nonlinear dynamics lab (110231)

daisyworld: biological homeostasis in an idealised world

agostino merico

a.merico@jacobs-university.de

Spring 2016

Monday & Tuesday (9–10 May) 14:15–18:15 Location: **RLH seminar room & West Hall 8**

Weinberg's "Life in the Universe", Scientific American, October 1994

upper-temperature limits for growth

life is not so tollerant to extreme conditions...

taxon	temperature (°C)
archea	113
cyanobacteria	75
single-cell eukaryotes	60
metazoa	50
vascular plant	48

and it could be exterminated by less extreme events than those occurred in the past...

・ロト・日本・モト・モート ヨー うへで

the Gaia hypothesis

ecology has traditionally considered the abiotic environment as an unchanging stage on which organisms interact

but another possibility could be that:

feedbacks between the organisms and their environment have helped to mantain habitable conditions on Earth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the Gaia hypothesis

ecology has traditionally considered the abiotic environment as an unchanging stage on which organisms interact

but another possibility could be that:

feedbacks between the organisms and their environment have helped to mantain habitable conditions on Earth

the Gaia hypothesis

ecology has traditionally considered the abiotic environment as an unchanging stage on which organisms interact

but another possibility could be that:

feedbacks between the organisms and their environment have helped to mantain habitable conditions on Earth

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the "original" Gaia hypothesis

Atmospheric homeostasis by and for the biosphere: the gaia hypothesis

By JAMES E. LOVELOCK, Bowerchalke, Nr. Salisbury, Wilts. England and LYNN MARGULIS, Department of Biology, Boston University, 2, Cummington Street, Boston, Mass. USA

(Manuscript received May 8; revised version August 20, 1973)

ABSTRACT

During the time, 3.2×10^9 years, that life has been present on Earth, the physical and chemical conditions of most of the planetary surface have never varied from those most favourable for life. The geological record reads that liquid water was always present and that the pH was never far from neutral. During this same period, however, the Earth's radiation environment underwent large changes. As the sun moved along the course set by the main sequence of stars its output will have increased at least 30 % and possibly 100 %. It may also have fluctuated in brightness over periods of a few million years. At the same time hydrogen was escaping to space from the Earth and so causing progressive changes in the chemical environment. This in turn through atmospheric compositional changes could have affected the Earth's radiation balance. It may have been that these physical and chemical changes always by blind chance followed the path whose bounds are the conditions favouring the continued existence of life. This paper offers an alternative explanation that, early after life began it acquired control of the planetary environment and that this homeostasis by and for the biosphere has persisted ever since. Historic and contemporary evidence and arguments for this hypothesis will be presented.

[Lovelock & Margulis, 1974]

the "modern" Gaia hypothesis

"organisms and their environment evolve as a single coupled system, from which emerges the sustained self-regulation of climate and chemistry at a habitable state for whatever is the current biota"

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Lovelock, 2003]

homeostasis

is the property of a system that regulates its internal environment and tends to maintain a stable, constant condition of properties (e.g.: temperature).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

daisyworld model: a simple model that illustrates the potential for life to influence planetary ecologies; the purpose of the model is to demonstrate that feedback mechanisms can evolve from the actions of "self-interested" organisms, rather than through classic group selection mechanisms.

daisyworld is a hypothetic world seeded with two varieties of daisies as its only life forms: black daisies and white daisies.

a cloudless planet is home of two kinds of plants; one type is dark coloured (reflects less light than bare ground), the other type is light coloured (reflects more light than bare grounds);

daisyworld with dominant white daisies

a cloudless planet is home of two kinds of plants; one type is dark coloured (reflects less light than bare ground), the other type is light coloured (reflects more light than bare grounds);

the growth rate of these daisies are assumed to be a parabolic function of temperature;

daisyworld with dominant white daisies

a cloudless planet is home of two kinds of plants; one type is dark coloured (reflects less light than bare ground), the other type is light coloured (reflects more light than bare grounds);

the growth rate of these daisies are assumed to be a parabolic function of temperature;

black daisies absorb more light energy than white daisies and so become warmer;

daisyworld with dominant white daisies

a cloudless planet is home of two kinds of plants; one type is dark coloured (reflects less light than bare ground), the other type is light coloured (reflects more light than bare grounds);

the growth rate of these daisies are assumed to be a parabolic function of temperature;

black daisies absorb more light energy than white daisies and so become warmer;

the temperature of the planet daisyworld is governed by the input of stellar and the albedo of the planet, thus life and the physical environment are coupled in the model.

