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Abstract. This contribution introduces you to the Euler equations of
ideal fluids and the Navier–Stokes equations which govern fully developed
turbulent flows. We describe some of the unresolved mathematical issues,
including the “Navier–Stokes millennium problem”, and the role numerical
simulations play in developing this field.

1 Introduction

When you think of turbulence, you might recall the jostling and vibrations
during a recent flight. Or maybe the irregular turning and twisting motions
surrounding a hurricane or storm. But you don’t need to look far to feel,
if not see, a turbulent flow. The truth is that turbulence surrounds us al-
most all the time. It explains how heat and cold can quickly fill the room
you are in, even if breezes are kept out. Turbulence around wings is essential
for explaining the flight of airplanes and gliders. And this mundane turbu-
lence is even less understood than the large vortices and waves primarily
responsible for clear air turbulence during flight or the strong shears during
storms.

Part of the reason is that, while the equations we use to represent
and simulate fluids have been known for almost 200 years, we do not
know whether they meet fundamental mathematical criteria. In particular,
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could solutions to these equations develop discontinuities or singularities?
If they do, our description of small scale flow must be missing essential
physics.

This contribution aims at introducing the underlying mathematical prob-
lem in simple, yet precise terms and link it to insight that could be gained
from computer simulation. We begin by introducing the incompressible Euler
and Navier–Stokes equations of fluid dynamics. Section 3 explains conserva-
tion laws which provide important structural information. Section 4 intro-
duces the open mathematical question of global regularity of solutions, while
Section 5 sketches some heuristics which shape our current understanding.
Sections 6 and 7 look at the interplay between theory and numerical exper-
iment for guiding our choice of initial conditions and validating the results
of a simulation. The final Section 8 looks into the future, sketching out new
directions for research.

The article is supplemented by three more technical appendices. For read-
ers who might not be comfortable with multivariable calculus, Appendix A
introduces the main concepts and formulas in an intuitive, yet concise fash-
ion. Appendix B explains so-called energy estimates, which give a caricature
of what is known about the Navier–Stokes equations. Finally, Appendix C
sketches some of the concepts behind spectral and pseudo-spectral numerical
methods.

Giving complete and proper attribution is beyond what we can hope
to achieve in the format of this contribution. Thus, we make no serious
attempt to cite original research papers, but hope that the enterprising
reader will look at the excellent recent review articles [2, 4, 5, 6, 9, 10, 12,
15, 17] and, from there, venture further into the vast body of specialized
literature.

2 The Equations of Fluid Mechanics

Equations governing fluid motion may, at first glance, look intimidating. The
underlying principles, however, are surprisingly simple: we apply Newton’s
second law of mechanics in a continuum setting and make assumptions on
the mechanical forces that characterize a fluid.

Newton’s equation F = ma, which says that the mechanical force on
a point-particle equals its mass times its acceleration, will look familiar to
anyone with some background in high school physics. Using calculus, we in-
troduce the instantaneous velocity v(t) as the time derivative of position x(t)
and the instantaneous acceleration a(t) as the time derivative of velocity v(t).
When the force is a known function of position, Newton’s law leads to the
differential equation F (x(t)) = m d2x(t)/dt2, where the particle trajectory
x(t) is an unknown function to be solved for.
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Vt = Φt(V0)V0

x(t) = Φt(ξ)
dx
dt

= u(x, t)

ξ

Fig. 1. The flow map Φt maps the initial configuration of the fluid to its config-
uration at a later time t > 0, thereby deforming an original sub-volume V0 into
Vt. A distinguished “fluid particle” at initial location ξ is transported to location
x(t) = Φt(ξ) where it moves with velocity u(x(t), t) = dx/dt.

A fluid can be seen as a continuum of particles: consider some container
(or domain) Ω ⊂ Rd in d = 2 or d = 3 space dimensions entirely filled with
point-particles. Pick a particle at location ξ ∈ Ω at time t = 0, and denote
its trajectory by x(t). There will be exactly one such trajectory emanating
from every point in Ω. Therefore, the collection of trajectories defines, for
each fixed time t, a mapping Φt from the domain Ω into itself; see Figure 1.
This mapping is referred to as the flow map.

Newton’s law now applies to each fluid particle; more precisely, it applies
to the fluid contained in each sub-volume Vt in the limit that the size of
the sub-volume goes to zero. In this limit, Newton’s law equates forces per
volume. In particular, mass m is replaced by mass density ρ(x, t), the mass
per volume,1 so that Newton’s law states that ρa equals force per volume.

The setting so far applies to any type of mechanical continuum. A fluid,
in particular, is characterized by the assumption that each particle pushes its
neighbors equally in every direction. Then, a single scalar quantity p(x, t), the
pressure, describes the force per area that a particle at location x ∈ Ω exerts
on all its neighbors at time t. A particle is not accelerated if its neighbors push
back with equal force — it is pressure differences that result in acceleration.
This suggests that force per volume at a point is the limit of a difference
quotient,2 the negative gradient −∇p of the pressure. (The gradient operator
∇ is introduced in equation (15) of Appendix A.1. Here, it is understood to

1 The mass contained in each finite sub-volume V is then given by the integral of ρ
over the sub-volume.
2 Consider a small box-shaped sub-volume of fluid, say of lengths (a, b, c) in the
three coordinate directions. Denote the three components of force acting on the box
by F1, F2, and F3. Then F1, the x1-component of force acting on the entire box,
equals the difference of pressures at the left and right ends of the box, multiplied
by bc, the area of the right and left faces. To first order, this pressure difference is
−a ∂p/∂x1, so F1 ≈ −abc ∂p/∂x1, and similarly for the other coordinate directions,
so that F ≈ −abc∇p. In the limit a, b, c → 0, the higher order corrections tend
to zero at a faster rate and −∇p remains as an exact expression for the force per
volume.
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act only on the space variables x.) We note that the force is directed toward
areas of low pressure, hence the minus sign. Equating our two expressions for
force per volume, we conclude that Newton’s law for a fluid reads

−∇p(x(t), t) = ρ(x(t), t)
d2x(t)

dt2
. (1)

In principle, this is the equation we want. However, it is not quite useful
yet because it mixes so-called Eulerian quantities and Lagrangian quanti-
ties. Eulerian quantities are properties of the fluid which are functions of
the current position x, while Lagrangian quantities are functions of the ini-
tial location, or “particle label” ξ. So pressure and density are Eulerian3

while the particle position x itself, the velocity dx/dt, and the acceleration
d2x/dt2 are Lagrangian. For most purposes it is much more convenient to
re-express (1) in terms of all-Eulerian quantities: writing u(x, t) to denote
the velocity felt by a stationary observer at location x and time t, we observe
that

dx(t)
dt

= u(x(t), t) . (2)

Differentiating in time and using the chain rule of multivariable calculus (17)
explained in Appendix A.1, we obtain a fully Eulerian expression for the
acceleration of the particle,

d2x(t)
dt2

=
∂u

∂t
(x(t), t) + u(x(t), t) ·∇u(x(t), t) . (3)

Inserting (3) into (1) and dropping all arguments for simplicity, we ar-
rive at a form of Newton’s law which was first introduced by Euler in
1757:

ρ

(
∂u

∂t
+ u ·∇u

)
+ ∇p = 0 . (4)

A fluid governed by (4) is called ideal : the model neglects possible frictional
forces which can turn kinetic energy into heat and other effects caused by
the molecular structure of a real fluid.

