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1 Simple least squares
The simple least squares is the following special case of a linear regres-
sion problem: Find the equation of a line which is “closest” to a given
set of points in the plane. More precisely, given tuples of real numbers
(x1, y1), . . . , (xn, yn), find numbers a and b such that

f(a, b) ≡
n∑
i=1

(a xi + b− yi)2 (1)

is minimal.
As f is a smooth function defined for all (a, b) ∈ R2, calculus tells us that

it can only have a minimum provided its partial derivatives vanish. I.e.,

0 = ∂f

∂b
= 2

n∑
i=1

a xi + b− yi (2a)

and

0 = ∂f

∂a
= 2

n∑
i=1

xi (a xi + b− yi) . (2b)

Defining the mean of the {xi} and {yi} as

x̄ = 1
n

n∑
i=1

xi and ȳ = 1
n

n∑
i=1

yi , (3)

equation (2a) can be written

b = ȳ − a x̄ . (4a)
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Substituting into (2b) and solving for a, we find

a =

n∑
i=1

xi yi − n x̄ ȳ

n∑
i=1

x2
i − n x̄2

=

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2
. (4b)

Thus, we can first compute a via (4b) and then b via (4a).
Two remarks are in order. First, vanishing of the partial derivatives is,

in general, only a necessary condition for the existence of a minimum. Here,
however, it is not difficult to show that f(a, b) → ∞ as a, b → ∞ (in any
way) provided there are at least two distinct data points. Thus, since the
necessary condition yields a unique solution, this solution must correspond
to a minimum of f .

Second, the minimization of the Euclidean norm of the error as opposed
to some other error measure is certainly convenient as it yields a smooth
and even linear relationship between measured y-values and estimates for
the coefficients. However, it is often also preferred for statistical reasons:
When the errors are assumed Gaussian, the least-squares fit equals the so-
called maximum-likelihood estimator. When the errors are all from the same
probability distribution, least-squares is the so-called best unbiased linear
estimator. We will not dwell on these issues for the time being.

2 Calculus on normed vector spaces
In the following, we give a simple framework for doing calculus on arbitrary
normed1 vector spaces.2 A typical first year course on multivariate calcu-

1A normed vector space V is a vector space together with a map ‖ · ‖ : V → [0,∞) such
that

(i) ‖v‖ = 0 if and only if v = 0,
(ii) ‖λv‖ = |λ| ‖v‖ for all λ ∈ R and v ∈ V, and

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V.
The last property is called the triangle inequality. When V ∈ Rn, we take without further
discussion the Euclidean Norm defined via

‖v‖2 =
n∑
i=1

v2
i = vTv

for v = (v1, . . . , vn)T ∈ Rn.
2For simplicity, we only consider vector spaces over R. In case that the space is infinite

dimensional, we would typically assume completeness, i.e., that we have a Banach space.
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lus typically considers the vector space Rn only. However, looking at more
general vector spaces is in some sense easier, and naturally includes differen-
tiation with respect to matrices as well as the calculus of variations, both of
which occur frequently in applications. In this basic introduction, we make
no attempt to give a rigorous definition of differentiability nor do we dis-
cuss any of the analytical subtleties of doing calculus on infinite dimensional
vector spaces such as function spaces.

Let V and W be vector spaces and f : V → W a continuous function.
Central to the understanding of differentiation in this setting is the notion
of directional derivative. Namely, fix v ∈ V and choose an arbitrary δv ∈ V.3
We define the directional derivative as the instantaneous rate of change of
f when changing v by one unit of δv. We write

df(v)[δv] = lim
h→0

f(v + h δv)− f(v)
h

= df(v + h δv)
dh

∣∣∣∣
h=0

. (5)

If df is continuous on V × V, for each v ∈ V, the map df(v)[ · ] : V → W,
the called the total derivative, is linear.4 I.e., for fixed v ∈ V,

df(v)[λδv] = λ df(v)[δv] , (6a)
df(v)[δv + δw] = df(v)[δv] + df(v)[δw] (6b)

for all δv, δw ∈ V and λ ∈ R.

