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1 Fourier series

We begin by recalling the familiar definition of the Fourier series. For a periodic function
u : [0, 2π]→ C, we define the Fourier transform

ûk =
1

2π

∫ 2π

0

e−ikx u(x) dx . (1)

for every k ∈ Z. By direct computation, noting that the boundary terms of the integral
cancel due to periodicity, we obtain the orthogonality relation

1

2π

∫ 2π

0

e−ijx eikx dx = δij , (2)

where δjk denotes the Kronecker symbol

δjk =

{
1 if j = k ,

0 otherwise .
(3)

We conclude that the inverse Fourier transform is given by

u(x) =
∑
k∈Z

ûk eikx , (4)

which can be verified by inserting (4) into (1), changing the order of integration and summa-
tion, and applying the orthogonality relation (2). In the same way, we obtain the Parseval
identity

1

2π

∫ 2π

0

u(x) v(x) dx =
∑
k∈Z

ûk v̂k , (5)

where the overbar denotes the complex conjugate.

Remark 1. The choice of the interval of definition of the periodic function u is arbitrary, but
choosing [0, 2π[ has notational advantages. Other intervals can be obtained by translation
and scaling. The prefactor on the right of (1) is sometimes fully or partially moved into the
inverse Fourier transform (4).
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Remark 2. More elegantly, we may speak of functions on the torus T = R/2πZ. The right
hand notation means that two real numbers are considered equivalent if they differ by an
integer multiple of 2π.

Remark 3. The precise functional setting is not important for our purposes, and we will
not dwell on this issue. Let us remark that this theory is developed by noting that (a) the
inversion formula (4) is a continuous linear map from the sequence space `1 into the space of
essentially bounded functions L∞(T) and that (b) the Parseval identity (5) shows that the
Fourier transform is an isometry with respect to the norms of the larger respective spaces `2

and L2(T), and can thus be extended to those larger spaces using a density argument. The
details depend on advanced Analysis and may be found, for example, in [2].

Remark 4. The orthogonality relation (2) expresses that {eikx : k ∈ Z} is an orthonormal
set with respect to the inner product

〈u, v〉 =
1

2π

∫ 2π

0

u(x) v(x) dx . (6)

It is a nontrivial result that this set is a Hilbert basis of the function space L2(T), which
means that every u ∈ L2(T) can be expressed as a countable linear combination of basis
functions [2]. From this point of view, the inverse Fourier transform (4) is nothing but the
representation of a function in terms of a Hilbert basis.

2 The discrete Fourier transform

Let v0, . . . , vN−1 be an N -tuple of real or complex numbers. We define the discrete Fourier
transform (DFT) to be the linear map

ṽk =
1

N

N−1∑
j=0

e−ikjh vj (7)

where k = 0, . . . , N − 1 and

h =
2π

N
. (8)

Remark 5. We can think of v0, . . . , vN−1 as the samples of a 2π-periodic function v on the
equidistantly spaced nodes

xj = jh . (9)

In this case, we can write the formula for the DFT as

ṽk =
1

N

N−1∑
j=0

e−ikxj v(xj) , (10)

which looks like a Riemann sum approximation to the continuous Fourier transform (1). This
interpretation, however, has some subtleties which will be discussed further in Section 3.
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We now investigate the inverse of the discrete Fourier transform (7). To this end, we first
derive the discrete orthogonality relation

1

N

N−1∑
j=0

e−ikjh eiljh =
1

N

N−1∑
j=0

ei(l−k)jh =
1

N

N−1∑
j=0

(
e
i2π

l−k
N

)j

=

1 if l = k +mN for some m ∈ Z
1− qN

1− q
= 0 otherwise

= δperkl , (11)

where

q = e
i2π

l−k
N (12)

so that qN = e2πi(l−k) = 1, and where δperkl denotes the periodic Kronecker symbol

δperkl =

{
1 if l = k +mN for some m ∈ Z ,
0 otherwise .

(13)

Remark 6. Along the same lines, it is easy to show that for any m ∈ Z,

1

N

m+N∑
j=m+1

e−ikjh eiljh = δperkl . (14)

Remark 7. In the language of linear algebra, (11) states that the family of vectors {ek =
N−1/2 (eikx0 , . . . , eikxN−1) : k = 0, . . . , N − 1} form an orthonormal basis of CN with respect
to the standard inner product.