At this point, we have more unknown functions than we have equations
(the d components of u, pressure p, and density ρ are unknowns, but (4) pro-
vides only d equations). So we need more information coming from physics.
The question is essentially this: what happens to the density when the pres-
sure changes? There is no general answer as a gas will behave differently
than, e.g., water. In this contribution, we focus on the case where the fluid
is incompressible: the volume of arbitrary parcels pushed around by the flow

3 In (1), the Eulerian quantities ∇p and ρ are evaluated at the current position x(t)
of a Lagrangian particle, so they are read as Lagrangian quantities. The gradient,
however, must be computed with respect to Eulerian position coordinates x rather
than Lagrangian labels ξ.
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(such as Vt in Figure 1) does not change over time.4 The relative rate of
change of a parcel volume, in the limit of vanishing size, is measured by a
quantity called the divergence of the velocity field u, see Appendix A.2. In
particular, the flow of u is incompressible if and only if divu = 0.

For simplicity, we also assume that the fluid is homogeneous: fluid parcels
not only maintain their volume as they are pushed around by the flow, but
have constant density throughout the fluid domain.5 Then, with appropriate
normalization, we can take ρ ≡ 1. What results are the Euler equations for a
homogeneous incompressible ideal fluid,

∂u

∂t
+ u ·∇u+ ∇p = 0 , (5a)

divu = 0 . (5b)

The pressure in incompressible flow is determined solely by the condition
that each sub-volume must move consistently with the motion of all of its
neighbors. The resulting pressure force generates the necessary instantaneous
adjustment across the entire fluid domain.

So far, we have neglected friction. Due to its fundamental theoretical and
practical implications, we shall look at friction in more detail. Frictional forces
enhance the local coherence of the flow, i.e. they counteract, at each point,
the deviation of the velocity field from its local average: if a particle moves
faster than the average of its neighbors, then friction slows it down. The
deviation of a function at a point from its average value on small surrounding
spheres is measured by the negative of the Laplacian ∆, a differential operator
explained in Appendix A.3, so that frictional forces should be proportional
to ∆u. Adding such a term to the Euler equations (5), we obtain the Navier–
Stokes equations for a homogeneous incompressible fluid,

∂u

∂t
+ u ·∇u+ ∇p = ν∆u , (6a)

divu = 0 . (6b)

4 There are certain physical effects that can only be described by a compressible
model, such as acoustic waves, shock formation, and supersonic flows. If these are
important, the model must be augmented with the appropriate laws of thermody-
namics; in this more general case, the pressure forces are due to local imbalances in
the internal energy or temperature. However, the usual state of the flow of water and
the macroscopic motion of air are well described as being incompressible. There is
also a computational motivation for considering incompressible flows: the effects of
compressibility usually take place on much smaller scales than the motion of the bulk.
These are expensive to resolve properly. Moreover, in situations where compressible
effects are physically negligible, simulations of the compressible model which do not
properly resolve such small scales may be very “unstable” so that it is better to start
with an incompressible model right away.
5 This is a rather mild restriction as the case of non-constant density incompressible
flow is mathematically very similar to the special case considered here.
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The constant ν > 0 is called coefficient of viscosity and describes the strength
of the viscous forces; it is much larger for honey, for example, than it is
for water. Note that the same right hand term, ν∆u, appears for the same
reason when modeling the flow of heat or the diffusion of a chemical; one
such example is described by L.N. Trefethen in this volume [18].

The partial differential equations (5) and (6) are examples of initial-
boundary value problems: this means that, in order to determine the flow
completely, we need to specify both initial and boundary values to compute
the velocity field for later times t > 0. For the purpose of this discussion,
we assume periodic boundary conditions on a box-shaped domain Ω: we can
think of tiling the whole of Rd with an array of exact copies of our domain
Ω, thereby matching corresponding points at opposite faces of the box. Thus,
what flows out one face of Ω appears to come back in at the opposite face.

For more physically realistic boundaries, one might alternatively specify
the fluxes across the boundary — the amount of fluid moving in or out of
the domain. For a Navier–Stokes flow, momentum fluxes due to the frictional
forces on the boundaries are also required; this holds true even in situations
where the energy dissipation due to friction is negligible — a crucial difference
which is necessary for explaining lift on an aircraft wing. Here, however, we
shall not consider boundary issues further; we take the point of view that fluid
dynamics with periodic boundary condition is prototypical for fluid flow far
away from real boundaries.

3 Conservation Laws

In classical mechanics, there are three fundamental conserved quantities: mo-
mentum, energy, and angular momentum. Each has a fluid analogue which
provides important structural information. Conservation of momentum is the
essence of Newton’s second law and therefore already part of the picture. The
kinetic energy of a point-particle is given by the expression E = 1

2m|v|
2. In a

continuum, as we replace mass m by the mass density ρ, we correspondingly
replace E by the kinetic energy density 1

2ρ|u|
2. For incompressible flow, all

energy is kinetic, so that the total energy is obtained by integrating the ki-
netic energy density over the fluid domain. Here, with ρ = 1, the total energy
reads

E =
1
2

∫
Ω

|u|2 dx . (7)

A simple computation, detailed in Appendix B.1, shows that E remains con-
stant under the flow of the Euler equations and is decreasing for Navier–
Stokes flow where friction turns kinetic energy into heat.

What remains are conservation laws related to rotation. For Newton’s
equations of particle mechanics, the conserved quantity is called angular mo-
mentum, always defined relative to a reference point. In fluid mechanics,
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matters are more complicated. Instead of a reference point we must consider
closed curves Ct which are transported by the flow, i.e. Ct = Φt(C0). Relative
to any such curve, the circulation is defined by the line integral

Γt =
∮

Ct

u · ds (8)

which is computed by summing up the components of the velocity field which
are tangent to Ct, see Appendix A.4. Each such Γt is a constant of motion
for the Euler equations. Moreover, due to Stokes’ theorem as explained in
Appendix A.4, the circulation equals the surface integral

Γt =
∫

St

ω · dA , (9)

where St is any oriented surface, again moving with the flow, whose boundary
is the curve Ct, and where ω denotes the vorticity

ω = curlu =
(∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
. (10)

The i-th component of the vorticity vector can be seen as the limit circulation
per unit area in the plane perpendicular to the xi-direction. Intuitively, it
measures how much a little leaf carried by the flow would spin about the i-th
coordinate vector. In two space dimensions, only the third component of (10)
is nonzero and vorticity can be identified with the scalar ∂u2/∂x1−∂u1/∂x2.