Practical computation The following trick often simplifies the compu-
tation of the derivative. Writing

δf ≡ df(v)[δv] , (7)

the δ symbol formally behaves like differentiation,5 so we can apply the
product rule, chain rule, etc. as usual.
Example 1. On V = Rn, fix an A ∈M(n× n) and define

f(v) = vTAv . (8)
3We must issue an important warning: In typical generalizations, v and δv are taken

from different sets. For example, V may be an affine space a + U . Then the “admissible
variations” δv must be taken from U . Or V may be a manifold, then δv is an element
from its tangent space TV.

4In the context of infinite dimensional Banach spaces, the directional derivative is called
the Gâteaux derivative and the total derivative leads to so-called Fréchet derivative. For
Gâteaux differentiability to imply Fréchet differentiability, one needs, moreover, continuity
of df : V → L(V,W).

5In fact, with only a change of language we could call this a differential.
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Then, using the product rule,

δf = (δv)TAv + vTAδv = vTAT δv + vTAδv (9)

so that df(v)[δv] = vT (A+ AT )δv or df(v) = vT (A+ AT ). You probably
know that the derivative of a real-valued function on Rn can be computed
via its Jacobian, which here is the 1× n matrix

df(v) = (∂1f, . . . , ∂nf) . (10)

Sure enough, using this formula, you’ll find the same answer, but with a lot
more pain. Try it!
Example 2. Let

V = {φ ∈ C2([0, 1]) : φ(0) = φ(1) = 0} (11)

and fix g ∈ C([0, 1]). Define

f(φ) =
∫ 1

0

(1
2 (φ′(x)2 + g(x)φ(x)

)
dx . (12)

Then

δf =
∫ 1

0

(
φ′(x) δφ′(x)+g(x) δφ(x)

)
dx =

∫ 1

0
(−φ′′(x)+g(x)) δφ(x) dx (13)

where, in the last equality, we have used integration by parts noting that the
boundary terms vanish due to the definition of V. Thus, (13) is an expression
for df(φ)[δφ]; we note that there is no elementary way to separate out δφ
in this expression.

Extrema We consider maps f : V → R, as in the examples above, and
ask for conditions under which such maps assume local minima or maxima.
Throughout, we assume that f ∈ C1(V,R), i.e., f is at least once continu-
ously differentiable. In this case, df(v) is a linear functional (i.e., a linear
map from V to R) called the gradient of f . We say that f has a local max-
imum at v ∈ V if there is ε > 0 such that f(v) ≥ f(w) for all ‖v − w‖ < ε;
f has a local minimum if −f has a local maximum. Then we have the
following necessary condition for the existence of a local extreme point:

f has a local minimum or maximum at v ∈ V only if V is a
stationary point of f , i.e., if df(v) = 0.
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The proof is a direct extension of the proof of the “first derivative test”
from single-variable calculus and shall not be given here.

Note that if f is only defined on a domain D ( V , then it may assume
a local or global extremum on the boundary (with obvious modification to
the definition of the local extremum). This case may have to be considered
separately. The technique of Lagrange multipliers below can be useful if the
boundary can be described by a constraint.

Lagrange Multipliers Sometimes we need to find extreme values of f
where v is subject to additional constraints. In the simplest case, assume
that the constraint is given by the equation g(v) = 0 for some g ∈ C1(V,R).
We have the following necessary condition.

f has a local minimum or maximum on the set {v ∈ V : g(v) = 0}
only if there exists λ ∈ R such that

df(v) = λ dg(v) . (14)

We will not give a proof, but shall give the following geometric motiva-
tion. For the purposes of discussion, suppose that V = Rn. First, we notice
that the gradient of a function is a vector pointing in the direction of steep-
est ascent.6 Thus, if we vary v in the constraint set {v ∈ V : g(v) = 0} in
the direction δv = dg(v)T leave the constraint set. On the other hand, any
variation δv⊥dg(v)T is tangent to the constraint set and therefore permit-
ted. Thus, when “probing” f for a local extremum, we can allow f to ascent
or decent in the “forbidden” direction dg(v)T . On the other hand, when f ’s
steepest ascent direction df(v) aligns with the “forbidden” direction df(v),
then the instantaneous rate of change of f is zero in any direction tangent to
the constraint set. This alignment is represented by the Lagrange multiplier
condition (14).

This argument also points out how to generalize to K constraints: Each
constraint function g1, . . . , gK induces a “forbidden” direction dgi(v)T which
must be excluded from the “search” when probing f for an extremum. Thus,
the ascent direction of f may lie in the “forbidden” space spanned by all

6To see this, recall that in Euclidean geometry,

uTw = ‖u‖ ‖w‖ cos∠(u,v) .

