# General Mathematics and Computational Science II 

Geometric Transformations - Supplementary Notes

Marcel Oliver


#### Abstract

These notes provide some additional material supporting Chapter 3 on "Geometric Transformations" from O.A. Ivanov's book "Easy as $\pi$ ".


## 1 Transformations in Cartesian coordinates

In the following, we look more systematically at coordinate expressions for the different geometric transformations. As Ivanov argues [1, p. 37], coordinate-free arguments are often shorter and more elegant - try, for example, to solve Problems 14 and 15 both ways. On the other hand, coordinate expressions often lead to a more direct solution approach; in addition, they are needed for computational algorithms.

Notation. Points are denoted by capital letters, while vectors, which specify a direction and a magnitude or length, are denoted by small boldface letters. In particular, to every point $P$ we associate the coordinate vector $\boldsymbol{p}$ pointing from the origin $O$ to $P$. In components, we write $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$.


Recall that $H_{A}$ denotes the central reflection or point reflection about the point $A$. In coordinates, $\boldsymbol{p}^{\prime}=\boldsymbol{a}-(\boldsymbol{p}-\boldsymbol{a})$, see figure,

so that

$$
\begin{equation*}
H_{A}(\boldsymbol{p})=2 \boldsymbol{a}-\boldsymbol{p} . \tag{1}
\end{equation*}
$$

Moreover, let $\Pi_{v}$ denote the translation by the vector $\boldsymbol{v}$; in coordinates,

$$
\begin{equation*}
\Pi_{\boldsymbol{v}}(\boldsymbol{p})=\boldsymbol{p}+\boldsymbol{v} \tag{2}
\end{equation*}
$$

Lemma 1. $H_{B} \circ H_{A}=\Pi_{2(\boldsymbol{b}-\boldsymbol{a})}$.
Proof. $H_{B} H_{A} \boldsymbol{p}=H_{B}(2 \boldsymbol{a}-\boldsymbol{p})=2 \boldsymbol{b}-(2 \boldsymbol{a}-\boldsymbol{p})=\boldsymbol{p}+2(\boldsymbol{b}-\boldsymbol{a})=\Pi_{2(\boldsymbol{b}-\boldsymbol{a})} \boldsymbol{p}$.
Let $\ell$ denote the line through the origin in the direction of a unit vector $\boldsymbol{u}$. Then, for any vector $\boldsymbol{p}$, the projection of $\boldsymbol{p}$ onto the line $\ell$ is given the the expression

$$
\begin{equation*}
\mathbb{P}_{\boldsymbol{u}} \boldsymbol{p}=\boldsymbol{u} \boldsymbol{u} \cdot \boldsymbol{p} \tag{3}
\end{equation*}
$$

where $\boldsymbol{u} \cdot \boldsymbol{p}=u_{1} p_{2}+u_{2} p_{2}$ denotes the vector dot product.


Expression (3) is easily proved by elementary trigonometry, recalling that

$$
\begin{equation*}
\cos \angle(\boldsymbol{a}, \boldsymbol{b})=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\|\|\boldsymbol{b}\|} \tag{4}
\end{equation*}
$$

where $\|\boldsymbol{a}\|=\sqrt{\boldsymbol{a} \cdot \boldsymbol{a}}$ denotes the Euclidean length of a vector $\boldsymbol{a}$, and $\cos \angle(\boldsymbol{a}, \boldsymbol{b})$ denotes the cosine of the angle between vectors $\boldsymbol{a}$ and $\boldsymbol{b}$.

Let us give a second, analytical argument for (3). The vector $\mathbb{P}_{\boldsymbol{u}} \boldsymbol{p}$ describes the point on the line $\ell$ which has minimal distance to $\boldsymbol{p}$. A general point on the line is given by $t \boldsymbol{u}$ for some real number $t$. We find the projection by minimizing

$$
\begin{equation*}
f(t)=\|\boldsymbol{p}-t \boldsymbol{u}\|^{2} \tag{5}
\end{equation*}
$$

which is nonnegative and quadratic in $t$. To find the minimum, compute

$$
\begin{equation*}
f^{\prime}(t)=\frac{\mathrm{d}}{\mathrm{~d} t}(\boldsymbol{p}-t \boldsymbol{u}) \cdot(\boldsymbol{p}-t \boldsymbol{u})=-2 \boldsymbol{u} \cdot(\boldsymbol{p}-t \boldsymbol{u}) . \tag{6}
\end{equation*}
$$

So $f$ has a critical point when $t=\boldsymbol{u} \cdot \boldsymbol{p}$, which proves (3).
We write $R_{\ell}$ to denote the reflection of the plane about some line $\ell$. Let us give two constructions which coincide on the plane, but generalize differently into higher dimensions.