Exercise 1. Prove the discrete Parseval identity

N−1∑
k=0

|ṽk|2 =
1

N

N−1∑
j=0

|vj|2 . (15)

Exercise 2. Let ṽk be defined by (7) for any k ∈ Z. Show that ṽk+N = ṽk. Vice versa, set
vj+N = vj, then show that for every m ∈ Z,

ṽk =
1

N

m+N∑
j=m+1

e−ikxj vj . (16)

Exercise 3. Let

wj =
1

N

N−1∑
l=0

ul vj−l (17)

with the understanding that the three N -tuples are periodically extended beyond their basic
range of definition on which the index varies from 0 to N − 1; see Exercise 2. Show that

w̃k = ũk ṽk . (18)
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Remark 8. Exercise 2 shows, in particular, that our choice of range for k, the “wavenumber”
index, is arbitrary. Any range of N consecutive wavenumbers will do.

We conclude that the inverse discrete Fourier transform is given by

vj =
N−1∑
k=0

ṽk eikxj , (19)

as can be directly verified by substituting the discrete Fourier transform (7) into the right
hand sum and applying the orthogonality relation (11).

Remark 9. The normalization convention is arbitrary. Many software implementations of
the discrete Fourier transform, including those in Matlab and Octave, have the factor 1/N in
the inverse transform (19) rather than in the forward transform (7). The convention above
has the advantage that the DFT can be seen as the Riemann sum approximation of the
continuous Fourier transform. If both the forward and the inverse transform get a factor
of 1/

√
N , the transform is unitary, which has certain theoretical advantages, but is usually

avoided in actual code.

3 Sampling and approximation

From the linear algebra perspective, the previous section already gives a complete description
of the discrete Fourier transform. In practice, however, the DFT is often used as an approx-
imation to the continuous Fourier transform. Thus, we need to define the reconstruction of
a function on [0, 2π] and must then discuss the quality of the approximation.

To begin, assume that u : [0, 2π] → C is continuous and periodic, and write uj = u(xj)
for j = 0, . . . , N−1 to denote the values of u sampled on the grid. For simplicity, we assume
that N is even. We now define a function v, the trigonometric interpolant of u on the grid,
by letting ṽk be the DFT of the samples uj,

ũk =
1

N

N−1∑
j=0

e−ikxj uj (20)

for k = −N/2, . . . , N/2− 1, then set

v(x) =

N/2−1∑
k=−N/2

ũk eikx . (21)

Note that k still ranges over a set of N consecutive wave numbers. The particular choice
here seems odd, but will turn out to be crucial for keeping the approximation error small.

The name “trigonometric interpolant” is justified by the fact that v and u coincide on
the grid, to be verified in the following straightforward exercise.
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Exercise 4. Show that v(xj) = uj for j = 0, . . . , N − 1 and that v̂k = ũk for k =
−N/2, . . . , N/2− 1.

However, the discrete Fourier coefficients v̂k = ũk are generally different from the Fourier
coefficients ûk defined by (1)! To quantify how they differ, we compute, using (20), (4), and
(11), that

ũk =
1

N

N−1∑
j=0

e−ikxj
∑
l∈Z

ûl e
ilxj =

∑
l∈Z

ûl δ
per
kl . (22)

Moving the term where k = l onto the left side of the equality and re-indexing the sum, we
obtain the Poisson summation formula or aliasing formula

ũk − ûk =
∑
m∈Z
m6=0

ûk+mN . (23)

This result shows that the error in the Fourier coefficients with wavenumbers within the
range k = −N/2, . . . , N/2 − 1 depends on the magnitude of ûl outside of this range. Since
smooth functions have Fourier coefficients whose magnitude decreases with increasing |k| (a
more concrete version of this statement is given below), and real-valued functions have |ûk| =
|û−k|, the maximally symmetric choice of wavenumber range where k = −N/2, . . . , N/2− 1
can be expected to minimize the approximation error for “typical” functions.

Remark 10. The aliasing formula implies a version of the Shannon sampling theorem, often
stated as “Exact reconstruction of a continuous-time baseband signal from its samples is
possible if the signal is bandlimited and the sampling frequency is greater than twice the
signal bandwidth” [6].

It is often useful to quantify the approximation error u − v directly. It is easiest to do
under the assumption that

‖u‖2Hm =
∑
k∈Z

(1 + |k|2)m |ûk|2 <∞ . (24)

Remark 11. The condition above is a statement about the smoothness of u. More specifi-
cally, it says that derivatives of u, while they may not exist everywhere, do not diverge too
rapidly. For m = 1, for example, (24) is equivalent to saying that∫ 2π

0

(
|u(x)|2 + |u′(x)|2

)
dx <∞ . (25)

Remark 12. The set of L2 functions, i.e. square integrable functions, for which (24) holds,
is called the Sobolev space Hm.
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We compute