Thus, if u = df(v), the instantaneous rate of change in the direction of δv can be written
uT δv and is therefore maximal among all vectors of length ‖u‖ if δv = u.
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the dgi(v)T . Thus, a necessary condition for a local extremum under K
constraints is the existence of a Lagrange multiplier λ ∈ RK such that

df(v) = λTdg(v) . (15)

3 General linear least squares
Recall that in Section 1, the model for our data is the linear equation

y = a x+ b . (16)

We generalize as follows. Assume x ∈ Rm with m ∈ N while we still take
y ∈ R. (The situation discussed here easily generalizes to vector-valued
“output data” y by considering each of its components separately.) So our
data is again a set of tuples (x1, y1), . . . , (xn, yn). A linear model for our
data is a linear combination with unknown coefficients of a fixed finite set
of possibly nonlinear “ansatz functions” hi : Rm → R for i = 1, . . . , k. I.e.,
we seek to find v ∈ Rk such that

y = h(x)Tv (17)

with h(x) = (h1(x), . . . , hk(x))T fits the data with minimal mean-square
error

f(v) =
n∑
i=1

(h(xi)Tv − yi)2 . (18)

Setting

H =

h1(x1) . . . hk(x1)
...

...
h1(xn) . . . hk(xn)

 and y =

y1
...
yn

 , (19)

we can interpret this problem as the minimization of the so-called residual
Hv−y corresponding to the potentially inconsistent linear system Hv = y.
(In the following, nothing depends on the fact that these equations come
from a general linear fitting problem; we are generally asking for the least-
square solution of some inconsistent system of linear equations.) In matrix
notation, we ask for the minimum of

f(v) = ‖Hv − y‖2 = (Hv − y)T (Hv − y) . (20)
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The necessary condition for a minimum of f is

0 = δf = (Hδv)T (Hv − y) + (Hv − y)THδv = 2 (Hv − y)THδv (21)

for any δv ∈ Rk, which implies (Hv)TH = yTH or

(y −Hv)TH = 0 . (22)

Geometric interpretation In the language of Linear Algebra, equation
(22) can be seen as an orthogonality condition, namely7

y −Hv⊥RangeH , (23)

i.e., the process of minimizing f(v) yields a decomposition

y = y −Hv︸ ︷︷ ︸
⊥RangeH

+ Hv︸︷︷︸
∈RangeH

. (24)

Thus, the point Hv is the point on the hyperplane RangeH of closest Eu-
clidean distance to y.

Solvability In practical terms, we solve (22) by solving the linear system

HTHv = HTy , (25)

called the normal equations. It is an easy exercise in Linear Algebra to
verify that RangeHT = RangeHTH, therefore (25) has a solution v for any
y ∈ Rn and can be solved directly. From the computational perspective, this
is usually most efficient. However, when the k×k matrix HTH is invertible,
we may also write

v = (HTH)−1HTy . (26)

Example 3. We can recover the result of Section 1 by setting m = 1, k = 2,
h1(x) = x, h2(x) = 1, and v = (a, b)T . Equation (26) is thus a compact way
of writing (4b) and (4a).

7We define, as usual,
RangeH = {Hu : u ∈ Rk}

and
KerH = {u ∈ Rk : Hu = 0} .
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Example 4. Suppose we would like to fit a polynomial of degree k − 1 to
a set of data points taken at integer points x1 = 0, . . . , xn = n − 1. If we
choose as ansatz functions h1(x) = 1, h2(x) = x, . . . , hk(x) = xk−1, H is the
Vandermonde matrix

H =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2k−1

...
...

1 n− 1 (n− 1)2 · · · (n− 1)k−1

 . (27)

It is poorly conditioned for even moderate values of k; as a result, polynomial
least squares with a degree higher than about 3–6 are rarely a good idea.

When HTH is not invertible, i.e., when KerH 6= {0}, there is linear
dependence in the data points or in the ansatz functions. In this case, the
effective number of independent observations is less than k. In this case, we
may wish to compute a least-norm solution of (25), discussed next.

4 Least norm solutions
When a system of linear equations

Av = b , (28)

where A ∈M(n× k) is consistent, but does not have a unique solution (i.e.,
if b ∈ RangeA and KerA 6= {0}), we may ask for a solution v which has the
least norm amongst the family of solutions. (In the context of the general
linear least squares problem of Section 3, A = HH and b = HTy.)