Circulation highlights a crucial difference between flows in two and in three
dimensions: since “volume” in two dimensions coincides with the notion of
area, incompressibility implies that the area of St is a constant of the motion.
In the limit of arbitrarily small area of S0, equation (9) shows that conserva-
tion of circulation implies conservation of vorticity along flow lines. In three
dimensions, there is no constraint on the area of St under volume-preserving
transformations. Hence, conservation of circulation cannot control the mag-
nitude of the vorticity vector. This is the reason for the qualitative differences
between flow in two and three dimensions, and why the two-dimensional equa-
tions cannot have singularities, but the three-dimensional equations might.

The importance of vorticity and circulation for the question of singularity
formation can be understood by a simple thought experiment. Start with a
balloon filled with an incompressible non-viscous fluid at rest and tie a lasso
around its waist which is contracted to a point in a finite time, forcing the
fluid into two lobes above and below its waist as in Figure 2. Clearly, we have
created a topological singularity as we close off the two lobes from each other
at a point. Velocity and vorticity of the fluid, however, remain bounded.

Now repeat the thought experiment with a fluid inside the balloon rotating
about its axis. In this example, the velocity is always tangent to the lasso
so that (per the definition of the line integral) the circulation is obtained by
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Fig. 2. Illustration of the rotating balloon thought experiment. As the lasso con-
tracts, conservation of circulation implies that the velocity along the waist increases
(indicated by red colors) while the velocity on the outer lobes decreases (indicated
by blue colors).

integrating the magnitude of the velocity along a circle on the surface of the
balloon, which is given by the product of fluid speed and the circumference
of the opening. Conservation of circulation demands that both fluid speed
and vorticity become infinite near the lasso as it closes, see Figure 2. This is
much like an ice-skater who turns faster and faster as she moves all her mass
towards the axis of her pirouette, propelled just by conservation of angular
momentum. This scenario creates a much stronger singularity than the first.

The blowup question for fluids asks if any of these (or possibly other)
scenarios of singularity formation may be the result of the action of a flow onto
itself. For the Euler equations, it is known that any singularity is necessarily
a singularity in the vorticity; this is discussed with more detail in Section 7.
So the squeezing off of the rotating balloon could possibly be the movement
of a sub-volume in a singular flow, while the squeezing off of the nonrotating
balloon can never occur as the most singular event in the interior of a flow.
For the Navier–Stokes equations, friction would prevent the velocity from
becoming singular in these simple thought experiments, but in general, the
question remains open, as we explain next.

4 The Clay Millennium Problem

For a mathematician, the first question when studying partial differential
equations like (5) or (6) is their well-posedness: (i) existence of solutions —
the physical system must have a way to evolve into the future, (ii) uniqueness
— there must not be arbitrary choices for the evolution, and (iii) continuous
dependence on the initial state — any future state is determined, to arbitrary
finite precision, by the initial conditions to a sufficient finite precision.

For the incompressible Euler and Navier–Stokes equations, a complete
answer to these questions is open. What is known is that both are locally
well-posed : solutions starting out from smooth (infinitely differentiable) initial
data are unique, depend continuously on the initial data, and remain smooth
for at least a finite, possibly short, interval of time. Proofs of local well-
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posedness can be achieved by formulating the equations as a fixed point
problem in a suitable space X of functions. Doing so discards much of the
problem-specific structure, but we can hope to continue the solution for all
times by noting that this local existence argument permits only one of the
following alternatives: either the solution exists on the entire interval [0,∞)
of times, or the solution exists only on some finite interval [0, T ∗) of times
and the size of the solution, called the “norm in X”, diverges as t → T ∗. In
the latter instance, we say colloquially that the solution is “blowing up at
time T ∗”. Hence, proving global well-posedness reduces to finding a bound
on the norm in X for every t > 0.

The question of whether arbitrary smooth solutions of the incompressible
Navier–Stokes equations in three space dimensions can be continued globally
in time in this manner is now one of the seven Millennium Prize Problems
posed by the Clay Mathematics Institute. It is stated as follows [8]. Either
prove that initially smooth solutions with periodic boundary conditions (or
in R3 with strong decay conditions toward infinity) remain smooth for all
times, or find at least one solution which blows up in finite time. Global well-
posedness for the three-dimensional incompressible Euler equations remains
equally open, but is not covered by the Clay prize question.

Let us sketch some partial results. For the Euler equations in two space
dimensions, we have already argued that vorticity is conserved as a scalar
along flow lines. This is sufficient to prevent blowup of finite energy solutions.
For Navier–Stokes in two dimensions, the dissipation of energy due to friction
is sufficiently strong so that the same conclusion can also be derived via
“energy estimates” which are described in more detail in Appendix B.

Even in three dimensions, solutions to the Navier–Stokes equations with
general initial data can be continued past the time of their first possible
singularities as “weak” or “generalized” solutions.6 Weak solutions exist
globally in time; however, it is physically troublesome that they are not known
to be unique. For the three-dimensional Euler equations, only special classes
of weak solutions are known; there are also examples of non-uniqueness.

It is further known that “small” solutions of the Navier–Stokes equations
do not blow up. Much effort has been spent on characterizing smallness, e.g.
in terms of the smallness of the initial data, of the viscosity being large, or of
the solution being in some sense close to some known special solution or sym-
metry. Physically, all such cases can be characterized as being non-turbulent:
diffusion ν∆u is, in some specific sense, so strong that any perturbation
coming from the u ·∇u term is damped away before it could lead to sin-
gularities. Intuitively, if a fluid equation for water is in danger of developing
singularities, we replace the water by honey, and if the honey is sufficiently
viscous, no singularities can develop. Obviously, such results are not avail-

6 Although such a solution may be discontinuous or even singular, averages of the
solution over small finite sub-volumes can still depend continuously on the initial
state. Interpreted this way, condition (iii) in the notion of well-posedness may still be
satisfied.
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able for the Euler equations where ν = 0. Another class of results known
to hold for Navier–Stokes, but not for Euler, are so-called partial regularity
results which, based on more subtle measure-theoretic arguments, state that
the space-time set of singular points of weak solutions is in a certain sense
small.

As a further surprise, there are known blowup solutions to both Euler
and Navier–Stokes equations on unbounded domains in three as well as two
dimensions. However, even before blowup, their kinetic energy per volume
is also unbounded. Unbounded local energy implies, in particular, that arbi-
trarily large velocities arise, which cannot happen in a real physical system.
Such solutions are also not covered by the Clay prize question.

5 To Blow Up or Not To Blow Up?

Let us consider a few inconclusive arguments which shape our beliefs in
whether or not solutions to the Euler or Navier–Stokes equations blow up. An
often cited but potentially misleading analogy are Burgers’ equations, taken
either with or without viscosity. These equations are obtained, respectively,
from the Navier–Stokes and Euler equations by setting p = 0 and dropping
the incompressibility constraint. These equations are not a physical model,
but are of theoretical interest as a clear black-and-white picture emerges:
without viscosity, each particle keeps its initial velocity and blowup occurs in
the form of particle collisions. With viscosity, the global maximum of velocity
remains nonincreasing and friction is strong enough to prevent blowup [12].