daisyworld with dominant white daisies

the original description was given by: [Watson & Lovelock, 1983] and later further refined by: [Lenton & Lovelock, 2001];

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the original description was given by: [Watson & Lovelock, 1983] and later further refined by: [Lenton & Lovelock, 2001];

the population dynamics of the plants are described using the epidemic model of [Carter & Prince, 1981] to model aspects of plant biogeography;

the original description was given by: [Watson & Lovelock, 1983] and later further refined by: [Lenton & Lovelock, 2001];

the population dynamics of the plants are described using the epidemic model of [Carter & Prince, 1981] to model aspects of plant biogeography;

the equations are:

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} (x \beta_{w} - \gamma)$$
$$\frac{d\alpha_{b}}{dt} = \alpha_{b} (x \beta_{b} - \gamma)$$

$$\frac{d\alpha_w}{dt} = \alpha_w \left(x \beta_w - \gamma \right) ; \qquad \frac{d\alpha_b}{dt} = \alpha_b \left(x \beta_b - \gamma \right)$$

- α_w fraction of planet covered by white daisies
- α_b fraction of planet covered by black daisies
- β_w growth rate of white daisies
- β_b growth rate of black daisies
- γ death rate for all daisies
- x fraction of planet not covered by daisies $(x = 1 - \alpha_w - \alpha_b)$

plants have an optimal temperature for growth $\,T_{opt}=22.5\,^\circ C$ and thermal tolerance limits of $5\,^\circ C$ and $40\,^\circ C$

・ロト・日本・モト・モート ヨー うへで

plants have an optimal temperature for growth $\,T_{opt}=22.5\,^\circ C$ and thermal tolerance limits of $5\,^\circ C$ and $40\,^\circ C$

the growth rate (β) of each daisy type is a parabolic function of their local temperature T, for white daisies for example:

$$\beta_{\rm w} = \max\left[0\;,\;\; 1 - \left(\frac{T_{opt} - T_{\rm w}}{17.5}\right)^2\right]$$

the effective temperature of the planet (T_e) is given by the following energy balance equation:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma \left(T_e + 273.15 \right)^4 = S L \left(1 - A_p \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma (T_e + 273.15)^4 = S L (1 - A_p)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma (T_e + 273.15)^4 = S L (1 - A_p)$$

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

S is a costant energy flux so that $S/\sigma = 1.68 \times 10^{10} \text{ K}^4$;

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma \left(T_e + 273.15 \right)^4 = S L \left(1 - A_p \right)$$

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

S is a costant energy flux so that $S/\sigma = 1.68 \times 10^{10} \text{ K}^4$;

L is a dimensionless measure of the luminosity of the star that daisyworld orbits;

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma \left(T_e + 273.15 \right)^4 = S L \left(1 - A_p \right)$$

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

S is a costant energy flux so that $S/\sigma = 1.68 \times 10^{10} \text{ K}^4$;

L is a dimensionless measure of the luminosity of the star that daisyworld orbits;

 A_p is the albedo of the planet, given by $A_p = \alpha_x A_x + \alpha_b A_b + \alpha_w A_w$;

(日) (日) (日) (日) (日) (日) (日) (日)

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma \left(T_e + 273.15 \right)^4 = S \, L \left(1 - A_p \right)$$

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

S is a costant energy flux so that $S/\sigma = 1.68 \times 10^{10} \text{ K}^4$;