Geometric interpretation If w is any solution of Aw = b, then it can
be decomposed as

w = w − v︸ ︷︷ ︸
∈KerA

+ v︸︷︷︸
⊥KerA

, (29)

where v is the minimum norm solution. Thus, ‖v‖ is the distance of w to
the hyperplane KerA. This decomposition is the domain-side analog to the
range-side decomposition (24) for least-square solutions.

Formulation as constrained minimization The least norm problem
can be formulated as the following constrained minimization problem.
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Find v minimizing f(v) = vTv subject to g(v) = Av − b = 0.

Since df(v) = 2vT and dg(v) = A, the method of Lagrange multipliers (15)
yields the necessary condition 2vT = λTA or, setting µ = −2λ,

Iv +ATµ = 0 . (30)

Together with the constraint Av = b, we can write the necessary condition
in block-matrix form, (

I AT

A 0

)(
v
µ

)
=
(

0
b

)
. (31)

It is easy to check that this system is consistent as long as (28) is consistent.
Moreover,

Ker
(
I AT

A 0

)
=
{(

0
u

)
∈ Rk+n : u ∈ KerAT

}
. (32)

In other words, the solution of (31) exists and, if not unique, the non-
uniqueness affects only the Lagrange multiplier µ; the least-norm vector v
is uniquely determined.

5 Singular value decomposition (SVD)
Recall from your linear algebra class that if S ∈ M(k × k) is a symmetric
matrix, it has an orthogonal diagonalization. More precisely, there exists an
orthogonal matrix8 V ∈M(k × k) such that

D = V TSV (33)

is diagonal. The orthogonal diagonalizability of symmetric matrices can be
used to construct a decomposition of any matrix into a product of orthogonal
and diagonal matrices. We proceed as follows.

Let A ∈ M(n × k). Without loss of generality, we may assume that
n ≥ k. Then S = ATA ∈ M(k × k) is symmetric and has an orthogonal
diagonalization of the form (33). Moreover, S is positive semidefinite.9 By

8A matrix V ∈ M(k × k) is orthogonal if V −1 = V T . This is equivalent to V TV = I
(the columns of V are an orthogonal basis of the column space) which is equivalent to
V V T = I (the rows of V are an orthogonal basis of the row space of V ).

9A matrix S ∈ M(k × k) is positive definite if vTSv > 0 for all nonzero v ∈ Rk; it is
positive semi-definite if vTSv ≥ 0 for all v ∈ Rk. It is easy to see that all eigenvalues of a
positive definite matrix must be positive; all eigenvalues of a positive semidefinite matrix
must be nonnegative.
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permuting the columns of V , we can always achieve that the diagonal entries
dii of D appear in decreasing order so that, in particular, d11, . . . , dmm > 0
and dm+1,m+1, . . . , dkk = 0 for some m ≤ k. We now define

Σ0 =
√
D ≡



√
d11 0 · · · 0

0 . . . ...√
dmm

0
... . . .
0 · · · 0


(34)

and10

Σ†0 =



d
−1/2
11 0 · · · 0

0 . . . ...
d
−1/2
mm

0
... . . .
0 · · · 0


. (35)

and
U0 = AV Σ†0 . (36)

First, we note that the first m columns of U0 are an orthonormal set in the
column space, as

UT0 U0 = Σ†0V
TATAV Σ†0 = Σ†0V

TSV Σ†0 = Σ†0DΣ†0 =
(
Im 0
0 0

)
. (37)

Second,
U0Σ0V

T = AV Σ†0Σ0V
T = A . (38)

The last identity is obvious if A is nonsingular so that m = k and Σ†0Σ0 = I.
In general, note that ATA = V DV T implies

KerA⊥ = Span{v1, . . . ,vm} (39a)
10Σ†0 is called the pseudo-inverse of Σ0. It is characterized by

Σ†0Σ0 =
(
Im 0
0 0

)
,

where Im denotes the m×m identity matrix.
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and
KerA = Span{vm+1, . . . ,vk} , (39b)

where v1, . . . ,vk denote the columns of V . The last step of (38) is then
easily verified by restricting to KerA and KerA⊥, respectively. Equation
(38) is referred to as the restricted singular value decomposition of A.