A line $\ell$ (in any dimension) is uniquely specified by a point $A$ on the line and a direction, expressed by a unit vector $\boldsymbol{u}$. To reflect an arbitrary point $P$ about this line, we first compute the coordinates of the projection of $P$ onto $\ell$.


As can be seen from this figure,

$$
\begin{equation*}
\boldsymbol{c}=\boldsymbol{a}+\mathbb{P}_{\boldsymbol{u}}(\boldsymbol{p}-\boldsymbol{a}) \tag{7}
\end{equation*}
$$

Then the coordinates of $P^{\prime}$, the image of $P$ under the reflection, are given by $\boldsymbol{p}^{\prime}=2 \boldsymbol{c}-\boldsymbol{p}$, so that

$$
\begin{equation*}
R_{\ell}(\boldsymbol{p})=2 \boldsymbol{u} \boldsymbol{u} \cdot \boldsymbol{p}-\boldsymbol{p}-2 \boldsymbol{u} \boldsymbol{u} \cdot \boldsymbol{a}+2 \boldsymbol{a} \tag{8}
\end{equation*}
$$

Alternatively, a line in the plane is be uniquely specified by a point $A$ and a direction normal to the line, expressed by a unit vector $\boldsymbol{n}$. (In $d$ dimension, this construction defines a $(d-1)$-dimensional hyperplane.)


Then, clearly,

$$
\begin{equation*}
R_{\ell}(\boldsymbol{p})=\boldsymbol{p}-2 \mathbb{P}_{\boldsymbol{n}}(\boldsymbol{p}-\boldsymbol{a})=\boldsymbol{p}-2 \boldsymbol{n} \boldsymbol{n} \cdot(\boldsymbol{p}-\boldsymbol{a}) . \tag{9}
\end{equation*}
$$

## 2 Matrix expressions

Looking at the expressions for central reflections, line reflections, and translations, we notice that they are all linear affine, i.e. of the form $F(\boldsymbol{p})=\mathrm{M} \boldsymbol{p}+\boldsymbol{b}$ for some matrix M and some vector $\boldsymbol{b}$. Here we adapt the convention that all vectors are read as column vectors and write $\boldsymbol{a}^{T}$ to denote the transpose of a vector $\boldsymbol{a}$, so that $\boldsymbol{a} \cdot \boldsymbol{b} \equiv \boldsymbol{a}^{T} \boldsymbol{b}$. We further write I to denote the identity matrix. Then

$$
\begin{equation*}
\mathbb{P}_{\boldsymbol{u}} \boldsymbol{p}=\boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{p} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\ell}(\boldsymbol{p})=\left(2 \boldsymbol{u} \boldsymbol{u}^{T}-\mathbf{I}\right)(\boldsymbol{p}-\boldsymbol{a})+\boldsymbol{a}=\left(\mathbf{I}-2 \boldsymbol{n} \boldsymbol{n}^{T}\right) \boldsymbol{p}+2 \boldsymbol{n} \boldsymbol{n}^{T} \boldsymbol{a} \tag{11}
\end{equation*}
$$

where, as before $\boldsymbol{u}$ denotes some unit vector. Let us now denote the angle between the $x$-axis and $\boldsymbol{u}$ by $\phi$, so that

$$
\begin{equation*}
\boldsymbol{u}=\binom{\cos \phi}{\sin \phi} . \tag{12}
\end{equation*}
$$

Assuming further that line of reflection passes through the origin, we can take $\boldsymbol{a}=\mathbf{0}$ in (11). Hence, the reflection about a line at angle $\phi$ with the $x$-axis is represented by multiplication with the matrix

$$
\mathrm{R}_{\phi}=2 \boldsymbol{u} \boldsymbol{u}^{T}-\mathrm{I}=2\left(\begin{array}{cc}
\cos ^{2} \phi & \cos \phi \sin \phi  \tag{13}\\
\cos \phi \sin \phi & \sin ^{2} \phi
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right),
$$

where the last equality is due to the trigonometric double-angle identities.
Let $\Phi_{\alpha}$ denote the matrix of rotation about the origin through the angle $\alpha$. It is easy to find the coefficients by elementary trigonometry, see [1]. Alternatively, we may recall that the composition of two reflections about intersecting lines is a rotation about the point of their intersection through an angle equal to twice the angle between them. Taking the line in the direction of $\boldsymbol{u}$ and the $x$-axis, respectively, this implies that

$$
\Phi_{2 \phi}=\mathrm{R}_{\phi} \mathrm{R}_{0}=\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi  \tag{14}\\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
\cos 2 \phi & -\sin 2 \phi \\
\sin 2 \phi & \cos 2 \phi
\end{array}\right) .
$$

Setting $\alpha=2 \phi$, we conclude that

$$
\Phi_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha  \tag{15}\\
\sin \alpha & \cos \alpha
\end{array}\right) .
$$

## References

[1] O.A. Ivanov, "Easy as $\pi "$ ", Springer-Verlag, 1998.