‖u− v‖2L2 =

∫ 2π

0

|u− v|2 dx = 2π
∑
k∈Z

|ûk − v̂k|2

= 2π

N/2−1∑
k=−N/2

|ûk − v̂k|2 + 2π

 ∑
k<−N/2

+
∑
k≥N/2

 |ûk|2
= 2π

N/2−1∑
k=−N/2

∣∣∣∣∣∑
j 6=0

ûk+jN

∣∣∣∣∣
2

+ 2π

 ∑
k<−N/2

+
∑
k≥N/2

 |ûk|2
≤ 2π

 ∑
|k|≥N/2

|ûk|

2

+ 2π
∑
|k|≥N/2

|ûk|2 , (26)

where the last inequality is based on
∑
a2i ≤

(∑
ai
)2

for nonnegative ai, and where we have
symmetrized the range of the summation index taking the more conservative bound. The
second term on the right of (26) is the truncation error, which can be estimated as∑

|k|≥N/2

|ûk|2 =
∑
|k|≥N/2

|k|−2m |k|2m |ûk|2

≤
(
N

2

)−2m ∑
|k|≥N/2

|k|2m |ûk|2

= c1(m)N−2m ‖u‖2Hm . (27)

The first term in (26) is the aliasing error, which is estimated as ∑
|k|≥N/2

|ûk|

2

=

 ∑
|k|≥N/2

|k|−m |k|m |ûk|

2

≤
∑
|k|≥N/2

|k|−2m
∑
|k|≥N/2

|k|2m |ûk|2

≤ c2(m)N−2m+1 ‖u‖2Hm , (28)

where the first inequality is due to the Cauchy–Schwarz inequality, and the second inequality
is a result of estimating the sum in terms of an integral,∑

|k|≥κ

|k|−2m ≤ 2

∫ ∞
κ−1

k−2m dk =
2

2m− 1
(κ− 1)1−2m . (29)

Inserting (27) and (28) into (26), we have proved the following.

Theorem 1. For every m > 1
2

there exists a constant c(m) such that for every u ∈ Hm

‖u− v‖L2 ≤ c(m)N1/2−m ‖u‖Hm , (30)

where v is the trigonometric interpolant of u as given by (21).
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4 The fast Fourier transform

The fast Fourier transform is mathematically equivalent to the discrete Fourier transform,
but organizes the operations in a tree-like structure which reduces to the computational com-
plexity from the O(N2) when viewed as a generic vector-matrix multiplication to O(N lnN)
provided that N is completely factorizable into small prime factors.

The construction can be understood as follows. Assume that N can be written as a
product of integers N = pq. Now re-index the discrete Fourier transform, writing

j = q j1 + j2 with j1 = 0, . . . , p− 1 and j2 = 0, . . . , q − 1 , (31)

k = p k2 + k1 with k1 = 0, . . . , p− 1 and k2 = 0, . . . , q − 1 . (32)

The discrete Fourier transform (7) then reads

ṽk =
1

N

q−1∑
j2=0

p−1∑
j1=0

e−i(qj1+j2)(pk2+k1)h vj

=
1

N

q−1∑
j2=0

e−ij2(pk2+k1)h
p−1∑
j1=0

e−ij1k2pqh e−ik1j1qh vj

=
1

N

q−1∑
j2=0

e−ik2j22π/q e−ik1j2h
p−1∑
j1=0

e−ik1j12π/p vj . (33)

The crucial observation is that the inner sum is now itself, for j2 fixed, a discrete Fourier
transform of length p. Thus, if Tp denotes the number of terms needed to compute a length
p Fourier transform, the computation of the inner sum for all values of j2 requires q Tp terms.

Similarly, the outer sum is, for k1 fixed, a discrete Fourier transform of length q acting on
the values of the inner sum pre-multiplied by exp(−ik1j2h). Thus, its computation involves
p Tq terms.

We conclude that, in total,
TN = q Tp + p Tq (34)

which, in general, is less than N2 = p2q2. Moreover, the factorization of the DFT is recursive
so long as p or q can themselves be factored.

In the important special case where N = 2k, it is easy to solve this recurrence. Write
tk = TN , q = 2 and p = 2k−1, whence (34) takes the form

tk = 2 tk−1 + 2k−1 t1 . (35)

Noting that self-consistency of this expression requires that t0 = 0 (computing a length-one
discrete Fourier transform is trivial and does not require any floating point operations), we
can easily find the solution to this linear difference equation [4],

tk = k 2k−1 t1 . (36)
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Thus,
TN = log2N 2log2N−1 t1 = N log2N t1/2 = O(N lnN) . (37)

More generally, if N = p1 . . . pm, then the discrete Fourier transform can be computed in
N(p1 + . . . pm) operations [1].
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