Now let u1, . . . ,um denote the first m columns of U0. Note that (37)
shows that

RangeA = Span{u1, . . . ,um} . (39c)

It is often convenient to extend the orthonormal set u1, . . . ,um to an or-
thonormal basis u1, . . . ,un of Rn, so that

RangeA⊥ = Span{um+1, . . . ,un} . (39d)

Then, setting

U =

 | |
u1 · · · un
| |

 ∈M(n× n) and Σ =
(

Σ0
0

)
∈M(n× k) , (40)

we can write
A = UΣV T (41)

This is the singular value decomposition of A; the diagonal entries of Σ,
denoted σ1, . . . , σk, are the singular values of A, the vectors v1, . . . ,vk are
the right singular vectors, and the vectors u1, . . . ,un are the left singular
vectors.

Variational characterization Recall, from Homework 1, that the prin-
cipal unit eigenvector of a symmetric matrix S ∈ M(k × k) maximizes the
function

f(v) = vTSv (42)

among all unit vectors v ∈ Rk. The singular value decomposition of a
matrix A ∈ M(n × k) has a similar variational characterization. Consider
the function

f(u,v) = uTAv . (43)

Then the maximum of f over the set of unit vectors u ∈ Rn and unit
vectors v ∈ Rk is the largest singular value of A; vectors u and v at which
the maximum is attained can be taken as the first left singular vector u1
and the first right singular vector v1, respectively, in the notation of (39).
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To establish our claim, we proceed as follows. Our task can be formulated
as an optimization problem for f on Rn+k with the two scalar constraints

g1(u,v) ≡ uTu− 1 = 0 and g2(u,v) ≡ vTv − 1 = 0 . (44)

Clearly,

df(u,v)[δu, δv] = vTAT δu+ uTAδv , (45a)
dg1(u,v)[δu, δv] = 2uT δu , (45b)

and

dg2(u,v)[δu, δv] = 2vT δv . (45c)

The necessary condition for a local maximum is given by the Lagrange mul-
tiplier principle (15) which reads, using (45) and rearranging terms,(

vTAT δu− 2λ1 u
T δu

)
+
(
uTAδv − 2λ2 v

T δv
)

= 0 (46)

which, since δu and δv can be chosen independently, implies

vTAT = 2λ1 u
T and uTA = 2λ2 v

T . (47)

Right-multiplying the first equality with u and the second equality with v,
we conclude that

uTAv = 2λ1 = 2λ2 ≡ σ . (48)

The existence of a solution is clear as we are maximizing a smooth function
over a compact constraint set; hence the necessary condition must be satis-
fied somewhere. Denote some such solution triple u1, v1, and σ1.11 Now,
restricting u and v to the respective orthogonal complements of the vectors
already established, we can iterate this argument k times to obtain a full
set of “singular values” σ1, . . . , σk, “right singular vectors” v1, . . . ,vk and,
completing the orthogonal set to a basis, “left singular vectors” u1, . . . ,un.

Two claims remain to be verified. First, that the result of the above
construction is indeed indeed a singular value decomposition. Second, that
the largest singular value is indeed the global (not just some local) maximum
of f as claimed. The verification of both statements is not difficult and shall
be left as an exercise.

11We are not claiming uniqueness. In fact, it can be shown that the solution is unique
up to a choice of sign if the singular values of A are nondegenerate; in the degenerate case,
it is clear that we cannot expect uniqueness.
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Matrix norms Given any norm ‖ · ‖ on Rn, we can define the norm of a
matrix A = M(n× k) as the smallest number ‖A‖ such that

‖Ax‖ ≤ ‖A‖ ‖x‖ (49)

holds true. In other words,

‖A‖ = max
x6=0

‖Ax‖
‖x‖

. (50)

This definition generalizes to operators between Banach spaces and is often
referred to as the operator norm. Note that, if the coefficients of A are
denoted aij ,

‖A‖2F =
∑

i∈1,...,n
j∈1,...,k

|aij |2 (51)

defines a norm, called the Frobenius norm, which is is not an operator norm.
Consider, in particular, the operator norm induced by the Euclidean

norm on Rn, which we generally assume in these notes. Then ‖x‖2 = xTx,
so that, using the singular value decomposition,

‖A‖2 = max
x6=0

xTV ΣTUTUΣV Tx

xTx

= max
x6=0

xTV ΣTΣV Tx

xTV V Tx

= max
y 6=0

yTΣTΣy
yTy

= σ2
1 (52)

In other words, the matrix norm induced by the Euclidean metric equals
the largest singular value of the matrix.