There is no reason to expect that the same pattern, namely, that blowup
occurs if and only if viscosity is absent, pertains to real fluids. The two
systems are different in very fundamental ways: for real fluid flow, there is no
mechanism which can give us direct control on the magnitude of the velocity
field; the difficulty arises from the coupling between transport, an inherently
local phenomenon, with pressure forces which are due to the global interaction
of all fluid particles. So one might think that Euler and Navier–Stokes behave
worse than Burgers’ equations. However, there is clear evidence that pressure
stabilizes incompressible flow to some extent. In two dimensions, as we recall,
we can now control the magnitude of vorticity which implies the existence
of global regular solutions with or without viscosity. In three dimensions, as
this control is lost, all bets are off.

Despite this, many believe that either, or both, Euler or Navier–Stokes
flows develop singularities. Why? One reason is related to the cumulative
energy dissipation

ν

∫ t

0

∫
Ω

|∇u|2 dx dt . (11)

This quantity measures how much energy has been lost up to time t, as
is explicitly shown in Appendix B.1. We would expect that, over a fixed
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interval of time [0, t], this quantity is continuous as a function of ν. However,
there is strong numerical and experimental evidence that the cumulative
energy dissipation does not converge to zero as ν → 0. This phenomenon
is referred to as anomalous dissipation and is assumed in most attempts to
model turbulence [7]. Mathematically, anomalous dissipation implies loss of
smoothness at least for the Euler equations. Its implications for the Navier–
Stokes equations are less clear.

Suppose, for the sake of argument, that Euler solutions do blow up, but
Navier–Stokes solutions don’t. Then regularity for the Navier–Stokes equa-
tions should come from the viscous term. However, the known mechanisms
in which viscosity acts do not suffice to prove that viscosity could always
control the nonlinearity. (For example, in L.N. Trefethen’s model blowup
problem [18], the diffusive term is insufficiently strong to prevent blowup.)
So unless there is a yet unknown magical mechanism, at least some Navier–
Stokes solutions might blow up, too.

So why do others believe that the Euler and Navier–Stokes equations do
not have singularities? There are two reasons. First, because the numerical
evidence remains, despite much effort, inconclusive. There are simulations on
both sides of the argument [3, 11, 13, 15] none of which, however, establishes
a “road to blowup” as is known for other models. Second, because once
the continuum description of fluids is accepted, there is nothing obviously
missing or incomplete. This is bolstered by the success of the Navier–Stokes
equations as a deterministic theory when compared with almost every piece
of experimental evidence.

6 Collapse of Vortex Tubes

Let us now look more closely at the role that simulation might play in solving
the blowup problem. As with experiments in a real-world laboratory, before
embarking on any sort of computational experimentation, one must first iden-
tify computational scenarios which would provide the most insight within the
hardware and algorithmic constraints under which we must operate.

Our objective is to find configurations which quickly develop localized in-
tense dynamics. Such scenarios can then be probed for signs of singularity
formation or for signs of depletion of the nonlinear self-amplification. Initial-
ization with random data was used first and indicated that intense events
tend to occur in tube-like structure that rotate about their axis of symme-
try. They are referred to as vortex tubes and occur in many natural flows,
including tornadoes descending from strongly rotating storms or around the
rising parcels of heated air in afternoon thunder clouds. Vortex tubes are
often not easily visible, but can be visualized through condensation due to
the low pressure in the vortex cores, air bubbles sucked into the cores, or
injection of dye.
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Fig. 3. Self-propagating steam rings ejected from an eruption at the south east
crater of the volcano Etna in 2000. Notice how the shadow of the ring travels across
the slope. Photos by Juerg Alean from http://www.swisseduc.ch/stromboli/etna/

etna00/etna0002photovideo-en.html?id=4.

Simulations and data from experiments indicate two further trends. Vor-
tices in turbulent flows amplify by stretching, much as in the rotating balloon
thought experiment in Section 3. And the most intense events, if not the
most frequent, tend to involve pairs of parallel counter-rotating (“antiparal-
lel”) vortex tubes which initially self-propagate. This is why many studies
of singularity formation focus on such pairs [15]. There are also high reso-
lution studies with smooth, highly symmetric initial conditions which might
be showing signs of similar singular behavior [11]. Simulations with random
data continue to play a crucial role in the study of turbulence, but are now
considered too “noisy” to reveal the local structure of possible singularity
formation.

In a flow without viscosity, two exactly linear, antiparallel vortex tubes
will simply propagate at constant velocity. Similarly, vortex rings, which can
appear as smoke rings, are a beautiful example of self-propagation: diago-
nally across the core, the direction of vorticity is anti-aligned, pushing fluid
through the center and dragging the vortex ring with it; see Figure 3. An-
other good example of self-propagation and subsequent break-down are the
vortices shed by aircraft wings. Sometimes they are visible as condensation
trails, where water vapor condenses due to pressure and temperature drops in
the vortex cores; they can also be made visible by smoke generators, as in the
NASA study shown in Figure 4. (Typical high-altitude aircraft condensation
trails come from the outflow of jet engines, but eventually they are engulfed
by the wing-tip vortices.) Further downstream, these tube-like structures are
twisting and starting to attract one another. This is known as the Crow in-
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Fig. 4. This picture shows the wing-tip vortices which are associated with the cir-
culation generating lift coming off the wings of a Boeing 727 aircraft. They were
made visible by smoke generators installed on the tips of the aircraft wings. (NASA
photograph number ECN-3831.)

Fig. 5. Breakdown via the so-called Crow instability of a pair of vortex tubes trailing
an aircraft. What is seen is the interaction of the vortices with the condensation trail
from the jet engines; the lower half of the picture continues the upper half on the right.
From http://commons.wikimedia.org/wiki/File:The_Crow_Instability.jpg.

stability; see Figure 5. Eventually, the tubes will touch and reconnect, before
becoming turbulent and disappearing.

Why are the two vortex tubes attracted to one another? When an exactly
linear self-propagating pair of vortex tubes is perturbed, the tubes will be
stretched somewhere along their axis. Under incompressibility, this must be
compensated for by compression in the perpendicular directions. The tubes
become longer and thinner, much as when chewing gum is pulled, and move
closer together; see Figure 6. This mechanism is self-amplifying and leads to
a rapid generation of small scale structures, as in Figure 7. Many measures of
the complexity of the flow, especially vorticity and pressure gradients, grow
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ufluid

uvortex

ufluid

Fig. 6. Two antiparallel vortex tubes. The true velocity of the flow is marked ufluid;
the apparent direction of propagation of the vortex structure is indicated as uvortex.
The colored surfaces are surfaces of constant vorticity modulus at 60% and 90% of
peak vorticity. From [3].

around these structures. One of the questions that remain unanswered is this:
do pressure gradients contribute to the amplification of vorticity, or do they
suppress any possible blowup by repelling the vortices and flattening them?
Both trends have been observed, depending upon the initial conditions or,
adding to the mystery, upon what stage of the evolution is considered.

