN,K({Vj},U × B, I; {Zj})

with Vj = BZjr (0) for j = 0, . . . ,K and arbitrary r > 0. Here, we must prove in
addition that Π̃ maps each of the V0, . . . ,VK into itself. Indeed, a direct estimate
shows that it suffices to take

r = |||Π|||N+1,K,S max
j=0,...,K

1
1− c′j

≥ max
j=0,...,K

‖∂uΠ ◦ w‖L∞(U×I;E(X ,Zj))

1− c′j
.

The induction hypothesis then applies to Π̃ ∈ CN,K({Vj},U × B, I; {Vj}), yielding
the existence of a fixed point w̃ ∈ CN,K(U × B, I; {Vj}).

It remains to be shown that the formal identity w̃ = Duw ũ holds true on each
Zj for j = 0, . . . ,K. This, however, follows by [33, Theorem 4.8] (see also the
proof of [31, Theorem 3]) applied to the one-parameter family of maps (w; ν) 7→
Π(w;u+ νũ, µ) for fixed µ ∈ I, u ∈ U , and ũ ∈ B on the scale {Z̃0, Z̃1} = {Zj ,Zj}
for each j = 0, . . . ,K.

Altogether, since w ∈ CN,K(U , I; {Wj}), Lemma A.3 applies and yields gives
w ∈ CN+1,K(U , I; {Wj}); the inductive step in N is complete.

Next, we increment K < N holding N fixed. For this, we use Lemma A.4. First,
we note that assumptions (i) and (ii) hold on the K-step scale Z1 ⊃ · · · ⊃ ZK+1 so
that the induction hypothesis applies; we find that

w ∈ CN,K+1,1(U × I; {Wj}) .

Second, by the induction hypothesis applied on the trivial scale, w ∈ CN,0. Third,
differentiating the fixed point equation w = Π◦w with respect to µ, we obtain that
∂µw formally solves the fixed point equation w̃ = Π̃(w̃;u, µ), where

Π̃(w̃;u, µ) = ∂wΠ(w(u, µ);u, µ) w̃ + ∂µΠ(w(u, µ);u, µ)

≡ Π̂(w̃;u, µ) + ∂µΠ(w(u, µ);u, µ) .

Since, by assumption, w ∈ CN,K , we infer from Lemma A.6 and Lemma A.7 that

Π̃ ∈ CN−1,K({Vj},U × B, I; {Zj}) .

Here, we need in addition that Π̃ maps each V0, . . . ,VK into itself. This is satisfied
whenever

r = |||Π|||N,K+1,S max
j=0,...,K

1
1− c′j

≥ max
j=0,...,K

‖∂µΠ ◦ w‖L∞(U×I;Zj)

1− c′j
.

The induction hypothesis then applies to Π̃ ∈ CN−1,K({Vj},U×B, I; {Vj}), yielding
the existence of a fixed point w̃ ∈ CN−1,K(U × B, I; {Vj}). By [33, Theorem 4.8]
(see also the proof of [31, Theorem 3]), applied to (w;µ) 7→ Π(w;u, µ) for each
fixed u ∈ U on the two-step scale {Z̃0, Z̃1} ≡ {Zj ,Zj+1} for each j = 0, . . . ,K, we
ensure that the formal identity w̃ = ∂µw holds true across the scale Z0, . . .ZK . We
conclude that ∂µw ∈ CN−1,K .
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Altogether, Lemma A.4 applies and yields w ∈ CN,K+1; the inductive step in
K is now complete. We note that the required polynomial bounds are obtained,
as before, by carefully tracking all the bounds in the respective norms through the
argument. We omit all detail. �
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