In contrast, it is not difficult to show that

‖A‖2F =
k∑
i=1

σ2
i . (53)

Condition numbers Suppose, for simplicity, that A ∈M(n×n) is a non-
singular matrix. We would like to characterize the stability of the solution
x to the system of linear equations

Ax = b (54)
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under perturbation of the right hand side. By linearity, ∆b = A∆x, where
∆b denotes an absolute change of the vector b, and ∆x the corresponding
absolute change in x. Thus, by (49), we obtain ‖∆x‖ ≤ ‖A−1‖ ‖∆b‖ and
‖b‖ ≤‖A‖ ‖x‖, so that

‖∆x‖
‖x‖

≤ ‖A‖ ‖A−1‖ ‖∆b‖
‖b‖

. (55)

The worst-case amplification factor for relative differences,

κ(A) = ‖A‖ ‖A−1‖ , (56)

is called the condition number of A. Due to (52),

κ(A) = σ1
σn

. (57)

This notion of condition number generalizes naturally to non-square matrices
A of full rank. When the condition number is large, the solution x becomes
very sensitive to error (e.g. measurement error) in the data b; we speak of
an ill-conditioned problem.

6 Approximate solution of ill-conditioned linear
equations

Let us consider the following prototypical version of an ill-conditioned sys-
tem of linear equations. Our presentation closely follows [2]. Let x ∈ Rn
represent the true pixel values of a, for simplicity, one-dimensional image.
The image is taken by a device which, due to lens imperfections, say, records
a blurred set of pixel values b ∈ Rn. We assume a simple linear model for
the device imperfections, namely that

bi =
n∑
j=1

ai−j xj , (58)

where b1, . . . , bn and x1, . . . , xn denote the components of b and x, respec-
tively. This type of expression is referred to as a discrete convolution with
kernel ak; typical is a bell-like shape of its graph, e.g.,

ak = c e−γk2 (59)

for some given constants c and γ. Equation (58) can be written as a system
of linear equations

b = Ax (60)
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with n× n matrix

A =



a0 a−1 · · ·

a1
. . . . . .

... . . . . . . ...
. . . . . . a−1
· · · a1 a0


. (61)

Matrices of this type are known as Toeplitz matrices. They are typically
very ill-conditioned12, so that, even in the case that A is non-singular, the
direct solution of (60) may be practically meaningless.

Regularization The ill conditioning of (60) can be understood in terms
of the singular values of A as follows. Suppose xtrue refers to the true pixel
values of the image; due to measurement error, the observed value b can be
written

b = Axtrue + η , (62)

where η is the measurement error vector with norm ‖η‖ > 0. For simplicity,
we suppose that A ∈ M(n × n) is nonsingular. Thus, when attempting to
compute the pixel values by direct inversion of A, we obtain

xnaive = A−1b = xtrue + V Σ−1UTη . (63)

The ill-conditioning manifests itself in the occurrence of small singular values
for A, so that Σ−1 in (63) has small denominators—some components of η
with respect to the orthonormal basis {vi} are being multiplied with large
gains. As a result, we cannot expect xnaive and xtrue to be close.

Since the problem is due to small denominators, let us define a filtered
solution

xα = V Σ−1
α UTb (64)

12In fact, (58) can be interpreted as a discrete approximation of the integral equation

b(x) =
∫ b

a

k(x− y) f(y) dy

where, with a smooth kernel function k, the right hand side defines a compact, hence
non-invertible operator on a Hilbert space. Such problem are referred to as ill-posed.
Direct discretization of an ill-posed continuum problem always leads to an ill-conditioned
finite dimensional system. In this sense, the ill-conditioning in our example is a generic
phenomenon.

15



where Σ−1
α is the filtered inverse of Σ, defined by

Σ−1
α = diag{wα(σ2

i )σ−1
i : i = 1, . . . , n} (65)

with w(σ2) converging to zero at least linearly as σ → 0 to avoid unbounded
singular values of the filtered inverse in this limit. Among the many possible
choices for wα, the following are particularly natural.

Truncation The simplest choice is the cut-off filter

wα(σ2) =

{
1 if σ2 ≥ α
0 if σ2 < α .