L is a dimensionless measure of the luminosity of the star that daisyworld orbits;

 A_p is the albedo of the planet, given by $A_p = \alpha_x A_x + \alpha_b A_b + \alpha_w A_w$;

 A_x , A_b and A_w are albedo of empty ground, black daisies and white daisies, respectively

the effective temperature of the planet (T_e) is given by the following energy balance equation:

$$\sigma \left(T_e + 273.15 \right)^4 = S \, L \left(1 - A_p \right)$$

 σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴);

S is a costant energy flux so that $S/\sigma = 1.68 \times 10^{10} \text{ K}^4$;

L is a dimensionless measure of the luminosity of the star that daisyworld orbits;

 A_p is the albedo of the planet, given by $A_p = \alpha_x A_x + \alpha_b A_b + \alpha_w A_w$;

 A_x , A_b and A_w are albedo of empty ground, black daisies and white daisies, respectively (with the assumption that $A_w > A_x > A_b$).

Sunlight reflects off different color daisies. Black daisies absorb most light, turning it into heat. White daisies reflect most light, and stay cooler. Barren spot has intermediate albedo.

see also: http://gingerbooth.com/flash/daisyball/

the local temperature of each daisy type can be determined from:

the local temperature of each daisy type can be determined from:

$$(T_w + 273.15)^4 = q(A_p - A_w) + (T_e + 273.15)^4$$

the local temperature of each daisy type can be determined from:

$$(T_w + 273.15)^4 = q(A_p - A_w) + (T_e + 273.15)^4$$

 $(T_b + 273.15)^4 = q(A_p - A_b) + (T_e + 273.15)^4$

the local temperature of each daisy type can be determined from:

$$(T_w + 273.15)^4 = q(A_p - A_w) + (T_e + 273.15)^4$$

 $(T_b + 273.15)^4 = q(A_p - A_b) + (T_e + 273.15)^4$

where $q = 2.06425 \times 10^9 \text{ K}^4$ is a constant indicating the degree of insulation between regions of the planet's surface.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

the local temperature of each daisy type can be determined from:

$$(T_w + 273.15)^4 = q(A_p - A_w) + (T_e + 273.15)^4$$

 $(T_b + 273.15)^4 = q(A_p - A_b) + (T_e + 273.15)^4$

where $q = 2.06425 \times 10^9 \text{ K}^4$ is a constant indicating the degree of insulation between regions of the planet's surface.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(it follows that $T_b > T_x > T_w$)

the following population equations

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} \left(x \beta_{w} - \gamma \right) ; \qquad \frac{d\alpha_{b}}{dt} = \alpha_{b} \left(x \beta_{b} - \gamma \right)$$

the following population equations

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} \left(x \beta_{w} - \gamma \right) ; \qquad \frac{d\alpha_{b}}{dt} = \alpha_{b} \left(x \beta_{b} - \gamma \right)$$

are solved numerically by iteration (for example using the Euler's method) using a $\Delta t = 1$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

the following population equations

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} \left(x \beta_{w} - \gamma \right) ; \qquad \frac{d\alpha_{b}}{dt} = \alpha_{b} \left(x \beta_{b} - \gamma \right)$$

are solved numerically by iteration (for example using the Euler's method) using a $\Delta t = 1$;

the model is forced with a linear increase in luminosity (*L*) from 0.5 to 1.7 in steps of $\Delta L = 0.004$, then the forcing is reversed;

the following population equations

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} \left(x \beta_{w} - \gamma \right) ; \qquad \frac{d\alpha_{b}}{dt} = \alpha_{b} \left(x \beta_{b} - \gamma \right)$$

are solved numerically by iteration (for example using the Euler's method) using a $\Delta t = 1$;

the model is forced with a linear increase in luminosity (*L*) from 0.5 to 1.7 in steps of $\Delta L = 0.004$, then the forcing is reversed;

after each luminosity step, the equations are iterated 100 times so that the populations are in close equilibrium with the forcing;