7 Numerical Error

In areas such as number theory or discrete mathematics, computers can
find examples or counterexamples; sometimes it is even possible to achieve
computer-assisted proofs. The space-time continuum of fluid motion, how-
ever, can only be approximated on a discrete computational mesh by finitely
many floating point values. Consequently, computers are fundamentally in-
capable of proving that solutions to the Euler or Navier–Stokes problems
are well-behaved. On the other hand, knowing that the solutions are well-
behaved, we can prove that, given sufficient computational resources, we
could numerically solve the equation to any required accuracy. Yet, there
are many ways how computations interact with mathematical analysis to
provide us with a better understanding of the blowup question. Given the
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Fig. 7. Collapse of two antiparallel vortex tubes. Snapshots at t = 5.6 and t = 8.1
with a conjectured time of singularity T∗ ≈ 11. From [3].

proper configurations, simulations can inspire conjectures, validate assump-
tions, and probe the properties of inequalities.

A large number of numerical approximation methods (“schemes”) for fluid
equations have been devised, each with distinct advantages and disadvan-
tages. For example, many engineering problems use adaptive schemes that
refine the computational mesh locally in regions of interest. Sometimes it is
also possible to choose an initial condition which makes optimal use of a fixed
computational mesh, and then use simple and fast numerics, such as spectral
methods as detailed in Appendix C.

No matter which approach is used, a near-singular flow will develop small
scale features which cannot be represented well with a fixed and finite num-
ber of degrees of freedom. As the flow develops, errors will grow, so that we
need some means of validating the accuracy of the computation. The most
complete validation possible would be to refine on progressively finer meshes,
requiring progressively larger computers. Since this is impossible from a prac-
tical point of view, the usual compromise is to monitor the preservation of
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invariants and check for anomalous growth of small scale features for a few
refined mesh calculations. When carefully done, this can provide us with a
reasonable degree of confidence in the quality of the simulation.

Validation of numerical results becomes easier when the equations possess
symmetries and conservation laws. For this reason, almost all blowup studies
are done on the Euler rather than the Navier–Stokes equations. An additional
benefit of looking at non-viscous flow is that one can study the geometry of
vortex stretching without possible interference of viscous effects.

Besides validation, we need computable measures to decide whether a par-
ticular simulation result might be singular, or is clearly nonsingular. The most
famous such criterion is the Beale–Kato–Majda bound for the Euler equations
[1], which says that ∫ T∗

0

max
x∈Ω
|ω(x, t)|dt =∞ (12)

is necessary and sufficient for blowup at time T ∗. This criterion is important
for two reasons. First, it gives a bound on how fast singularities can develop:
the peak vorticity must blow up essentially at least as fast as (T ∗ − t)−1.
Second, there can be no singularities in higher derivatives of velocity in the
Euler equations unless there is a singularity in the vorticity, which is a first
derivative of the velocity and usually easily calculable.

The publication of this calculable test in 1984 fueled a decade of numer-
ical activity aimed at identifying either singular structures, or mechanisms
for suppressing singular trends. However, no scientific consensus had been
reached, with only one calculation [14] providing modest consistency with a
power law singularity while maintaining sufficient resolution in all three direc-
tions. It also became apparent that the Beale–Kato–Majda criterion by itself
was insufficient for discriminating between the competing claims. Several ad-
ditional tests for singular behavior that are both independent and calculable
were subsequently proposed [2, 5, 13, 16]. Still, whether the strongest claims
for singular behavior are consistent with the mathematical bounds remains
an open question [3, 13]. It now appears feasible that a consolidated effort
involving adequate high performance computing resources, the latest in adap-
tive mesh methods, and the use of better initial perturbation profiles could
either substantiate the proposed singular scaling regime, or would clearly
show how the nonlinearities generate a negative feedback that suppresses
singular trends.

8 An Invitation to Research

New blowup criteria — some that are more robust, as well as some that are
more refined — could make a real difference. Numerically robust tests would
involve space integrals or averages. One candidate might be the enstrophy,
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the integral over the square of the vorticity, which appears promising but
needs theoretical support. In [3], for example, the Euler enstrophy appears to
follow a power law consistent with the best known upper bound on the growth
of enstrophy in the Navier–Stokes equations. Whether this is coincidental or
whether there is a deeper connection remains a mystery. More refined blowup
tests, on the other hand, might make explicit reference to the local geometry
of vortex lines and vortex structures.

More generally, there remain open questions about the relationship be-
tween the Navier–Stokes and Euler equations. In the presence of boundaries,
the limit of vanishing viscosity is still not well understood [2]. Further, it
remains a mystery whether a global regularity result for Euler would imply
one for Navier–Stokes, as one would naively expect because one would think
viscosity can only dampen the development of singularities [5]. Nonetheless,
we believe that a breakthrough on the Navier–Stokes problem will come via
a breakthrough on the Euler problem. One reason is that the Navier–Stokes
viscosity is mathematically well understood, yet is insufficient to control the
nonlinearity. Another reason is that the Euler equations have conservation
laws, while the Navier–Stokes equations do not, which can be used to monitor
the reliability of numerical simulations probing for blowup.

Independent of these hard problems, it is always worthwhile building intu-
ition with lower dimensional toy problems which share some similarity with
the three-dimensional Navier–Stokes and Euler equations. In some cases, sim-
ulations have been used to predict existence and non-existence of singularities.
The extreme situations created to address these issues, often found after a
painful period of numerical experimentation, continue to inspire new mathe-
matics which is then used to validate numerical predictions.

In practical applications, one can often “model” the effects of small scales
which cannot be resolved computationally. In “large eddy simulations”, for
example, the Navier–Stokes viscous term is replaced by an eddy viscosity
designed to represent the average effects of viscosity over a computational
cell. In a global weather calculation, almost everything is modeled. Such ap-
proaches are often successful in preserving crucial statistical properties of
the solution; their importance cannot be overestimated, yet their mathemat-
ical study remains wide open. Especially needed is the development of new
mathematical concepts to address the relation of accuracy at large scales to
a probabilistic notion of accuracy at small scales.

Mathematical fluid dynamics and, more generally, partial differential equa-
tions is a field where analysis, physics, and computation meet and frequently
progress jointly. It is a field where deep mathematical questions and applica-
tion driven problems sit side by side. And it is a field which, at this point in
its long history, is as vibrant as ever.
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Appendix A. A Brief Guided Tour of Vector Calculus

For functions in one variable, the derivative f ′ = df/dx denotes the local rate
of change of f per unit distance, and the fundamental theorem of calculus
relates these local rates to the global change of f within an interval [a, b].
For functions in several variables, as necessarily occur when modeling fluid
flow, local rates of change are measured by directional derivatives which give
rise to four important differential operators: gradient, divergence, curl, and
Laplacian. These differential operators describe local properties of a function
or vector field which are related to global changes via the integral theorems
of Gauss and Stokes. We will explain these basic concepts without proofs
and precise statements of assumptions under the premise that our readers
are already familiar with single variable calculus and some analytic geometry.
For further background, there are many excellent textbooks and we encourage
the reader to find his or her favorite, or to search on the internet.