(66)

Tychonov regularization With the choice

wα(σ2) = σ2

σ2 + α
, (67)

we obtain
wα(σ2)σ−1 = σ

σ2 + α
(68)

or
Σ−1
α = (Σ2 + αI)−1Σ , (69)

thereby providing a smooth transition between the filtered and unfiltered
regime. Substituting this expression into (64), we obtain

xα = V (Σ2 + αI)−1ΣUTb
= V (Σ2 + αI)−1V TV ΣUTb
= (V (Σ2 + αI)V T )−1V ΣUTb
= (ATA+ αI)−1ATb . (70)

Note that this expression formally resembles the normal equations (26) of
the linear least squares problem, suggesting a close relationship between the
two problems. This expectation will be substantiated later when we describe
a variational formulation of the Tychonov regularization.

Sparse matrices In many applications, the matrix A is sparse, or is well-
approximated by a sparse matrix. Thus, it is important that the regular-
ization can be implemented such that it can be implemented without losing
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sparsity.13 The truncation filter will certainly not work in this setting, as it
depends on an explicit singular value decomposition which, even if only the
singular values up to the filter scale α were ever computed, would amount
to doing computations with full matrices.

The Tychonov regularization in the form (70), on the other hand, is
equivalent to solving the linear system

(ATA+ αI)xα = ATb , (71)

cf. the normal equations (25) for the least-square problem. If A is sparse,
the system matrix is also sparse and iterative solvers can be used to solve
the system in approximately O(N) time, where N is the number of non-zero
entries of A.

Error analysis We provide a deterministic error analysis, i.e., we assume
that η is a fixed measurement error vector of known magnitude. We define

eα = xtrue − xα = xtrue − V Σ−1
α UTb

= V IV Txtrue − V Σ−1
α UT (Axtrue + η)

= V (I − Σ−1
α Σ)V Txtrue − V Σ−1

α UTη

≡ etrunc + enoise (72)

Note that, in contrast to the noise term in (63), the expression for enoise in-
volves a filtered inverse, thus has bounded gains. We expect that ‖enoise‖ de-
creases with increasing filter parameter α, while the truncation error ‖etrunc‖
increases; thus, there should be an optimal filter parameter α. This is borne
out by the following estimation.

First, due to (49) and the fact that the Euclidean matrix norm of an
orthogonal matrix equals 1,

‖enoise‖ ≤ ‖V ‖ ‖Σ−1
α ‖ ‖UT ‖ ‖η‖ ≤ max

σ>0

wα(σ2)
σ

‖η‖ ≤ 1
2
√
α
‖η‖ . (73)

The last inequality above can be verified independently for the truncation
filter and for the Tychonov regularization.

Second, we seek to derive estimates on the truncation error. Here we are
faced with a fundamental dilemma. In order to conclude that truncation

13A linear operator A stored as 64-bit floating point numbers acting on a grayscale image
of size 5122 stored as a full matrix will require 8 × 5122 × 5122 = 512 GiB of memory,
substantially more than available as main memory on a desktop-class computer.
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error—the error committed by filtering—is small, we need to ensure that the
information which gets removed by the filter is is some sense unimportant
for the true solution. In other words, we need to provide additional a priori
information on the problem.14 In a standard analysis of this problem, one
assumes the range condition15

xtrue = ATz (74)

such that ‖z‖ is “reasonable,” meaning of the same order of magnitude as
‖xtrue‖. It is important to realize that this condition, from the mathematical
point of view, is arbitrary. Rather, it represents additional knowledge about
the specific problem providing additional restrictions on the the class of
vectors in which we seek a solution. As such, it must be justified on physical
grounds which necessarily lie outside of the analysis presented here.

Proceeding with our estimation, we obtain, inserting the range condition
(74) into the expression for etrunc,

‖etrunc‖2 = eTtrunc etrunc = zTAV (I − Σ−1
α Σ)V TV (I − Σ−1

α Σ)V TATz

= zTU (I − Σ−1
α Σ)2 Σ2 UTz

≤ max
σ>0

(1− wα(σ2))2 σ2 ‖z‖2

≤ α

4
‖z‖2 . (75)

Inserting the bounds for etrunc and enoise into (72), we obtain

‖eα‖ ≤
√
α

2
‖z‖+ 1

2
√
α
‖η‖ . (76)

It is easy to show that the right hand side is minimized when the two term
balance, i.e., α = ‖η‖/‖z‖, so that

‖eα‖ =
√
‖η‖ ‖z‖ . (77)

We call this an a priori estimate for the regularization parameter since
knowledge of the true solution xtrue is required. Next, we discuss a near-
optimal choice for the regularization parameter knowing only the data.