the following population equations

$$\frac{d\alpha_{w}}{dt} = \alpha_{w} \left(x \beta_{w} - \gamma \right) ; \qquad \frac{d\alpha_{b}}{dt} = \alpha_{b} \left(x \beta_{b} - \gamma \right)$$

are solved numerically by iteration (for example using the Euler's method) using a $\Delta t = 1$;

the model is forced with a linear increase in luminosity (*L*) from 0.5 to 1.7 in steps of $\Delta L = 0.004$, then the forcing is reversed;

after each luminosity step, the equations are iterated 100 times so that the populations are in close equilibrium with the forcing;

the effective temperature of daisyworld (T_e) is then contrasted with the temperature of the planet without daisies (in which $A_p = A_x$).

daisyworld exhibit self-regulation...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(Loading movie...)

over a broad range of luminosities the daisies act as a negative feedback on planetary temperature;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

over a broad range of luminosities the daisies act as a negative feedback on planetary temperature;

any increase in a daisy tends to force the planetary temperature towards conditions less good for the growth of that daisy;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

over a broad range of luminosities the daisies act as a negative feedback on planetary temperature;

any increase in a daisy tends to force the planetary temperature towards conditions less good for the growth of that daisy;

for example, an increase in black daisies will increase planetary temperature, eventually forcing temperature into a range where black daisies grows less well than the white daisies, thus leading to a reduction in black daisies and a decrease in temperature;

over a broad range of luminosities the daisies act as a negative feedback on planetary temperature;

any increase in a daisy tends to force the planetary temperature towards conditions less good for the growth of that daisy;

for example, an increase in black daisies will increase planetary temperature, eventually forcing temperature into a range where black daisies grows less well than the white daisies, thus leading to a reduction in black daisies and a decrease in temperature;

daisyworld illustrates the potential for biology to regulate conditions on a planet but only if life covers much of the planet's surface.

the mathematics of daisyworld-summary

the black daisies work with the Sun to warm the planet: positive feedback;

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

the mathematics of daisyworld-summary

the black daisies work with the Sun to warm the planet: positive feedback;

the white daisies work against the Sun to cool the planet: negative feedback;

・ロト・日本・モト・モート ヨー うへで

the mathematics of daisyworld-summary

the black daisies work with the Sun to warm the planet: positive feedback;

the white daisies work against the Sun to cool the planet: negative feedback;

black and white daisies together regulate planet's temperature producing a stable environment despite the increase in solar radiation.

is there anything operating like the black and white daisies on Earth?

is there anything operating like the black and white daisies on Earth?

Aspen Snowmass, western Colorado (USA)

is there anything operating like the black and white daisies on Earth?

Boral forest biomes on Earth

boreal forests (covering $15.8 \text{ million } \text{km}^2$) and coniferous forests in temperate mountain areas (covering $3.3 \text{ million } \text{km}^2$) represents a great expanse of trees with lower albedo than a snow-covered ground;

this raise the possibility that the boreal forest may actually warm high latitude areas, potentially helping to maintain a climate suitable for trees;

this raise the possibility that the boreal forest may actually warm high latitude areas, potentially helping to maintain a climate suitable for trees;

but: what is the net climate effect of boreal forest in the context of climate warming?

this raise the possibility that the boreal forest may actually warm high latitude areas, potentially helping to maintain a climate suitable for trees;

but: what is the net climate effect of boreal forest in the context of climate warming?

the net "warming" effect of creating a lower albedo at higher latitudes would tend to counteract the "cooling" effect of carbon sequestration...

this raise the possibility that the boreal forest may actually warm high latitude areas, potentially helping to maintain a climate suitable for trees;

but: what is the net climate effect of boreal forest in the context of climate warming?

the net "warming" effect of creating a lower albedo at higher latitudes would tend to counteract the "cooling" effect of carbon sequestration...

・ロト・日本・モート モー うへで

clearly boreal forests can potentially act like black daisy !

Bibliography