A.1 Directional Derivative, Gradient, and Chain Rule

Let U ⊂ Rn be an open set, f : U → R a function, and consider a point
x = (x1, . . . , xn) ∈ U . (We use boldface symbols for vector-valued variables
or functions, and plain symbols for real-valued variables or functions.) We
ask for the rate of change of f as we vary its argument x in some direction
v = (v1, . . . , vn) ∈ Rn. This question can be answered by taking the single-
variable derivative of the function t 7→ f(x + tv), which is well-defined for
small values of t. Then the local rate of change,

df(x+ tv)
dt

∣∣∣∣
t=0

= lim
t→0

f(x+ tv)− f(x)
t

, (13)

if it exists, is called the directional derivative of f at x in the direction v.7

When v = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector with a single 1 in the
i-th coordinate, the associated directional derivative is referred to as the
i-th partial derivative, written ∂f/∂xi or ∂if for short. It is computed by
taking the single-variable derivative of f with respect to xi while holding the
remaining components of x constant.

More generally, we can look at the rate of change of f as its argument
changes along an arbitrary smooth curve which is parameterized by a function
φ : (a, b) → U . The vector components of φ are denoted φ1, . . . , φn, so that
φ(t) = (φ1(t), . . . , φn(t)). Then the multivariate chain rule asserts that

d
dt
f(φ(t)) =

n∑
i=1

dφi(t)
dt

∂f

∂xi

∣∣∣∣
x=φ(t)

. (14)

7 The “vertical bar” notation used in (13) and subsequent expressions indicates that
the derivative should be computed before the indicated argument substitution is ap-
plied.
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The sum in this expression can be understood as a vector dot product between
dφ/dt = (dφ1/dt, . . . ,dφn/dt), which can be thought of as the velocity of a
point moving on the curve, and the vector of partial derivatives

∇f ≡ (∂f/∂x1, . . . , ∂f/∂xn) , (15)

which is called the gradient of f . Using familiar dot product notation u ·v =
u1 v1 + · · ·+ un vn, we can then write the chain rule (14) as

d
dt
f(φ(t)) =

dφ(t)
dt

·∇f
∣∣
x=φ(t)

. (16)

This is like the one-dimensional chain rule (f(φ(t))′ = φ′(t) f ′(φ(t)), except
we have to take the contributions in all n coordinate directions into account.

Applying the chain rule with φ(t) = x + tv so that dφ/dt = v, we find
that v ·∇f expresses the directional derivative of f in the direction v. Among
all vectors v of unit length, v ·∇f is maximal when v aligns with ∇f ; we
conclude that the gradient ∇f is a vector which points into the direction in
which f has the greatest directional derivative at x, and that the magnitude
of ∇f is the directional derivative of f in this direction. It is often convenient
to think of ∇ = (∂1, . . . , ∂n) as a vector of differentiation symbols.

A vector field is a function u : U → Rn which assigns a vector to each
x ∈ U . A typical example is a fluid which has, at each point, a velocity
vector u(x). When applying the directional derivative u ·∇ to a vector field
v, it acts on each component separately, i.e., u ·∇v = (u ·∇v1, . . . ,u ·∇vn).

In fluid dynamics, we typically encounter time dependent functions and
vector fields. Hence, we must notationally distinguish the space variables
x from time t. We write x ∈ Ω ⊂ Rd (usually with d = 2 or d = 3) to
denote a point in our fluid domain, and (a, b) for a time interval. We use
∇ = (∂1, . . . , ∂d) to denote the gradient with respect to the space coordinates
only, and ∂t for the partial derivative with respect to time. The chain rule
(14) for a function f : Ω× (a, b)→ R and ψ : (a, b)→ Ω with n = d+ 1 reads

d
dt
f(ψ(t), t) = ∂tf

∣∣
x=ψ(t)

+
dψ(t)

dt
·∇f

∣∣
x=ψ(t)

. (17)

The first term on the right records the change of f coming directly from
the time dependence of f , while the second term records the changes
from moving along the curve ψ. This form of the chain rule arises from
(16) by setting U = Ω × (a, b) and φ(t) = (ψ(t), t) so that dφ(t)/dt =
(dψ1(t)/dt, . . . ,dψd(t)/dt, 1) and the vector of partial derivatives of f reads
(∂1f, . . . , ∂df, ∂tf) = (∇f, ∂tf).

A.2 Source Strength and the Divergence of a Vector Field

Given a vector field u, we measure its “source strength” as follows. For a
given sub-volume, for instance a small box Q with boundary S, we define the
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flux of u through S as the surface integral

Fl =
∫

S

u · dA . (18)

This integral expresses that we are summing up the component of u which is
perpendicular to the boundary S. The flux measures the net volume of fluid
crossing S per unit time. Note that the component of u which is parallel to
the boundary does not contribute to the flux in or out of the box.

Q = Q1 ∪Q2

Q1 Q2

If Q is subdivided into two
subelements of volume, say Q1 and
Q2, then the flux out of Q equals the
sum of the fluxes out of Q1 and out
of Q2, as the contributions on the
common boundary cancel. By fur-
ther repeated subdivision, we can lo-
calize the contributions to the flux
which are generated by smaller and
smaller sub-volumes. Finally, we de-
fine the divergence of u at x, written
divu, as the flux out of Q divided
by the volume of Q, in the limit
of smaller and smaller volume ele-
ments Q. The divergence measures
how much flux is produced per volume, and this is the “source density” or
“source strength”. An immediate consequence of this definition is that the
flux out of Q equals the volume integral of the source strength over Q, sym-
bolically written as ∫

S

u · dA =
∫

Q

divudx , (19)

where S denotes the surface of Q. This expression is usually referred to as
Gauss’ divergence theorem. A simple calculation reveals that

divu = ∂1u1 + · · ·+ ∂nun , (20)

which can be written symbolically as ∇ · u. (Usually, this equation is used
as the definition of the divergence; then one needs to prove Gauss’ theorem
(19). Here, we have essentially taken (19) as a definition, and it is (20) that
needs proof.)