14In fact, in the absence of further information, we can still conclude, directly from the
definition of the wα considered, that ‖etrunc‖ → 0 as α → 0. This conclusion, however,
is practically meaningless because we have no control about the rate of convergence, so
there is no way to ensure that we are doing substantially better than the naive, direct
inversion (63).

15In an infinite dimensional Hilbert space setting, the range condition can be stated
concisely as

xtrue ∈ RangeAT .
There, this condition is nontrivial.

18



Morozov discrepancy principle In contrast to what was done in (72),
we can split the error into two components as follows,16

e∗α ≡ A(xtrue − xα) = (b−Axα) + η ≡ e∗trunc + e∗noise . (78)

Since e∗trunc now only depends on the measured data b, we can compute an
a posteriori estimate of α by balancing the norms of e∗trunc and e∗noise rather
than those of etrunc and enoise as in (76). Notice that

e∗trunc = U(I − ΣΣ−1
α )UTb (79)

so that

‖e∗trunc‖2= bTU (I − ΣΣ−1
α )2 UTb→

{
0 as α→ 0
bTb as α→∞ ;

(80)

the left hand expression is, moreover, smooth and monotonic. Thus, when-
ever ‖b‖ ≥ ‖η‖, the intermediate value theorem guarantees the existence
of an αopt such that ‖e∗trunc(αopt)‖ = ‖η‖. This regularization parameter
selection criterion is called the Morozov discrepancy principle.

Error analysis of the Morozov principle We now ask the question
how the error eα behaves under the Morozov discrepancy principle. This
question is only easy to answer in the case of the Tychonov regularization
where xα is known to minimize the function

fα(x) = ‖Ax− b‖2 + α ‖x‖2 (81)

over all x ∈ Rn; see Homework 2. Thus, in particular,

fα(xα) ≤ fα(xtrue) (82)

which we can write

‖Axα − b‖2 + α ‖xα‖2 ≤ ‖η‖2 + α ‖xtrue‖2 . (83)

When α is chosen according to the Morozov principle, ‖Axα − b‖ = ‖η‖,
so that the first terms on left and right of this inequality drop out and we
conclude that

‖xα‖ ≤ ‖xtrue‖ . (84)
16The definition e∗α = Aeα seems arbitrary, but is motivated by the need to avoid any

inversion of A as this computation generally cannot be performed in a stable manner.
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Then,

‖eα‖2 = ‖xtrue‖2 − 2xTαxtrue + ‖xα‖2

≤ 2 ‖xtrue‖2 − 2xTαxtrue = 2 eTαxtrue . (85)

As before, we assume the range condition with xtrue = ATz, so that

‖eα‖2 ≤ 2 eTαATz = 2 (e∗α)Tz ≤ 2 ‖e∗α‖ ‖z‖ . (86)

When α is chosen according to the Morozov principle, ‖e∗α‖ = 2 ‖η‖. In-
serting this estimate back into (86) and taking the square root, we obtain

‖eα‖ = 2
√
‖η‖ ‖z‖ (87)

which coincides with the a priori error estimate (77) up to a factor 2.

Final Remarks The range condition is crucial for getting good recon-
structions. In the case when A represents a discrete convolution or the
inverse of a discrete differential operator, the range condition qualitatively
expresses that xtrue consists of samples of a smooth function on a grid. A
concise discussion is beyond the scope of these notes, but the consequences
of this statement are easily visible in simple computational experiments. In
particular, the filtered inverse will reconstruct or reproduce step functions
only poorly—the edges will get eroded.

In the variational characterization (81), the term α ‖x‖2 can be seen as
a “penalty term” which might be replaced with other types of penalties, not
all of which can be described in terms of the singular value decomposition.
One important example is to replace ‖x‖2 by the so-called total variation.
The total variation penalizes oscillatory behavior while allowing jumps. The
book by Vogel [2] gives a more complete, yet relatively accessible introduc-
tion to theory and computational methods for inverse problems.
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