The Gauss theorem implies, in particular, that when divu(x) > 0, more
fluid comes out of a small box around x than flows in, and there is a “source”
at x — the fluid expands. Correspondingly, if divu(x) < 0, then more fluid
comes in than flows out — the fluid contracts. If divu = 0 at all points, then
inflow balances outflow everywhere and the flow preserves volume.
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A.3 Deviations from Averages and the Laplace Operator

The Laplacian ∆ of a real-valued function f in n variables measures how
much the value of f at a point x differs from the average of f on small
spheres around x: let Sε(x) denote the sphere of radius ε centered at x and
let Av(f, Sε(x)) denote the average value of f on this sphere. We then define

∆f = 2n lim
ε→0

Av(f, Sε(x))− f(x)
ε2

. (21)

An intricate computation based on Gauss’ theorem (19) shows that the Lapla-
cian is the differential operator

∆f = ∂1∂1f + · · ·+ ∂n∂nf , (22)

which can be written symbolically as ∇ ·∇f . Applied to a vector field, the
Laplacian acts on each component separately, i.e., ∆u = (∆u1, . . . ,∆un).

To motivate the equivalence of (21) and (22), consider an affinely linear
function f(x) = ax + b in one variable; then d2f/dx2 = 0 and f(x) =
(f(x− ε) + f(x+ ε))/2, so f(x) equals the average of all values at distance ε
from x; we rewrite this as f(x+ ε) + f(x− ε)− 2f(x) = 0. This is of course
not so for non-linear f , but we always have

d2f

dx2
= lim

ε→0

f(x+ ε) + f(x− ε)− 2f(x)
ε2

, (23)

the expression for the one-dimensional Laplacian.

A.4 Circulation and the Curl of a Vector Field

Our final differential operator, the curl, is most easily introduced for n = 3.
There is, however, the beautiful more abstract framework of “differential
forms” in which Gauss’ theorem (19) and Stokes’ theorem below take a simple
common form.

Let C ⊂ R3 denote a smooth curve, parametrized as s : [a, b] → C. The
curve is called closed if s(a) = s(b), and we assume that the parametrization
is traversing the curve once. The circulation of u along C is then defined by∮

C

u · ds =
∫ b

a

u(s(r)) · s′(r) dr . (24)

(The small circle in the integral sign indicates that the curve of integration is
closed.) The line integral can be thought of as summing up the components of
u which are tangential to the curve; it is easy to show that it is independent
of the choice of parametrization. It measures the amount of spinning of the
flow along the curve C. For instance, water flow around the drain of a water
basin often develops a strong circulation around the drain.
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S1 S2

S = S1 ∪ S2

Suppose there is a piece of a
surface, say S, for which C is the
boundary. The circulation in (24) is
found by going once around S. How
does the total circulation change
if we subdivide S into two sub-
surfaces S1 and S2? When comput-
ing the circulation around S1 and S2

separately, their common boundary
curve is traversed twice, but in op-
posite direction. The corresponding
contributions to the total circulation
thus cancel in the sum, and only the contribution from the boundary of S
remains. Again, we can ask which part of the surface is responsible for pro-
ducing circulation by further subdividing S. As the area of the subdivisions
tends to zero, the surfaces look more and more like planes, so that it suffices
to look at the limit circulation per unit area for planar surface elements.
This limit circulation per unit area is called the curl of u at point x, and is
written curlu. It is a vector whose component in the direction perpendicular
to a plane P is the circulation of u around a small surface S ⊂ P contain-
ing x, divided by the area of S, in the limit that this area tends to zero.
Consequently, ∫

S

curlu · dA =
∮

C

u · ds , (25)

where we may interpret curlu as a vector field and the left hand integral as
the total flux of curlu through the surface S. Equation (25) is usually referred
to as Stokes’ theorem. To determine the three vector components of the curl,
it is sufficient to compute the limit circulation per unit area in the each of
the three coordinate planes. A calculation which we will not reproduce here,
but that we encourage our readers to find for themselves, yields

curlu = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1) , (26)

which can be written symbolically as the vector product ∇ × u. If u is the
velocity field of a fluid, we refer to curlu as the vorticity. Its third component,
for instance, measures how much the flow restricted to the (x1, x2)-plane
rotates about the axis through x in the x3-direction.

Appendix B. Energy Estimates

In this appendix, we derive simple estimates for smooth solutions of the
Navier-Stokes equations which are remarkably close to the best known. We
treat only the case of periodic boundary conditions. The main result is the
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“energy relation” (32), which expresses that the total kinetic energy is con-
stant for solutions of the Euler equations and strictly decreasing for solutions
of the Navier–Stokes equations where friction comes into play. We also indi-
cate how energy estimates can lead to bounds on derivatives, and where the
difficulty in establishing better bounds comes from.

B.1 Energy is Non-Increasing

We begin by taking the dot product of the Navier–Stokes momentum equation
(6a) with u and integrating over the space domain Ω:∫

Ω

u · ∂u
∂t

dx+
∫

Ω

u · (u ·∇u) dx+
∫

Ω

u ·∇p dx = ν

∫
Ω

u ·∆udx . (27)

Writing

|u|2 =
d∑

i=1

|ui|2 and |∇u|2 =
d∑

i,j=1

|∂iuj |2 , (28)

recognizing that ∂|u|2/∂t = 2u · ∂u/∂t and u ·∇|u|2 = 2u · (u ·∇u), and
moving the time derivative under the integral, we obtain

1
2

d
dt

∫
Ω

|u|2 dx+
1
2

∫
Ω

u ·∇|u|2 dx+
∫

Ω

u ·∇p dx = ν

∫
Ω

u ·∆udx . (29)

Now, if f is a function and v a vector field, then div(fv) = f div v+ v ·∇f .
Thus, applying Gauss’ theorem (19) to fv and noting that the boundary inte-
gral on the left of (19) vanishes (because contributions from opposite bound-
ary faces of our periodic domain cancel), we obtain the multi-dimensional
“integration by parts” formula∫

Ω

v ·∇f dx = −
∫

Ω

f div v dx . (30)

Hence, the second and third terms in (29) vanish altogether: after integrating
by parts, the integrands each contain the factor divu, which is zero. Writing
∆u = ∇ ·∇u and integrating by parts in the last term of (29), we find

1
2

d
dt

∫
Ω

|u|2 dx = −ν
∫

Ω

|∇u|2 dx . (31)

Integration with respect to time finally yields the “energy relation”

E(t) ≡ 1
2

∫
Ω

|u(t)|2 dx = E(0)− ν
∫ t

0

∫
Ω

|∇u(s)|2 dx ds . (32)

Since the integrand in the last term is non-negative, the energy E is non-
increasing and the cumulative energy dissipation (11) is bounded by the initial
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energy E(0). For the Euler equations where ν = 0, energy is a constant of the
motion, but there is no implied bound on the space-time integral of |∇u|2.

B.2 Bounds on Derivatives

Let us now consider how the energy relation may control derivatives of u.
The essential difficulty lies in getting control of, in particular, the integral of
|∇u|2 over Ω pointwise in time; if this were done, bounds on derivatives of
any order would follow by standard arguments. In an attempt to prove the
required bound, we take the dot product of (6a) with ∆u and integrate over
the spatial domain as before,∫

Ω

∆u ·∂tudx+
∫

Ω

∆u · (u ·∇u) dx+
∫

Ω

∆u ·∇p dx = ν

∫
Ω

|∆u|2 dx . (33)

Integration by parts readily identifies the first term as the time derivative of
|∇u|2 and lets the pressure contribution vanish as before. However, the sec-
ond term — containing the contribution from the Navier–Stokes nonlinearity
— does not vanish. After a short computation, we obtain

1
2

d
dt

∫
Ω

|∇u|2 dx+
d∑

i,j,k=1

∫
Ω

∂iuj ∂iuk ∂kuj dx = −ν
∫

Ω

|∆u|2 dx . (34)

The second term looks complicated and does not have a definite sign. Simple-
mindedly, we bound each gradient by its Euclidean length: when ν > 0,∣∣∣∣ d∑

i,j,k=1

∫
Ω

∂iuj ∂iuk ∂kuj dx
∣∣∣∣ ≤ ∫

Ω

|∇u|3 dx

≤ c1
(∫

Ω

|∆u|2 dx
)d

4
(∫

Ω

|∇u|2 dx
) 6−d

4

≤ ν
∫

Ω

|∆u|2 dx+ c2

(∫
Ω

|∇u|2 dx
)d

, (35)

where c1 and c2 = c2(ν) are known positive constants and d = 2 or d = 3. The
proof of the second inequality requires some technical tricks in multivariate
integration; the values of the right hand exponents, however, follow from a
simple scaling argument which expresses that the inequality preserves physi-
cal units. The third inequality is simply a variant of the arithmetic-geometric
mean inequality. Altogether,

1
2

d
dt

∫
Ω

|∇u|2 dx ≤ c2
(∫

Ω

|∇u|2 dx
)d

. (36)

When d = 2, equation (36) can be interpreted as a linear nonautonomous
differential inequality: due to the boundedness of the cumulative energy dis-
sipation (11), a standard “integrating factor” argument yields a global bound
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on the integral of |∇u|2. When d = 3, this differential inequality is truly non-
linear so that the implied bound blows up in finite time. In in other words,
energy and cumulative energy dissipation are too weak to control the devel-
opment of fine scales.

The argument can be tweaked to show that when d = 3, global solu-
tions exist provided the initial data is sufficiently small, the viscosity ν is
sufficiently large, or the initial data is in various ways close to some global
regular special situation (as already mentioned in Section 4). Tweaking at
this level or looking for more clever choices of function spaces, however, can
neither alter the dimensional scaling of the terms in the equation nor the fact
that in three dimensions the energy relation provides the strongest known
globally controlled quantities. Hence, the greater strength of the nonlinear
term relative to dissipation seen in the argument above is invariant under a
large class of possible approaches.

The place where we butchered the argument is the first inequality in (35)
where all of the three-dimensional geometry of the flow was thrown out. This
geometry, or equivalently the geometry of vortex stretching, is arguably the
key to progress. Yet, it remains poorly understood because it does not map
easily into the language of continuity and compactness of mappings between
topological vector spaces, and the latter forms the backbone of much of the
theory of partial differential equations.

Appendix C. Spectral and Pseudo-Spectral Schemes

In this section, we briefly introduce spectral methods which are often the
method of choice for the computational study of turbulence and blowup.
Spectral methods rely on the Fourier series (or spectral decomposition) of
the fluid fields.

Compared with alternative numerical schemes, spectral methods are fast,
accurate, and easy to compare to many mathematical results. The last is
because much of the mathematical analysis of partial differential equations
uses spectral decompositions at some level. The main drawbacks of spectral
methods are that they lose many of their advantages if used for anything
except the simplest possible boundary geometries and, more serious in our
case, they do not allow refinement if the most intense structures are very
localized such as near developing singularities.

Under mild assumptions, the velocity field u has a unique representation
in terms of the Fourier series

u(x, t) =
∑
k∈Zd

uk(t) eik·x (37)
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where, for convenience, we have scaled our box-shaped periodic domain such
that Ω = [0, 2π]d. Each of the Fourier coefficients uk is a d-dimensional
vector of complex numbers; the index k is referred to as the wavenumber. By
taking the gradient of (37), we see that differentiation of u is equivalent to
multiplication by ik on the Fourier side,

∇u(x, t) =
∑
k∈Zd

ikuk(t) eik·x . (38)

This observation can be turned into a numerical method by assuming that
only the coefficients uk with |k| < n/2 for some n are nonzero, so that the
Fourier series involves no more than nd summands. Consequently, the linear
terms in (5) and (6) can be represented exactly by algebraic operations on
this finite set of coefficients. The first apparent drawback is that a direct
evaluation of the nonlinearity in the Fourier representation requires n2d op-
erations compared to nd for the other terms, which would be prohibitively
expensive.

Another problem stemming from the nonlinear term is that upon each new
nonlinear evaluation, required for time advancement, the number of nonzero
coefficients expands by a factor of 2d. If these terms become large and can-
not be neglected, then the required amount of computer memory will grow
exponentially. Physically, this is perfectly reasonable, as it corresponds to
the emergence of smaller scale structures as the flow evolves. This is called
a cascade in the theory of turbulence. Cascades are naturally described in
Fourier space, but are difficult to identify in the physical domain.

The inefficiency of calculating the nonlinearity in Fourier space is ad-
dressed by using the linear one-to-one correspondence between our set of
nd nonzero Fourier coefficients and the nd values on equidistant mesh points
in the physical domain. Since multiplication is cheap on the physical space
mesh, we compute it there. Operations involving derivatives can be done ef-
ficiently in Fourier space. And the map between the Fourier representation
and the physical space representation can be computed efficiently by the fast
Fourier transform, or FFT, in just nd lnn operations, i.e., we can map back
and forth as needed without significant slowdown. Methods that split the
operations in this way are known as pseudo-spectral codes.

Once the manner of calculating the spatial derivatives and the nonlinear
interaction has been established, we have reduced the problem to solving
a system of coupled ordinary differential equations. Combinations of well-
known algorithms for the numerical solution of ordinary differential equations
are then used to propagate the solution forward in time.

Pseudo-spectral approximations must be dealiased by setting to zero an
appropriate set of the high wavenumber Fourier modes — the details are
outside the scope of this discussion — to ensure that the results are mathe-
matically equivalent to a truncation of the Fourier series as indicated earlier.
Doing so ensures that quadratic invariants such as the energy in the Euler
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equations remain constants of the motion. However, errors still appear at the
scale of the mesh spacing, that is in the high wavenumber Fourier coefficients,
and in non-quadratic conservation laws such as the circulation — properties
which can be monitored to assess the accuracy of a calculation [3, 11, 15].

Ultimately, the only way to ensure accuracy is to apply more resources,
that is redo the calculations on finer meshes. In practice, when performing
simulations at the limit of available resolution, a clear understanding of the
biases of the chosen numerical scheme is as important as an understanding of
the properties of the underlying partial differential equation. And often, the
mathematical study of the numerical scheme is an interesting and worthwhile
undertaking in its own right.
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